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Abstract: The paper presents a study of the influence of magnetic hysteresis on macroscopic eddy
current losses. Usually, this loss is calculated within many simplifying assumptions, of which the
most striking is not only neglecting the hysteresis, but also the nonlinearity of the material. To check
how such simplifications affect the results, the loss was calculated taking into account the hysteresis
phenomenon for several materials. For this purpose, an algorithm for solving Maxwell’s equations
with magnetic characteristics given as a family of measured hysteresis loops was constructed. A
new method for conversion between H and B fields using the measured hysteresis loops was also
proposed. The results of calculations for three materials show that the eddy current loss calculated
with magnetic hysteresis taken into account are smaller than those calculated via the classical formula
obtained for linear materials. For the tested materials, the differences reach up to around 30%,
depending on frequency, magnetic flux density and thickness of electrical sheet. This may result,
among others, in erroneous determination of the excess loss in Bertotti’s approach.

Keywords: hysteresis loop; eddy currents; eddy current loss; energy loss; soft magnetic materials

1. Introduction

Energy loss is one of the most significant parameters characterizing soft magnetic
materials, which is usually given per mass unit and one magnetizing cycle. In the classical
approach, resulting from the Poynting theorem, there are two components of the loss:
due to hysteresis and macroscopic eddy currents, respectively [1,2]. However, the loss
calculated in such a way is lower compared to the measured one [3]. The difference between
the measured and theoretical loss is called the excess loss. Its origin is often explained
with Bertotti’s theory, also known as loss separation, where the excess loss is related with
the domain structure of magnetic material [2,4–9]. Bertotti’s approach is still a field of
extensive research, including its validation for new types of soft magnetic materials as
well as for non-sinusoidal excitations [10–13]. However, it should be remembered that
the classical formulas do not take into consideration the dynamics of domain structure
(movement of domain walls, creation and annihilation of domains), i.e., they neglect the
microscopic eddy currents caused by magnetic flux changes near domain walls. But there
is another factor affecting this difference—it may originate (at least partially) in many
simplifying assumptions used during derivation of the theoretical formulas. Among them,
the most striking is using constant value for magnetic permeability in the eddy current
loss, i.e., neglecting not only the magnetic hysteresis, but also the nonlinearity of magnetic
material. Moreover, Bertotti uses the low frequency approximations for the hysteresis
and eddy current loss, i.e., the excess loss is determined without the skin effect taken into
account [14–17], which may lead to significant errors for higher frequency or thicker electric
sheets. Therefore, it seems reasonable to verify how these simplifications affect the classical
eddy current loss, and, thus, the excess loss [18].
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There have been numerous attempts at including magnetic hysteresis into calcula-
tions of fields and eddy current loss, e.g., [19–22]. Solving the field equations with mea-
sured magnetization characteristics taken into account (hysteresis loop family or nonlinear
B(H) curves) usually requires a numerical approach. An iterative algorithm, including
nonlinear magnetization curve B(H), i.e., variable magnetic permeability, was presented
in [23]. The algorithm was modified to incorporate the magnetic hysteresis, and its idea
was presented in [24]. It was tested on various materials and for various parameters of
time-spatial discretization. When the slope of hysteresis loops, dB/dH, was finite and the
skin depth was small enough, the algorithm was convergent. The classical eddy current
loss calculated via the algorithm was up to around 2% smaller compared to the classical
theoretical value for a 6.5% Si non-oriented electric sheet of thickness 0.1 mm and frequency
up to 400 Hz. Such a rather small value was due to very weak skin effect. A stronger skin
effect was expected to affect the loss more significantly, but tests for thicker sheets or higher
frequencies led to some problems with convergence of the algorithm. Therefore, some
improvements reducing the numerical noise arising during calculations were proposed
in [25]. The reduction consisted of applying Fourier transform and cutting off the higher
order harmonics of amplitude lower than a prescribed percentage of the highest one. This
significantly improved the convergence, but there were still problems with hysteresis loops
of infinite dB/dH values. Therefore, this paper is focused on a new method of conversion
between H and B fields to improve the convergence.

