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Abstract: The main purpose of this study was to develop a photovoltaic module array (PVMA)
and an energy storage system (ESS) with charging and discharging control for batteries to apply
in grid power supply regulation of high proportions of renewable energy. To control the flow of
energy at the DC load and charge/discharge the battery uniformly, this work adapted a bidirectional
buck–boost soft-switching converter and the maximum power point tracking (MPPT) technique of
the photovoltaic module array. First, a boost converter is used with the perturb and observe (P&O)
method, so that the photovoltaic module array can work at the maximum power point (MPP) at any
time. When the output power of the photovoltaic module array is greater than the load power, the
excess power is used to charge the battery; on the contrary, if the output power of the photovoltaic
module array is lower than the load power, the battery discharges for auxiliary power supply. This
makes the voltage of the DC link maintain a constant value. The monitoring circuit sends the voltage
and current signals to the TMS320F2809 digital signal processor (DSP) produced by Texas Instruments
to control the battery charging/discharging voltage and current. The photovoltaic module array
works at the MPP to improve the performance of the overall energy storage system. Finally, the
actual test result shows that the soft-switching converter used in this work, when compared to the
hard-switching converter, can improve efficiency by nearly 4% when the load power is above 125 W.
When the photovoltaic power generation system operation is between 150 W and 400 W, the proposed
uniform charging and discharging architecture can rapidly reach uniformity.

Keywords: photovoltaic module array (PVMA); energy storage battery system (ESS); uniform
charge/discharge; bidirectional buck–boost soft-switching converter; maximum power point tracking
(MPPT); perturb and observe (P&O) method; digital signal processor (DSP); battery

1. Introduction

A microgrid is a small electrical grid that is developed in combination with renewable
energy. Photovoltaic and wind power generation are the most common power supplies for
microgrids, which means that these electrical grid systems can be independently operated.
However, the power generation quantity of renewable energy generation systems varies
according to the weather, which can affect the power generation efficacy [1–3]. For example,
photovoltaic power generation will change based on sunlight exposure, creating unstable
power generation (unstable power supply between the load and the power grid). Thus, a
battery energy storage system must be used to conduct power adjustment in photovoltaic
power generation. This allows the photovoltaic power generation system to store excess
power in the batteries and use the batteries to supply power when the microgrid does not
have enough power to supply, allowing the microgrid to achieve maximum benefit.

With the rapid growth in global photovoltaic power generation, there will be a large
number of photovoltaic power generation systems (PVPGS) parallel connected to the
power grid system. However, when the proportion of renewable energy power generation
becomes higher, the voltage and frequency change rate of the power system may be greater,
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limiting the grid-connected capacity of photovoltaics and also causing the power quality of
the regional power grid to decline. As the photovoltaic power generation system reduces
its power generation during the nighttime or when the weather is poor, if the power
company’s backup capacity is insufficient, it will lead to regional power outages or even
complete power outages, gradually creating the problem of connecting photovoltaic and
city power grids. Therefore, the development of an energy storage system for photovoltaic
power generation systems, which allows photovoltaic power generation systems to adjust
the power supply to the load side of the grid through the energy storage of the battery
when the power generation is excessive or plummeting, is an urgent research topic.

