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Abstract: The power-generation capacity of grid-connected photovoltaic (PV) power systems is
increasing. As output power forecasting is required by electricity market participants and utility
operators for the stable operation of power systems, several methods have been proposed using
physical and statistical approaches for various time ranges. A short-term (30 min ahead) forecasting
method had been proposed previously for multiple PV systems using motion estimation. This
method forecasts the short time ahead PV power generation by estimating the motion between
two geographical images of the distributed PV power systems. In this method, the parameter λ,
which relates the smoothness of the resulting motion vector field and affects the accuracy of the
forecasting, is important. This study focuses on the parameter λ and evaluates the effect of changing
this parameter on forecasting accuracy. In the periods with drastic power output changes, the
forecasting was conducted on 101 PV systems. The results indicate that the absolute mean error of
the proposed method with the best parameter is 10.3%, whereas that of the persistence forecasting
method is 23.7%. Therefore, the proposed method is effective in forecasting periods when PV output
changes drastically within a short time interval.

Keywords: photovoltaic (PV) power forecast; multiple PV forecasting; short-term PV forecasting;
motion estimation; optical flow; smart grid

1. Introduction

Reducing greenhouse gas emissions caused by power production can effectively ad-
dress climate changes [1]. Therefore, the installation of photovoltaic (PV) power generation
systems is significantly increasing with the decreasing installation costs [2], reaching 39 GW
in 2010 and 760 GW in 2020 [3]. However, as opposed to the existing dispatched power
generations, the power generation of PV relies on the weather conditions, thus varying
drastically and uncertainly. The high penetration of PV power generation makes it difficult
to maintain the balance between demand and supply in electric power systems. This
uncertain variability in PV generation can significantly impact the stable and economical
operation of power systems [4,5]. Therefore, power system operators require forecasting
of PV generation output; particularly, short-term forecasting is required to determine the
need for demand response, and a quick-start generator is required for the stable operation
of the power grid [4]. To date, different forecasting methods have been proposed for
various time scales using solar radiation forecasting or direct PV power forecasting. PV
forecasting can be classified into persistent forecasting, physical approach, and statistical
approach [6,7]. The physical approach forecasts solar irradiance data from a numeric
weather predictor atmospheric model. A common approach for regional PV output using
numeric weather predictor (NWP) data is to upscale a set of representative regional PV
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systems. Saint-Drenan et al. [8] proposed a method to probabilistically forecast the PV
output of the entire forecast area from the reference PV power and meteorological data
obtained from NWP. Ma et al. [9] proposed a method to correct the NWP irradiance using
the measured irradiance and optimized the prediction model using the particle swarm
optimization algorithm. Statistical approaches include forecasting models based on a learn-
ing process that uses variables with historical influence. These forecasting models attempt
to reduce errors by using the difference between the model’s forecasted and actual data.
Therefore, this approach has high-forecasting accuracy for time periods during which the
model input patterns are smooth. However, forecast errors increase during periods associ-
ated with abrupt changes in weather variables commonly referred to as “drastic change
periods”, such as solar radiation, temperature, and humidity [6]. Statistical methods can
be divided into two categories, namely time-series-based and artificial intelligence fore-
casting models [6]. Artificial intelligence is a popular technique for forecasting PV output
generation. Among them, NN is one of the most used forecasting models. Bacher et al. [10]
reported that autoregression model forecasting can be effective for short-term forecasting
based on the results obtained using NWP, observed PV data, and data from both sources.
Reikard [11] estimated the solar radiation intensity using the autoregressive integrated
moving average (ARIMA) method and compared it with that obtained from the artificial
neural network (ANN) method. Neural networks use different sets of input data to fore-
cast future output patterns and improve the accuracy of the model by carefully selecting
different influential parameters. Pedro and Coimbra [12] implemented an ANN method
optimized by a genetic algorithm (GAs/ANN) and compared it with the persistent forecast,
ARIMA method, and k-nearest neighbors (kNN) method. They verified that GAs/ANN is
superior to the other forecast methods. Zhou et al. [13] used two long short-term memory
models to forecast the temperature and PV output and combined them to enhance the
forecast accuracy. Behera et al. [14] implemented an optimal design methodology for an
extreme learning machine-based forecasting model of a PV system and compared its results
with those of existing models, such as the backpropagation model. Alamoudi et al. [15]
analyzed the performance of photovoltaic panels using an adaptive neural network-based
fuzzy inference system (ANFIS) to determine the self-consumption and sufficiency rates
of a PV system, and used response surface methodology (RSM) to determine the optimal
operating conditions of the PV panels. They used the ANFIS to analyze the performance of
photovoltaic panels to determine the self-consumption and sufficiency rates of PV systems,
and a response surface methodology (RSM) to determine the optimal operating conditions
of the PV panels. In addition to these approaches, forecasting methods based on image
processing techniques have been proposed. Studies have been conducted to estimate solar
radiation from satellites and grand-based sensors. Hammer et al. [16] proposed a method
for estimating solar radiation from satellite images and a statistical method for estimating
the movement of clouds. Perez et al. [17] reported that satellite-derived cloud motion-based
forecasts are better models for short-term forecasts than NWP-based solar radiation fore-
casts. Bright et al. [18] proposed a method for selecting reference PVs to support PV output
nowcasts from satellite images. Feng et al. [19] developed a deep convolutional neural
network for global horizontal irradiance one hour ahead of the sky image. Chu et al. [20]
proposed a reforecasting model to improve the forecasting by reforecasting with an ANN
and optimizing with a GA from the sky racking technique, ARIMA, and kNN forecasting.
Chow et al. [21] estimated cloud motion from the optical flow method using a sky-imaging
system, and the best forecasting may be obtained depending on the smoothness parameter.