2. Methodology
2.1. Theoretical Background: Governing Equations and Their Solving

To calculate the eddy current loss in a material sample, it is necessary to make several
assumptions on geometry and material properties of the sample. Below, a rectangular
sample of thickness g, much smaller than the other dimensions (w and l), is considered—see
Figure 1. The material is assumed to be isotropic and homogeneous, with constant electric
conductivity σ, and known magnetic characteristics, which may be given in the form of a
hysteresis loop family or magnetization curve. Formally, the B(H) characteristics can be
expressed in the following form:

B = fHB(H), H = fBH(B), (1)

where fHB and fBH are mutually inverse transformations describing the magnetization
curve or hysteresis loop family. The family of measured magnetic hysteresis loops for
various frequencies is used here, but the same algorithm is applied for magnetization curve,
or just constant magnetic permeability. After introducing the Cartesian coordinates with
origin at the sample center and axes oriented as in Figure 1, and assuming the B field only
has a z component depending on y, the Maxwell equations simplify as follows:

∂Jx(y, t)
∂y

= σ
∂Bz(y, t)

∂t
, (2)

∂Hz(y, t)
∂y

= Jx(y, t). (3)

The above equations are solved under condition that the average magnetic flux is
sinusoidal with angular frequency of ω:

Bav(t) =
Φ(t)
gw

= Bm sin ωt, (4)
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After solving the equations, the eddy currents loss is calculated as follows:

Palg
cl =

4 f
σg

∫ 1
2 f

t=0

∫ g
2

y=0
J2
x(y, t)dydt

[
W
m3

]
, (5)

where f is frequency.
Equations (1)–(4) are solved numerically. The block diagram of the iterative algorithm

is presented in Figure 2. Suppose an approximate waveform distribution of magnetic flux
density throughout the sample in iteration k−1, B(k–1)(y, t), is known. Then Equation (2)
together with symmetry condition Jx(–y, t) = −Jx(y, t) yields:

J(k)x (y, t) = σ
∫ y

0

∂B(k−1)
z (y, t)

∂t
dy. (6)

Next, Equation (3) leads to:

H(k)
z (y, t) =

∫ y

0
J(k)x (y, t)dy︸ ︷︷ ︸
H̃(k)

z (y,t)

+ H(k)
z0 (t), (7)

where H(k)
z0 (t) is any function of time. Its determination is discussed later in this section.

Having found H(k)
z (y, t), the first of Equation (1) is used to obtain the magnetic flux density

waveform corresponding to H(k)
z (y, t):

B̃(k)
z (y, t) = fHB

[
H(k)

z (y, t)
]
. (8)

The tilde over Bz is used here to indicate that the magnetic flux density obtained
in such a way usually does not satisfy Equation (4). Therefore, the values of B field are
adjusted as follows:

B(k)
z (y, t) = B̃(k)

z (y, t)− 2
g

∫ g
2

0
B̃(k)

z (y, t)dy + Bav(t). (9)
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Y 

Figure 2. Block diagram of the algorithm.

The adjustment subtracts the actual average magnetic flux density (the integral) and
adds the required average value given by Equation (4). Note that this does not change the
spatial distribution of magnetic flux density—for all y coordinates, the same shift in values
is performed. Hence, the derivative with respect to y is not affected. Then, the difference
between B(k)

z and B(k−1)
z is determined by calculating:

∆Bmax = max
y,t

∣∣∣B(k)
z (y, t)− B(k−1)

z (y, t)
∣∣∣. (10)

If ∆Bmax ≤ εBm, where ε is a presumed maximum relative error, the calculations
are finished, otherwise they are repeated. The other condition for finishing iterations is
reaching the maximum permissible number of iterations.

Function H(k)
z0 (t) occurring in Equation (7) may be assumed in various ways. Initially,

it was just the value from previous iterations similarly as indicated in [23], but it led to
problems with convergence. Therefore, it is proposed to determine it so that the average H
field throughout the sample was:

Hav(t) = fBH[Bav(t)], (11)
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which is known, because Bav(t) is given by Equation (4) and f BH is a known characteristic.
Calculating the average value from Equation (7) and comparing it with Equation (11) yields:

H(k)
z0 (t) = Hav(t)−

2
g

∫ g
2

0
H̃(k)

z (k, t)dy. (12)

This allowed much better convergence to be obtained.
In numerical implementation, the half-period was divided into NT time segments

of equal duration ∆t = T/(2NT), and half the thickness of the sheet was divided into Ng
segments of equal length ∆y = g/(2Ng). The derivatives and integrals were replaced with
appropriate finite differences and sums, respectively.