Generally, when batteries leave the factory, the condition of each battery will be
different, such as internal impedance and the self-discharge rate. If different manufacturers
produce them, their internal chemical structures and battery-rated voltages will also be
different. In addition, if the battery is close to the heat source, the charge and discharge
reaction of the battery will be different. Therefore, when batteries are used in serial
connection, if there is no protection mechanism, or it does not employ a uniform charge and
discharge structure, the battery will be overcharged or over-discharged. Overcharge or over-
discharge will accelerate battery aging and cause the battery’s capacity and life span to be
reduced, or even worse, the battery will explode. Therefore, when charging and discharging
serially connected batteries, a structure of uniform charging and discharging must be added
to achieve the effect of protecting the batteries. Currently, common uniform charging and
discharging methods are divided into passive and active. The passive is resistive [4–7],
and the active includes capacitive, inductive, and multiple winding transformer types
and equal charge bidirectional buck–boost hard-switching converters [8–21], and so on.
For fixed-resistor uniform charge and discharge architecture [4,5], each battery is parallel
connected with a resistor, which consumes the energy of the highest battery voltage first,
until the highest battery voltage value is equal to the lowest battery voltage value. Although
this architecture is simple and low-cost, the continuous parallel resistor makes the entire
system consume a lot of extra energy. In addition, it generates heat on the resistor, which
reduces efficiency. Although the switching-resistor type uniform charge and discharge
circuit architecture [6,7] consumes less energy than the fixed type, it requires a higher power
consumption resistor and a higher current endurance switch than the active uniform charge
and discharge switches, and the power consumption on the resistor is relatively high. The
capacitor type uniform charge and discharge architecture [8–11] is one of the active uniform
charge and discharge architectures. It is a structure composed of a serially connected battery
through a bidirectional switch and a capacitor. This architecture uses capacitors to store
energy. This feature solves the problem of uniform charging and discharging of the battery.
The advantage of this architecture is that the loss is low, but when the energy is too much,
the problem of having nowhere to go will occur, and the uniform charge and discharge
time is also very long. Moreover, if you want to shorten the charge and discharge time,
you need to use a larger capacitor to make the overall circuit bulky and increase the cost.
Thus, it is not easy to implement in a large-capacity energy storage system. The inductive
type uniform charge/discharge architecture can be further divided into forward [12,13]
and backward [14,15]. The energy conversion of this type of architecture is limited by
the capacity of the inductor. When the inductor with a higher battery voltage is charged,
the battery’s power will be reduced. Charging speed causes the problem of an overly
long charging time. The multi-winding transformer’s uniform charging and discharging
architecture [16–19] stores energy on the primary side of the transformer first, then transfers
the excess energy to the low-voltage battery through the secondary side. Although the
balance speed can be greatly shortened, it is relatively derived from the problem of a
relatively expensive transformer design cost, and there will be problems of hysteresis loss,
mutual inductance, and leakage inductance. Thus, it is difficult to design a circuit for
this architecture compared to other circuit architectures. With bidirectional buck–boost
hard-switching converter uniform charge/discharge architecture [20,21] operating in boost
mode, the battery pack is the input terminal and provides energy to the load at the output
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terminal. When operating in the buck mode, the voltage of the DC power supply terminal
is greater than the voltage of the battery pack, and the battery pack is in the charging state.
This architecture is only suitable for a single battery with a larger capacity. If it is used
in a battery with a small capacity, it will increase the cost, and the switch in the circuit
adopts hard switching, it is easy to cause the power loss of the switch during the switching
process. The passive uniform charging and discharging architecture proposed in [4–7] has
the advantage of having a simple circuit and low cost. However, these architectures have
low efficiency, and the battery uniform charging and discharging time takes longer than
the active uniform charging and discharging architecture. The active uniform charging
and discharging architecture proposed in reference [8–21] has a short uniform charging
and discharging time, but the architecture and control are complex. The uniform charging
and discharging architecture developed for this work has a soft-switching function that
can reduce the switching loss caused by the switching of power semiconductors, thereby
improving converter efficiency. At the same time, the uniform charging and discharging
control strategy proposed for this work can simplify the uniform charging and discharging
procedure and shorten the uniform charging and discharging.

In addition, because the photovoltaic module is a non-linear component, the voltage,
current, and output power of the photovoltaic module will vary due to factors such as the
amount of sunlight and ambient temperature, so its P–V and I–V characteristic curves will
also change accordingly. Suppose the load is directly connected to the photovoltaic module
array. In this case, the photovoltaic module array will not operate at the maximum power
point, resulting in the inability to provide the maximum power to the load. Therefore, in
order to maintain the output power of the photovoltaic power generation system at the
maximum power point, it must be equipped with a maximum power tracker [22,23].

Based on this, this work proposes the bidirectional buck–boost soft-switching con-
verter, as shown in Figure 1, as the control architecture of the energy storage system [24,25].
The architecture controls the charging and discharging of the battery. Moreover, this
bidirectional buck–boost converter architecture replaces the diodes of the boost converter
architecture with switching components, making the architecture have buck, boost, and
energy bidirectional flow characteristics. In addition, if the low-voltage side is combined
with a battery, and the high-voltage side is connected to the photovoltaic power generation
system, it has the function of storing excess power and auxiliary power supply. At the same
time, it can be used with the most commonly used perturb and observe (P&O) method [22]
to track the maximum power of the photovoltaic module array. In the actual test part,
the TMS320F2809 digital signal processor [26] is used for switching control to control the
charging and discharging of the battery. The performance of the energy storage system
developed under loads of 100 W and 300 W was verified.