Table 1 presents a brief description and summary of these forecasts. The effective
timescales in Table 1 are summarized in [22].
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Table 1. Characteristics of each forecast approach.

Approach Description Effective Time Scale References

physical approach NWP methods are popular long-term
forecast methods for solar irradiance. long-term [8,9]

statistical approach
This includes forecast by autoregressive and
artificial intelligence, which are particularly

effective in the short-term forecast.

very short-term,
short-term [10–15]

image processing approach
This involves forecasts based on images
captured using sensors installed on the

ground and artificial satellites.

very short-term,
short-term [16–21]

persistence approach
This approach is effective in very short-term
forecasting and is used as a benchmark for

the forecast.
very short-term [6,12,17]

The aforementioned short-term forecasting method tends to yield a high error during
periods when PV output changes abruptly. In contrast to these studies, our previous pro-
posal focused on the temporal transition of output power from geographically distributed
PV systems [23]. Therefore, this approach aims to reduce forecasting errors during periods
of abrupt changes in weather conditions for multiple PV systems at different locations. The
output power distribution of irregularly located PV systems was converted into a regularly
arranged mesh distribution with the same latitude and longitude intervals. Forecasting
was conducted by estimating the motion of mesh distribution. In the future, the smart grid
will be upgraded to capture the PV output power; therefore, this method is economical for
short-term forecasting, as it allows for predictions without additional equipment.

The existing method uses the optical flow for forecasting, wherein the motion field
between two consecutive images is estimated. This motion field is obtained by minimizing
the objective function, comprising the data term and regularization term, by using the
variational method [24,25]. The parameter λ of the regularization term is a model of the
smoothness of the motion field obtained using this function. This parameter is important
because the obtained motion field is highly affected by the parameter. Previously [23,26],
the mesh size and interpolation method for blank values when converting to a mesh
distribution were determined. In [23], the proposed method was evaluated based on the
forecasting results by only λ = 1.0. In addition, the mesh size determined in the previous
studies was small relative to the geographic transitions of actual weather conditions, and
the estimations based on this mesh size can drive the objective function to local minimum.
Therefore, there were many periods in which the estimated motion vectors did not match
the actual motions in rapidly changing weather conditions. In this study, a multiscale
approach was used to address this issue. This makes it possible to obtain a motion vector
field that is more appropriate to the actual motions by finding the global minimum of
the objective function, and to properly evaluate the effect of changing the parameter λ.
The purpose of this study is to examine the effect of changing this parameter λ and to
show the improvement of the prediction results from previous studies. In this study, the
prediction of 101 PV power systems is executed with several values of the parameter λ,
and the prediction error distribution of each PV is evaluated. The PV distribution in Japan
(latitude 31.20◦6′–39◦80′ and longitude 129◦60′–141◦60′) was normalized every 30 min for
one year from 2013 to 2014, converted to geographically distributed mesh data, the motion
of the NV distributions was estimated, and then the forecast was evaluated. The PV output
volatility is important when evaluating a forecast. Certain periods exist, such as clear
days, when it is easy to forecast the PV generation. These times reduce the error difference
when evaluating the motion estimations of each parameter, making it difficult to evaluate
the parameters. Pedro and Coimbra [12] reported that developing seasonal models for
each period of variability should improve the evaluation of the forecasting method. The
objective of this method is to forecast the PV output during periods when the output of
multiple PVs changes. As the changes in the PV output over a wide range differ from place
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to place, capturing the changes in multiple PV outputs is difficult. Therefore, in this study,
the period when the output of PVs in a certain area within a 15-km-radius in Japan changed
drastically within 30 min was extracted and evaluated. This paper evaluates the proposed
method with the multiple PV output changed periods in a certain area where the output
changes are correlated to each other. The contributions of this study can be summarized
as follows.