2.2. Conversion between H and B Fields

Conversions between H and B fields, denoted briefly as f HB(B) or f BH(H), are crucial
steps in the algorithm (see Equations (8) and (11)). When using the magnetization curves
without hysteresis taken into account, the conversion is simple and unique. But for the
family of measured magnetic hysteresis loops, there are several problems associated with
the conversion. Two of them are depicted in Figure 3a: which hysteresis loop should
be selected, and which branch of the chosen hysteresis loop should be taken? It is not
possible to convert uniquely between single values of H and B field, but it is possible for
waveforms. Let H(t) be a known half waveform of H field obtained from Equation (7), and
the corresponding B(t) is required. Suppose that H(t) initially increases up to Hm, which
is reached for time tm, and then H(t) decreases. First of all, the maximum value of H(t) is
searched for—this allows the appropriate loop to be selected (assuming there is one loop
with given Hm). The selection usually requires interpolation between two neighboring
loops (see Figure 3b). Then, time tm such that H(tm) = Hm is determined. Finally, the
loop is broken into the lower and upper branch, and the lower branch is used for t < tm
whereas the upper one for t > tm. It is tempting to assume that H(0) = −Hm or H(0) = 0,
for example, to make the conversion easier. However, this cannot be warranted, because
Equation (7) contains H(k)

z0 (t), which can disturb this.
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Figure 3. Conversion H→ B: (a) problems of non-uniqueness—which loop to select for given H, and
which B to select for given H and loop? (b) the loop corresponding to given H(t) (dashed line) is
found via interpolation between two loops from measurements (thick solid lines).
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This procedure seems reasonable, but it is very sensitive to the loop slope—if dB/dH
is large, then small changes in H result in large changes in B; this leads to problems with
convergence of the algorithm for solving Maxwell’s equations. Moreover, the conversion
fails when loops deviate from the “regular” shapes with one local maximum, because
sometimes the lower branch has segments with negative slope. Therefore, a different
method for conversion between H and B fields is proposed here. Measurement results
in a list of H field waveforms, {Hl(t)}, and the corresponding list of B field waveforms,
{Bl(t)}, where l numbers the measured loops. When plotted in (H, B) coordinates, the
corresponding hysteresis loops family is obtained. The above-described method of H↔ B
conversion consists in a direct use of loops, whereas the proposed one uses the waveforms
rather than loops. For further convenience, the lists are sorted so that the maximum values
of H and B field increase. Moreover, the waveforms are adjusted so that Bl(0) = −Bmax and
Bl(T/2) = Bmax. The idea of the algorithm is as follows:

1. Given: H(t), {Hl(t)}, {Bl(t)};
2. Construct linear interpolation between Hl(t) and Hl+1(t) in the following form:

h(t) = (1− θ)Hl(t + aθ + b) + θHl+1(t + aθ + b), (13)

and detect l, θ, a and b to satisfy h(t) = H(t) at some characteristic times or cases (the
origin of Equation (13) is explained below);

3. Use detected values of l, θ, a, b to calculate:

B(t) = (1− θ)Bl(t + aθ + b) + θBl+1(t + aθ + b). (14)

The inverse conversion B(t) to H(t) is analogous.
The value of l determines waveforms Bl(t) and Bl+1(t) between which the interpo-

lation takes place, θ is the interpolation factor, and aθ + b is required to take into con-
sideration a possible time displacement. The assumed interpolating functions given by
Equations (13) and (14) can be justified in the following manner. In the simplest form, the
linear interpolation between waveforms Hl and Hl+1 is as follows: h(t) = (1− θ)Hl(t) +
θHl+1(t). However, this form does not allow for possible time displacement of the wave-
forms. To permit time displacement the interpolating function should have the following
form: h(t) = (1− θ)Hl(t + ∆tl) + θHl+1(t + ∆tl+1), where ∆tl and ∆tl+1 are certain con-
stants. A bit more general form uses linear interpolation also between ∆tl and ∆tl+1 as
follows: ∆t = (1− θ)∆tl + θ∆tl+1, which can be written as ∆t = aθ + b. As a result,
Equation (13) represents the linear interpolation both in arguments (time) and values
(H field). A similar interpolation given by Equation (14) is used for B field.

The values of l, θ, a and b can be found in various ways, which usually lead to slightly
different values, because equation h(t) = H(t) seldom can be satisfied for all times. Therefore,
additional assumptions are required. First of all, it is expected that if H(t) can be found in
{Hl(t)}, possibly after some time displacement, then h(t) should reflect this. This leads to the
following equations:

θ = 0 : H(t) = Hl(t + b), θ = 1 : H(t) = Hl+1(t + a + b). (15)