The arrangement of the various section contents is as follows: Section 2 describes the
advantage of the P&O method and its tracking process compared to the current traditional
maximum power point tracking (MPPT). Section 3 describes the pulse width modulation
(PWM) control signal used by the bidirectional buck–boost soft-switching converter’s circuit
architecture and various power semiconductor switches. Section 4 describes the architecture
and circuit design of the uniform charging and discharging converter and introduces their
control rules. Section 5 compares the efficiency test results of the soft-switching mode
converter compared to that of the traditional hard-switching mode converters, and uses
a uniform charging and discharging response to verify the feasibility of combining the
uniform charging and discharging control architecture with photovoltaic power generation
systems. Finally, the conclusion of this article describes the results of this work and what
limitations may be encountered in the application of this architecture. The conclusion also
proposes some recommendations for future research.
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Figure 1. The system architecture of the photovoltaic module array and uniform charge/discharge
control energy storage battery system.

2. The Adopted Maximum Power Point Tracking (MPPT) Control Methodology

Due to its simple circuit and fewer parameters, the perturb and observe (P&O) method
does not need to measure the parameters of the photovoltaic module array. It is most
commonly used in many algorithms. It continuously adds disturbance to the terminal
voltage of the photovoltaic module array in a fixed period. If the terminal voltage increases
the output power of the photovoltaic module array due to the disturbance, the disturbance
in the same direction will be used next time to change the voltage of the photovoltaic
module array, continuing to disturb, observe, and compare until it reaches the maximum
power point. The process flow of the disturbance is shown in Figure 2 [22,23].
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3. Bidirectional Buck–Boost Soft-Switching Converter

The switching loss caused by the switching of the converter will not only make
the switching element heat up but also reduce the efficiency of the converter. In addi-
tion, it will cause high dv/dt and di/dt, and even cause serious electromagnetic interfer-
ence (EMI). Based on this, this study adopted a bidirectional buck–boost soft-switching
converter [24,25]. The converter architecture and switching signal output are shown in
Figure 3a,b. This converter is based on the existing bidirectional converter hard-switching
architecture, supplemented by a set of resonant branches. This resonance branch is
composed of a high-voltage side auxiliary switch SHr, low-voltage side auxiliary switch
SLr, resonance inductance Lr, and resonant capacitor CLr, which are controlled by the
pulse width modulation (PWM) signal to turn on the auxiliary switch. After the reso-
nant branch forms transient resonance, the main switching component is switched so
that this converter has zero voltage switching (ZVS) and zero current switching (ZCS)
soft-switching characteristics.
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4. An Energy Storage System with Uniform Charge/Discharge Control

The internal resistance and self-discharge rate of each battery cause differences in its
health status. Thus, when batteries are parallel connected, and no protective mechanism
or uniform charging and discharging architecture is used, battery overcharge or over-
discharge can result. This work uses a bidirectional buck–boost soft-switching converter
and proposes a new uniform charging and discharging architecture so that battery power
can quickly achieve uniformity. This converter has ZVS and ZCS functions, which allow it
to effectively improve the efficiency of uniform charging and discharging circuits.
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4.1. Battery Energy Storage System Architecture with Uniform Charge and Discharge Control