1. A method is proposed for evaluating multiple PV generation forecasts when the PV
output changes drastically.

2. The parameter that makes the best forecast for motion estimation reduces the error
by 56.6% compared to that of the persistence forecasting. It is an effective forecasting
method for periods when PV output changes drastically.

3. The characteristics of forecasting a wide range of PV outputs using a motion estimation
method are presented.

The remainder of this paper is organized as follows. Section 2 describes the data
preprocessing, estimation, and evaluation methods of the proposed method. Section 3
explains the characteristics of the motion estimation, forecasting results at drastic change
periods, and reasons for the errors. Finally, Section 4 concludes the study.

2. Materials and Methods

This section describes the input data, forecasting methods, and evaluation methods.
Figure 1 depicts the flowchart of the proposed method. The forecast method uses the power
generation output of the PV and position data as input and performs the forecast using an
image processing approach. In this method, prior to motion estimation, the geographically
distributed power output of PVs is preprocessed to enable image processing. The power
output of each PV system is forecasted based on the estimation results. Additionally,
this method changes the smoothness parameter of the motion estimation and evaluates
it during periods when the output changes drastically. In this section, first the conditions
under which the period was extracted and then the evaluation methods are described.

2.1. Dataset

The dataset used in this study is the actual data of the output power from 5097 PV
systems measured at 30 min intervals from 1 August 2013, to 31 July 2014, in Japan.
Therefore, the forecast timescale ∆t was set to 30 min. Table 2 presents an outline of
the dataset.

Table 2. Dataset information.

Period of Dataset 1 August 2013–31 July 2014

period of forecasting 15 August 2013–31 July 2014
sampling cycle (∆t) obtained from PV 30 min

number of PV systems 5097
range of the longitude forecasted 31◦20′–39◦80′

range of the latitude forecasted 129◦60′–141◦60′

2.2. Preprocessing
The proposed method uses motion estimation, which is an image processing method.
To apply the motion estimation to forecast the output of geographically distributed PV
systems with various power ratings and forms, the output power data were normalized
and converted to mesh data. The following process was implemented to achieve this.
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Figure 1. Configuration of the proposed photovoltaic (PV) forecast method.

2.2.1. Normalization

The output power from the PV systems is affected by the panel size, material, azimuth
angle, tilt angle, and installation location. Therefore, normalization is necessary to compare
numerous geographically distributed PV systems. In this study, NV of the output power is
defined as indicated in Equation (1).

NV(t) =
P(t)

P2w(t)
(1)

where P(t) denotes the actual PV power output at a specific time t, and P2w(t) represents
the highest power output at the same time t in the previous two weeks. Figure 2 depicts the
concept of normalization implemented on 14 July 2014. Figure 2a shows the output power
P(t) of a PV system on 14 July 2014 (orange line) and that observed on the previous 14 days
from 30 June to 13 July 2014 (gray lines); their maximum values P2w(t) at the corresponding
times are also indicated (red line). The two-week period is selected under the assumption
that at least one sunny day exists, and the seasonal change in sun elevation is negligible
during this period. Figure 2b depicts NV(t) at different times on 14 July 2014 calculated
using Equation (1).
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Figure 2. Concept figure of normalization on 14 July 2014: (a) power generation output lines for
15 days; (b) Normalized values on 14 July 2014.

2.2.2. Conversion to Mesh Data

In the proposed method, the irregular geographical distribution of NV values is
converted to a mesh distribution, which is the distribution data aligned at equal intervals
in the east–west and north–south directions to adapt it to image processing methods. The
NV value of each parcel in the regularly arranged distribution with equally spaced widths
of latitude and longitude were obtained from the average of the NVs of PV systems located
in the parcel. In this study, the width of the mesh was set to 0.02′ in latitude and longitude,
based on the reports of a previous study [22]. Figure 3 depicts the conversion diagram to
mesh data; Figure 3a shows the actual locations of the PV systems and their NVs at 11:00
on 14 July 2014, are classified by color, and Figure 3b shows the mesh distribution at that
time. In Figure 3b, the parcels with no corresponding PV are considered blank values and
are indicated in black. If several blank values exist in the mesh data, the motion estimation
cannot be performed. Therefore, we performed interpolation (Figure 3c) based on Delaunay
triangulation using “grid data”, which is a function of MATLAB 2020a [27].