To establish a and b, some specific time must be assumed. One choice could be the
time when H(t) reaches its maximum, but certain waveforms Hl(t) have more than one
local maximum. Therefore, a better choice seems the time when H(t) is zero, because the
time seems unique over one half period. Of course, there are two possibilities—time tz
when H(t) increases, and time tz + T/2 when H(t) decreases after the half period. Let us
take the first one. It will be called the ascending zero of H(t), i.e., H(tz) = 0 and dH/dt > 0
for t = tz. Hence, b = tz,l − tz and a = tz,l+1 − tz,l, where tz,l and tz,l+1 are ascending zeros of
Hl and Hl+1, respectively. Then Equation (13) becomes:

h(t) = (1− θ)Hl(t + ∆t) + θHl+1(t + ∆t), (16)
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where:
∆t = aθ + b = (1− θ)tz,l + θtz,l+1 − tz. (17)

Now it is necessary to find l and θ. To do this, equity h(t) = H(t) for certain t is required.
Again, there are various possibilities to select the time. Based on the numerical experiments,
we decided to use t = tm, where tm is such that H(tm) = maxH(t) ≡ Hm. Then, solving
equation Hm = h(tm) yields:

θ =
Hm − Hl(tm + ∆t)

Hl+1(tm + ∆t)− Hl(tm + ∆t)
. (18)

This is a nonlinear equation with respect to θ, because ∆t is a function of θ. If necessary,
it can be solved numerically, but for close tz,l+1 and tz,l, which is a typical situation, it is
convenient to use its approximate form as follows:

θ =
Hm − Hm,l

Hm,l+1 − Hm,l
, (19)

where:
Hm,l = Hl(tm + tz,l − tz). (20)

Subsequent values of l in Equation (19) yield various solutions for θ. To stay within
interpolation, θ should be in interval [0, 1], which allows l to be selected. If this is not
possible, extrapolation is used with the last two waveforms and θ > 1. The final procedure
in step 2 for determining l, θ, a and b is as follows:

2a. Find the maximum value of H(t): Hm = maxH(t);
2b. Find time tm such that H(tm) = Hm;
2c. Find the ascending zero of H(t), i.e., time tz < tm such that H(tz) = 0;
2d. Construct a list of values Hm,l using Equation (20);
2e. Find waveforms between which to interpolate, i.e., find such l that Hm,l ≤ Hm < Hm,l+1;

if this is not possible, use the last two waveforms;
2f. Calculate the interpolation factor using Equation (19);
2g. Calculate a, b and the time displacement using Equation (17).

Such a procedure has the necessary property that when H(t) = Hl(t), then B(t) = Bl(t).
The other desired property is that derivative dB/dH does not matter at all. There is no need
to break the loops into branches, and the loops can have swings or infinite dB/dH values.
The disadvantage is that when the shape of H(t) differs much from given set of waveforms
{Hl(t)}, it is difficult to predict the behaviour of the algorithm, making the conversion
problematic. However, the tests showed the procedure works quite well. The periodicity,
symmetry and continuous nature of Hl(t) and H(t) mean the waveforms have exactly one
ascending zero and reach a maximum value. Typically, the situation is as in Figure 4, in
which two exemplary consecutive waveforms, Hl(t) and Hl+1(t), are shown, and also certain
waveform H(t) is depicted together with some characteristic points.
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Figure 4. Typical waveforms H(t), Hl(t) and Hl+1(t).

3. Results and Discussion

The algorithm was verified by calculating the macroscopic eddy current loss for
three materials given in Table 1. The materials have various thickness and include both
non-oriented and grain-oriented steels.

Table 1. Specification of magnetic materials used in calculations.

Parameter Material M1 Material M2 Material M3

Type Non-oriented steel
JNEX (6.5% Si-Fe)

Non-oriented steel
M530-65A (3.2%Si-Fe)

Grain-oriented steel
ET122-30 (3% Si-Fe)

Thickness (g) 0.1 mm 0.65 mm 0.3 mm
Conductivity (σ) 1.22 MS/m 2.56 MS/m 2.08 MS/m

Frequency (f ) 10–400 Hz 5–400 Hz 10–1600 Hz
Magnetic flux density range (B) 0.1–1.2 T 0.1–1.6 T 0.1–1.5 T

The magnetic characteristics of materials M1 and M2 were measured on a MAG-RJJ-
2.0 computer system, and for M3—on a REMACOMP C-200 measurement set [26]. The
exemplary hysteresis loops for material M3 for f = 1000 Hz are shown in Figure 5a, whereas
the corresponding waveforms {Hl(t)} and {Bl(t)} are depicted in Figure 6a,b. The lower
branches of the some loops have swings with negative dB/dH, which disturb the conversion
between H and B field via direct use of loops. The proposed method of conversion described
in Section 2.2 allows us to use the waveforms and avoid the abovementioned problems.
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Bl(t); (b) corresponding waveforms Hl(t).