A retired battery’s capacity is 70~80% of that of a brand new battery, and each battery
has a different health status, which will cause uneven charging and discharging of the
battery. Using the uniform charging and discharging architectures in the literature [4–21],
they can prevent the battery from overcharging and over-discharging, and adjust the
charging and discharging current for each battery to make the battery charge and discharge
uniformly. However, these methods all have problems such as low efficiency, high cost, slow
charging speed, and complex circuits. Therefore, this work proposes a bidirectional buck–
boost soft-switching converter, as shown in Figure 4, for a single charge/discharge uniform
charge and discharge architecture. This architecture contains a sensing circuit, a switching
component for the isolated drive circuit, a digital signal processor, and a dual-set serial
connected bidirectional buck–boost soft-switching converter. The sensing circuit includes
voltage detection and current detection. The switching component for the isolation drive
circuit is mainly used to enable the TMS320F2809 digital signal processor [26] to generate a
pulse width modulation (PWM) signal to control the on and off of the power switch and
achieve the electrical isolation between the control circuit and the power circuit. In addition,
the dual-set serial connected bidirectional buck–boost soft-switching converter [24,25] not
only has both boost and buck functions but also has the characteristics of soft switching,
so it can significantly improve the efficiency of electrical energy conversion. When this
architecture is operated in the boost mode, the battery pack is the input end and provides
energy to the high-voltage output end. If it is operated in the buck mode, the voltage of the
DC power end is greater than the voltage of the battery pack, and the battery pack is in a
charging state.

This work uses a dual-set serial-connected bidirectional buck–boost soft-switching
converter, as shown in Figure 4a, so there are two battery parameters on the battery side.
The parameters and electrical specifications are shown in Table 1.

Table 1. The electricity specification of the bidirectional buck–boost soft-switching converter.

Parameters Specifications

High voltage end DC link voltage (VH) 240 V
Battery end battery voltage (VBT1) 12 V
Battery end battery voltage (VBT2) 12 V

Switching frequency (f ) 25 kHz
Maximum operating power (Pmax) 300 W

High voltage end voltage ripple (∆VH,ripple) 0.5%
Battery end voltage ripple (∆VBT1,ripple, ∆VBT2,ripple) 0.5%

4.1.1. Main Inductance Lm1, Lm2 Design

The converter is designed so that the inductor current is in the discontinuous current
mode (DCM) when the load is light. When the load is loaded, the current is operated in the
continuous conduction mode (CCM); this design can reduce the switch conduction loss
of the load when the load is light. The inductance values of the buck mode and the boost
mode can be obtained by Equations (1) and (2), respectively [24,25]. However, in order
to ensure that the current can be operated in CCM in both the buck and the boost modes
when the boost mode value is selected and the duty cycle D = 0.33, the required inductance
value is the largest, the high voltage side voltage is VH = 240 V, and the light load critical
power is PH = 150 W. Thus, from Equation (1), we can derive that the required minimum
inductance value is 1.14 mH. In addition, in order to ensure that the designed converter can
operate in continuous conduction mode, the inductance must be multiplied by 1.25 times,
so Lm1 and Lm2 need to use 1.425 mH.

Lm(min)_boost =
D(1− D)2RH

2 f
=

D(1− D)2V2
H

2PH f
= 1.14(mH) (1)
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Lm(min)_buck =
(1− D)RL

2 f
=

(1− D)VL
2PL f

= 1.072(µH) (2)
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4.1.2. Capacitor CL1, CL2, CH1, CH2 Design

While the switch is turned on and off, it will produce output ripple voltage in order to
make the output more stable, so the input and output are connected in parallel with a filter
capacitor to filter out ripple voltage. The low voltage end capacities CL1 and CL2 could be
derived from Equation (3), CL1 = CL2 = 189 µF [24,25], and the high voltage end capacities
CH1 and CH2 could be derived from Equation (4), CH1 = CH2 = 42 µF [24,25]. Therefore, this
study adopted a capacity value of CL1 = CL2 = CH1 = CH2 = 270 µF/450 V, which is easier
to acquire.

CLow =
(1− D)

8Lm(∆VLow/ VLow) f 2 (3)

CHigh =
D

RHigh f (∆VHigh/VHigh)
(4)
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4.1.3. The Design of the Main Power Switch Component and the Auxiliary Power
Switch Component

The maximum current routes through the main power switching components SL1, SL2,
SH1, and SH2 could be derived from Equation (5) [24,25]. From the Table 1 specifications, we
know that the maximum voltage that the main switch components SL1, SL2, SH1, and SH2
should be able to endure is 240 V. In addition, considering the need to compare the circuit
efficiency of the hard-switching and soft-switching architectures in the actual test, in order
to avoid the surge voltage and surge current caused by the hard-switching architecture at
the switching moment, which might cause the switching components to burn out, IGBT
-IXGH40N120C3D1 (40 A/1200 V) is used as the main switching component. In addition,
the maximum voltage on the auxiliary switches SLr1, SLr2, SHr1, and SHr2 is the same as the
maximum voltage on the main switch component, and the current flowing through the
auxiliary switch is close to the main switch current, so the auxiliary switch selected was the
same as the main switch component.