2.3. Motion Estimation

The geographical distribution of NV is assumed to move over time based on the move-
ment of elements affecting weather conditions, such as clouds. The optical flow method,
which involves image processing, was used to analyze the motion [25,26]. Assuming that
NV is invariant and moves linearly in the time interval ∆t, the NVs expressed as f (x, y, t)
during the period from time t− ∆t to t can be expressed as indicated in Equation (2).

f (x− u(x, y, t)∆t, y− v(x, y, t)∆t, t− ∆t) = f (x, y, t) (2)

where (x, y) denotes the position of NV in the east–west and north–south directions, and
u(x, y, t) and v(x, y, t) represent the velocities of NV at position (x, y) and at time t in the
east–west and north–south directions, respectively. A regulation term is defined considering
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that adjacent motion vectors tend to be aligned. The NV data term ED and regularization
term Es can be determined using Equations (3) and (4), respectively, in each mesh.

E2
D(x, y, t) = ( f (x− u(x, y, t)∆t, y− v(x, y, t)∆t, t− ∆t)− f (x, y, t))2 (3)

ES =
(
|∇u(x, y, t)|2 + |∇v(x, y, t)|2

)
(4)

where ∇ =
(
∂x, ∂y

)T represents the partial differential operator. The energy function
is expressed as shown in Equation (5) while introducing a weight coefficient λ, which
determines the extent to which u and v are spatially aligned. The value of λ is adjusted to
minimize the estimation error.

J(x, y, t) =
x

E2
D(x, y, t) + λEs(x, y, t)dxdy (5)

Figure 3. Concept of conversion to mesh data on 14 July 2014: (a) actual geographical distribu-
tion of normalized values (NVs); (b) mesh-arranged geographical distribution converted from (a);
(c) interpolated mesh data.

The vector distribution can be obtained by solving the energy function minimiza-
tion problem, and the solution is expressed in Equations (6) and (7), which are Euler–
Lagrange equations.

λ∇T∇u− ED∂x f = 0 (6)

λ∇T∇u− ED∂x f = 0 (7)

The detailed solution and algorithm are reported in [24].
As mentioned previously, the width of the mesh is 0.02′, which corresponds to

1.806 km and 2.219 km in the east–west and north–south directions, respectively, at
latitude 35◦78′ and longitude 140◦04′. However, the motion vectors for 30 min may be
longer than the mesh width. Sawada and Takahashi [28] analyzed the migration of precipi-
tation areas and reported that the speed was distributed in the range of 2–8 m/s. Bosch
and Kleissl [29] proposed a method to estimate the cloud velocity using three reference PV
cells and inverter output in a 48 MW PV plant. From their analysis, they reported that the
velocity of clouds is distributed in the range of 3–35 m/s based on the analysis.

A multiscale approach was used to avoid the local minima of the energy function
indicated in Equation (5). This approach generates a rougher distribution with multiple
size scales, seeks the global minimum, and propagates the solution gradually to finer scales.
In this study, the Gaussian filter was used to generate a four-fold rougher distribution.

Figure 4 illustrates the motion estimation concept. Using the optical flow method,
vector AB representing the NV of location A at time t− ∆t and then moved to location B at
time t is estimated. Assuming that the movement is a constant velocity linear motion and
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persists until t + ∆t, vector BC is obtained by moving vector AB in parallel. The forecasting
distribution of all mesh at time t + ∆t is obtained by interpolating the location of C from
each NV obtained from vector BC.

Figure 4. Conceptual figure of motion estimation.

2.4. Error Evaluation Method

In this study, the periods when NV values of more than 80% of the PV systems changed
to higher than 0.2 in 30 min are referred to as drastic change periods. Generally, PV power
forecasting is difficult when a drastic change occurs. Periods with drastic changes were
extracted to evaluate forecast errors under harsh conditions.