In addition, plots in Figure 5b–d show the hysteresis loops of the three materials for
Bm = 0.5 T and several frequencies. As the frequency grows, the loops become wider, which
is related to the skin effect. In material M1, the growth is smallest due to small thickness of
the sheet. In materials M2 and M3, the widening of loops is much more significant.

The values of parameters in the algorithm were as follows:

• Maximum relative error: ε = 0.001;
• Maximum number of iterations: kmax = 40;
• Number of time intervals per half the period: NT = 32;
• Number of spatial segments per half the thickness: Ng = 20.

Figure 7a,b shows exemplary waveforms of the B and H fields obtained for material
M2, Bm = 1 T and a frequency of 50 Hz. Figure 8a,b illustrates the convergence in the
iterative process.
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Figure 8. Values of power loss (a) and error indicator (b) in subsequent iterations corresponding to
Figure 7: (a) values of eddy current power loss expressed in W/kg; (b) values of δB = ∆Bmax/Bm; in
this case four iterations were enough to establish the results within assumed accuracy.

The algorithm was convergent for almost all cases, and the number of iterations
required for convergence usually was below 10. In case of a lack of convergence, the
calculations were repeated with smoothing used to reduce the numerical noise, so that
all harmonics of order 4 or higher with an amplitude no greater than 10% of the highest
amplitude in the spectrum were treated as noise and removed, as described in [25].

The results of calculations are presented in Figures 9–13, in which the percentage
relative deviation defined as follows:

δP =
Palg

cl − Pcl

Pcl
× 100%, (21)
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is presented for the three materials, where Palg
cl is the loss calculated via the algorithm given

by Equation (5), and Pcl is the classical loss as follows:

Pcl =
πγ f B2

m
2µ

sinhγ− sin γ

cosh γ− cos γ
, γ = g

√
πσµ f . (22)
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The relationship (22) describes the classical loss in macroscopic terms, neglecting the
domain wall structure. There are loss models taking into account the domain structure,
e.g., the Pry–Bean model [27], but these are not considered in the analyzed case. Instead,
the magnetic permeability µ in the above formula was calculated as Bm/Hmax, and not
assumed to be a constant value as in the classical approach.

The nonlinearity itself does not affect significantly the value of the classical loss. For
the considered materials, the percentage deviation δP does not exceed 3% (the largest
value is for material M2, frequency 200 Hz and magnetic flux density 0.4 T). On the other
hand, the magnetic hysteresis considerably changes the eddy current loss. The deviation
reaches up to several dozen percent. The largest deviations are observed for magnetic flux
density in the range 0.2–1.0 T. For the tested materials, the largest deviation occurred in the
following cases:

• M1: −2.6% for f = 20 Hz and Bm = 0.6 T;
• M2: −28% for f = 200 Hz and Bm = 0.4 T;
• M3: −24% for f = 1500 Hz and Bm = 0.4 T.

In general, the deviations are the larger the higher the frequency and the thicker the
sample, i.e., the stronger the skin effect (due to non-uniform distribution of magnetic flux).

Usually, the deviation given by Equation (21) is negative when magnetic hysteresis
is taken into account. It follows that neglecting the magnetic hysteresis overestimates the
eddy current loss. This may lead, for example, to misidentification of the excess loss in
Bertotti’s approach. The fact that including the hysteresis loops into calculations shows
smaller eddy currents loss agrees with the theoretical considerations, which models the
hysteresis via complex permeability [28].

It is also interesting that the deviation is largest for middle values of magnetic flux
density (see Figures 9–11), and not for the values near to saturation, for example. This is
because the middle loops affect the current distributions much more than those for strong
saturation in comparison to the case of neglecting the hysteresis.

4. Conclusions

In the paper, an algorithm of including the magnetic hysteresis phenomenon into
calculating the macroscopic eddy currents loss was proposed. It is based on direct using the
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hysteresis loops obtained from measurement without any specific model of magnetization,
which can be regarded as an advantage from the practical point of view. Moreover, a new
idea of conversion between B and H fields based on waveforms was also proposed to
improve the algorithm performance. It was shown that it works well for wide class of
hysteresis loops. The calculations carried out for various types of electrical steels showed
that neglecting the hysteresis overestimates the classical loss. On average, the effect is the
stronger the higher frequency and the thicker the sheet. The largest differences occur for
intermediate values of magnetic flux density.

In future research the proposed approach to calculating the eddy current loss will be
examined for different types of soft magnetic materials, such as amorphous or nanocrys-
talline alloys. Moreover new improvements of the algorithm will be considered. Another
direction of future research is developing the algorithm for B-H characteristics taken under
other types of excitations, e.g., sinusoidal H field.
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