ILm_max = VL

[
Pmax

V2
L

+
(1− D)

2L f

]
= 25.102A (5)

4.1.4. Resonant Component Design

Based on the circuit analysis, resonance inductance Lr1, Lr2 and resonance capacitor
Cr1, Cr2 could be determined by Equation (6) [24,25]. In order to ensure that Equation (6)
met the requirements regardless of a light or heavy load, the maximum value of the inductor
current ILm, that is, the peak value of iLm at full load ( ÎLm)max, was used to determine the
on-time tD of the auxiliary switch, and tD is usually 5~10% of the switching period T.
A margin time tε is required to obtain a reliable tD, so here, we set tD = 0.1 T = 4 µs,
and tε = 0.01 T = 0.4 µs, and then used Equation (6) to derive the maximum resonance
inductance value Lr1 = Lr2 = 38 µH so that we could select a resonance inductance value
smaller than 38 µH that would work. In addition, the selected switching component IGBT-
IXGH40N120C3D1 has a stray capacitance of 202 pF, so the resonance capacitors Cr1 and
Cr2 can be replaced by stray capacitors.

td = tD + tε

=
ÎLm
VH

Lr +
π
2
√

LrCr + tε
(6)

4.2. The Control Mode of Uniform Charging/Discharging

Because each battery has a different SOC, when batteries are parallel connected for
charging and discharging, a power imbalance problem can result. Consequently, batteries
can overcharge and over-discharge. References [27–30] show that if batteries are improperly
charged and discharged, this can prematurely age or damage the batteries. However,
the uniform charging and discharging architecture proposed in this work independently
charges and discharges each battery so that they can rapidly achieve uniform charging
and discharging. This architecture also effectively limits the charging and discharging
current to reduce battery aging problems. Because this work used KUNG LONG WP12-12
12 V/12 Ah lead-acid batteries, the upper limit for the charging and discharging current
command was set at a 0.3 C rate to extend the battery life, which resulted in a longer battery
charging time. If this is changed to lithium-ion batteries, then the charging and discharging
current upper limit must be changed. Figure 5 is a control block diagram for uniform charge
and discharge. First, the voltage of the battery pack must be sent back from the voltage
sensor to the digital signal processor (DSP). Then the average voltage of the battery pack
Vavg is calculated by Equation (7), and the voltage of the Nth battery pack VBTN is compared
with the average voltage Vavg. The error of the subtraction from the average voltage is
evN. If evN is a positive value, this means that the battery can continue to discharge; on the
contrary, if it is a negative value, this means that the battery should be charged. The error
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value evN goes through a proportional integral (PI) controller, and the battery charge and
discharge current command I∗BTN can be obtained; the calculation is shown in Equation (8).
When the evN difference is greater, the charge and discharge current command I∗BTN value
is greater; on the contrary, if the evN difference is smaller, the charge and discharge current
command I∗BTN value is smaller. During the charging and discharging of the battery, the
maximum charge current and discharge current limit must be set. If the limit is exceeded,
the battery is easily damaged. Therefore I∗BTN must be controlled within the maximum
charge and discharge current by the DSP. Then, by comparing the current error generated
by the PI controller, the control signal Icontrol is obtained, and the control signal Icontrol is
then compared with the triangle wave to obtain the PWM signal. If Icontrol is larger, the
on time of switch SLN is longer, that is, the duty cycle is larger; on the contrary, if Icontrol is
smaller, the on time of SLN is shorter, that is, the duty cycle is shorter, so that the charge
and discharge current of each battery pack can be adjusted to achieve the goal of uniform
charge and discharge of the battery pack. The comparison of the relationship between I∗BTN
and evN is shown in Table 2, and Table 3 shows the comparison between Icontrol and the
on/off time of the uniform charge/discharge control.
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Table 2. The mapping table of uniform charging.