The forecast error is evaluated in a certain area, which is shown by the green circle in
Figure 5, in the Kanto Region with 101 PV systems while varying λ, which is the parameter
in the motion estimation, to minimize the error caused by the interpolation process. Table 3
summarizes the dataset of the evaluated area. The central point of the evaluated area is
located at latitude 35◦78′ and longitude140◦04′. Figure 4 depicts the area, wherein the
green circle with a radius of 15 km denotes the evaluated area, and the blue circle with a
radius of 65 km indicates the area that has probably been used to estimate NV distribution
in the green area.

Table 3. Dataset of the evaluated area.

Center Point of the Evaluated Area 35◦78
′
, 140◦04

′

radius of the evaluated area 15 km
number of PVs 101

maximum total generation by all PV systems 860 kW
time steps of forecasted periods 5851

time steps of drastic change periods (extracted) 37

The absolute percent error (APE) is used as an evaluation method to examine the
forecast error in periods during which the weather changes drastically, as indicated in
Equation (8). Additionally, the definitions of the mean-absolute-percent error (MAPE) and
root-mean-square error (RMSE) are indicated in Equations (9) and (10), respectively.

APE =
|Pforecasted − Pobserved|

Pmaximum
× 100 (8)

MAPE =
1
N

N

∑
i=1

APEi (9)
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RMSE =

√√√√ 1
N

N

∑
i=1

(Pforecastedi − Pobservedi)
2 (10)

where N denotes the number of evaluated time steps, Pforecasted represents the forecasted
PV output, Pobverved denotes the observed PV output, and Pmaximun indicates the maximum
observed PV output for a year.

Figure 5. PV systems in the evaluated area.

2.5. Comparison with Other Methods

In this study, persistence forecasting and ANN were implemented for comparison.
As the influence of the sun elevation in a day is assumed to be represented by multi-
plying P2w(t), the PV power output in persistence forecasting can be calculated using
Equation (11).

Ppersistence(t + ∆t) = P2w(t + ∆t)×NV(t) (11)

The ANN was used as a machine learning-based forecasting method and consists of
an input layer, three hidden layers, and an output layer. The numbers of neurons in the
three hidden layers are 768, 384, and 192. The rectified linear unit (ReLU) function was used
as the activation function. Cross–validation was performed by dividing the continuous
time into four parts to obtain the validation error. Input data are month, day, hour, solar
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radiation, and temperature obtained from the Japanese Meteorological Agency. Herein,
solar radiation represents the accumulated solar radiation from one hour before the forecast
time. A detailed description of the model is given in [30]. A comparison between the ANN
and the proposed method is shown in Section 3.2.

3. Results and Discussion

This section presents the forecast results of the motion estimation that were evaluated
using 101 PVs in the evaluation area. Initially, the importance of extracting and evaluating
the period in which the outputs change drastically was confirmed by comparing the
forecasting results of days exhibiting a drastic change in the period with those obtained on
a clear day. Subsequently, the error distribution of the persistent forecasting and the nine
parameters at the extracted times were evaluated to determine the best parameter. Finally,
the forecast results for a certain period were analyzed to determine the cause of the forecast
error at the period when the error was reduced by changing the parameters and at periods
when the forecast error could not be reduced by any of the parameters. This analysis
improves the understanding of the characteristics of the motion estimation method.

3.1. Characteristics of Motion Estimation Based on Weather

Figure 6a depicts the sum of the power generation of 101 PV systems. Figure 6b shows
the error of the total output in the evaluation area. Table 4 summarizes the daily average
MAPE and RMSE calculated on 16 March 2014. Figure 7 shows the time variation of the
observed NV distribution at the period used to estimate NV motion and the forecasting
period, respectively, at 12:00 on 26 March 2014. Figure 8 illustrates the distribution of
motion vectors between 11:00 and 12:00 calculated to forecast the NV distribution at 12:00
on 16 March 2014, under clear weather conditions.

Figure 7 indicates that the change of NVs is small in the evaluation area; the forecast
error of the proposed method is similar to that of the persistence forecasting. On a clear
day, motion estimation estimates small movements, as depicted in Figure 8.

Figure 6. Sum of the power generation and error of 101 PV systems on 16 March 2014, in the evaluated
area: (a) Total output of the evaluation area; (b) APE of the total output in the evaluation area.
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Figure 7. Time variation of NV distribution on March 16, 2014, at (a) 11:00, (b) 11:30, and (c) 12:00.

Figure 8. Calculated flow visualizations between 11:00 and 11:30 on 16 March 2014.
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Table 4. Error calculated on 16 March 2014.