Error Mode Positive/Negative Large/Small I*
BTN

evN

Discharging Positive value
Large Getting larger
Small Getting smaller

Charging Negative value Large Getting larger
Small Getting smaller
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Table 3. Uniform charge and discharge control switch on time comparison table (N ≥ 1).

Current Mode Positive/Negative Large/Small Power Switch
Conduct Time

Icontrol

Discharging Positive value
Large SLN getting longer
Small SLN getting shorter

Charging Negative value Large SLN getting longer
Small SLN getting shorter

Vavg =
VBT1+VBT2 + . . . + VBTN

N
(7)

I∗BTN= KPev+KI

∫
evNdt (8)

5. Test Results

This work used a Kernel PVS01202 photovoltaic power simulator as the photovoltaic
power array output. The batteries used were KUNG LONG WP12-12 12 V/12 Ah lead-acid
batteries. The TMS320F2809 digital signal processor [26] was used as the control core of the
architecture in Figure 4. TMS320F2809 is a fast and powerful digital signal microprocessor
with low power consumption. It has a RAM of 36 KB and a Flash memory of 128 KB,
and its working clock pulse can reach a maximum of 100 MHz. The uniform charging
and discharging circuit architecture proposed for this work was composed of multiple
bidirectional buck–boost soft-switching converters. Thus, more PWM control modules and
analog–digital converter (ADC) channels were required. The TMS320F2809 has 12 PWM
control modules and 16 sets of 12 bit ADC channels. Therefore, this work employed this
digital signal processor to control the batteries’ uniform charging and discharging. Voltage
and current sensor signals were transmitted to the DSP for calculation. The proposed
uniform charging and discharging control program was developed using C language and
TI Code Composer Studio (CCS) development environment. Converter switch waveforms
and a uniform charging and discharging response diagram from this section’s actual test
were used to verify the performance of the energy storage system composed of the proposed
photovoltaic power generation system and the uniform charging and discharging batteries.

5.1. The Actual Test for the Bidirectional Buck–Boost Soft-Switching Converter

The physical circuit of the proposed architecture is shown in Figure 6. Figures 7 and 8
show the actual test waveform of each switch component for the bidirectional buck–boost soft-
switching converter operating in buck mode and boost mode at a load of 300 W, respectively.

The actual test results of the load from 50 W to 300 W prove that the adopted converter
can achieve the purpose of soft switching the main switch under various loads, regardless
of whether it is operated in the buck mode or the boost mode. Therefore, the switching loss
generated at the moment of the main switch switching can be reduced, and the conversion
efficiency of the converter can be improved. Figure 9a,b is the actual efficiency comparisons
of the adopted soft-switching converter and the traditional hard-switching converter when
operating in the buck and boost modes. The figure shows that the efficiency of the soft-
switching converter used in the buck mode or boost mode is nearly 4% higher than that of
the hard-switching converter when the load power is more than 125 W.

The existing automatic uniform charging and discharging circuit architecture mostly
utilizes a hard-switching mode converter, leading to high switching loss and poor overall
system efficiency. To improve this problem, this work proposes a type of soft-switching-
mode uniform charging and discharging circuit architecture to lower switching loss and
improve battery charging and discharging efficiency. Furthermore, this work also proposes
a simple uniform charging and discharging control strategy to independently control the
charging and discharging of each battery. This allows each battery to rapidly achieve
uniform charging and discharging. The test results in Figure 9 prove that compared to
traditional uniform charging and discharging circuit architecture, the proposed architecture
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can effectively improve charging and discharging efficiency by over 4%. Therefore, the
uniform charging and discharging circuit architecture proposed in this work is innovative.
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5.2. The Actual Test on Associating Uniform Charging/Discharging Battery with Photovoltaic
Power Generation System

Figure 10 shows the hardware circuit architecture of the developed battery energy
storage system with uniform charge and discharge. The actual test of battery uniform
charge and discharge control used two sets of different battery voltages combined with
photovoltaic modules and maximum power tracking technology to conduct a uniform
charge and discharge control experiment. Table 4 shows the initial voltage of each set
of batteries and the final voltage after uniform charging and discharging under different
photovoltaic module output powers.
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Figures 11–14 show the actual tested waveforms when the output power rates of
the photovoltaic module were 150 W and 200 W, and the battery discharges the load end
uniformly. Figures 15–18 show the output power of the photovoltaic module when the
output power rates were 300 W and 400 W, respectively, and actual tested waveform under
the uniform charging control of the photovoltaic module on the battery end. It can be
observed from Figures 11–14 that when the photovoltaic module output power (Ppv) was
greater than the load power, the battery was charged; on the contrary, it can be observed
from Figures 15–18 that if the photovoltaic module output power (Ppv) was lower than
the load power, the battery discharged to keep the DC link voltage (VH) constant. If the
voltage difference between the two batteries was greater, the required uniform charge and
discharge time were relatively longer, and the higher voltage battery had a larger discharge
current in the initial stage of discharge; on the contrary, in the initial stage of charging,
the higher the voltage, then the relatively lower the charging current of the battery. It can
be observed from Figures 12, 14, 16 and 18 that when the uniform charge and discharge
control were completed, the voltages of the two batteries were the same, and the charge
and discharge currents were also the same, so the goal of uniform charge and discharge
was achieved.
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Table 4. The different output power rates of the photovoltaic module, the initial voltage of each set of
batteries, and the final voltage after reaching uniform charging and discharging state.

Operating Mode Voltage Status

Set 1
Initial Voltage

Final Uniform Charging/
Discharging Voltage

Set 2
Initial Voltage

Final Uniform Charging/
Discharging Voltage

Discharging VBT1 = 12.9 V Vdischarge = 12.1 V (PV
power = 150 W)

VBT1 = 12.6 V Vdischarge = 11.8 V (PV
power = 200 W)VBT2 = 12.4 V VBT2 = 12.1 V

Charging VBT1 = 12.4 V Vcharge = 12.6 V (PV power
= 300 W)

VBT1 = 11.7 V Vcharge = 12.1 V (PV power
= 400 W)VBT2 =11.9 V VBT2 = 11.2 V
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The experiment results show that the conventional proportional integral (PI) controller
parameters of the battery’s charging and discharging voltage and current will affect the
battery’s uniform charging and discharging speed. Thus, to achieve the expected charging
and discharging response, a quantitative design will be implemented for the controller in
the next stage. In addition, because the battery’s charging and discharging rates affect the
battery’s uniform charging and discharging time, if the maximum charging and discharging
current in the original setting is not changed and a larger capacity battery is used, the
uniform charging and discharging times will become longer.

6. Conclusions

This work takes the energy storage system architecture of a battery with uniform
charge and discharge control combined with a photovoltaic module array as the research
topic. Firstly, we developed the bidirectional buck–boost converter used and performed the
performance measurement of the converter under loads of 50 W to 300 W. Then, the two
sets of converters were serial-connected to construct an architecture with uniform charging
and discharging. The TMS320F2809 digital signal processor was used as the control core,
with the photovoltaic module and its maximum power tracking technology. The battery
charging and discharging control was planned according to the strategic plan that the
battery can achieve uniform charge and discharge. Two sets of batteries with different
voltages were used for uniform charge and discharge control during the actual test. The
actual test results verify that the adopted uniform charge and discharge control strategy can
indeed achieve the uniform charge and discharge control effect of the battery. To improve
the power imbalance problem during the battery charging and discharging process, and to
prevent overcharge and over-discharge, the charging and discharging circuit used in this
work has a soft-switching function. Compared to a traditional hard-switching circuit, this
has a lower switching loss. This increases the efficiency by nearly 4% when the charging
and discharging circuit load power is above 125 W. However, the energy storage equipment
used in this work were lead-acid batteries, which cost less but create higher environmental
pollution. Thus, future studies can use lithium batteries or lithium-ion batteries instead
of lead-acid batteries. Alternatively, retired electric car batteries can be used to lower the
cost of the energy storage system so that the energy storage system can be more flexible.
Furthermore, the uniform charging and discharging architecture proposed for this work
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only detects the battery’s voltage and current and can only determine whether the battery’s
charging and discharging electrical power is uniform. This work did not include state of
charge (SOC) and state of health (SOH) testing, and cannot monitor battery power quantity
and health. Thus, a battery management system (BMS) can be added in the future to
improve battery use efficiency and extend battery life.
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