Parameter Persistence λ = 1.0 λ = 0.52 λ = 0.27 λ = 0.14 λ = 0.071 λ = 0.036 λ = 0.019 λ = 0.0097 λ = 0.0050

RMSE [kW] 6.946 9.799 6.893 6.411 6.125 6.964 5.400 5.400 6.127 1.105
MAPE [%] 0.650 0.939 0.652 0.578 0.649 0.648 0.494 0.563 0.614 0.797

Figure 9a,b depict the sum of the power generation of 101 PV systems and the corre-
sponding error of the total output in the evaluation area, respectively. Table 5 summarizes
the daily average MAPE and RMSE of the total output calculated on 5 September 2013.
Figure 10 shows the time variation of the observed NV distribution at the period used to
estimate NV motion and the forecasting period, respectively, at 12:30 on 5 September 2013.
Figure 11 depicts the distribution of motion vectors between 11:00 and 11:30 calculated
to forecast the NV distribution at 12:30 on 5 September 2013, when the output power
changed drastically.

Figure 9. Sum of the power generation and error of PV on 5 September 2013, in the evaluated area:
(a) Total output of the evaluation area; (b) APE of total output in the evaluation area.

Table 5. Error calculated on 5 September 2013.

Parameter Persistence λ = 1.0 λ = 0.52 λ = 0.27 λ = 0.14 λ = 0.071 λ = 0.036 λ = 0.019 λ = 0.0097 λ = 0.0050

RMSE [kW] 104.3 64.45 55.94 43.57 47.36 36.94 36.61 37.79 38.16 48.20
MAPE [%] 9.230 5.779 4.631 3.629 3.722 2.881 3.061 3.362 3.277 4.121
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Figure 10. Time variation of NV distribution on 5 September 2013, at (a) 11:30, (b) 12:00, and (c) 12:30.

Figure 11. Calculated flow visualizations between 11:30 and 12:00 on 5 September 2013.
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Figure 10 indicates that there was a visible change in the distribution of NVs in the
evaluation area; thus, a drastic change occurred in the output power, and the large motion
vectors of the NV distribution were calculated, as depicted in Figure 11. In such a period,
the forecast error of the proposed method is expected to reduce in comparison with that of
the persistence forecasting. Figure 11 indicates that the estimation results differ according
to the value of parameter λ.

This method is classified as a short-term forecast, and PV has a higher correlation
with the previous output as the forecast time-horizon scale is shorter. Additionally, the
result of motion estimation is close to that of the persistence forecast when the period NV
distribution remains unchanged.

In this study, the proposed method is compared with persistence forecasting and ANN
to verify its effectiveness, and parameter λ is evaluated for the drastic change periods.

3.2. Evaluation of the Estimation Error

The estimation results of the proposed forecasting evaluated the motion estimation
parameter λ and compared it with the persistence forecasting and ANN for periods when
the output power varied drastically. Note that in this section, the ANN results are for the
96 units that could be forecasted in the ANN. Figure 12 depicts a box plot of the estimation
errors for the periods in the evaluated area, Table 6 shows the mean, median, and standard
deviation of the errors. In the case of persistence forecasting, the mean was 23.7%, and the
median was 22.2%, and for the ANN, the mean was 13.0% and the median was 10.2% In
the case of proposed forecasting with the best motion estimation parameter λ = 0.019, the
mean was 10.3%, and the median was 7.20%. In other words, the means of the proposed
forecasting with the best parameter reduced in comparison with the persistence forecast
(by 56.6%) and the ANN (by 20.8%).

Figure 12. Box plot of the estimation errors in the periods with drastic changes in the output power.
The top and bottom of the box indicate the 75th and 25th percentile, respectively.

Table 6. Mean, median, and standard deviations of the estimation errors.

Parameter Persistence
Artificial
Neural

Network
λ = 1.0 λ = 0.52 λ = 0.27 λ = 0.14 λ = 0.071 λ = 0.036 λ = 0.019 λ = 0.0097 λ = 0.0050

mean [%] 23.7 13.0 15.5 15.0 13.7 12.8 11.1 11.0 10.3 10.6 11.8
medium [%] 22.2 10.2 13.6 13.3 11.5 10.7 8.45 7.83 7.20 7.80 8.87

standard
deviations

[%]
12.5 10.3 11.0 10.9 10.5 10.0 9.58 10.2 9.65 9.75 10.7

The authors have applied the same forecasting method in other two regions in Japan:
122 PV systems in Kansai region and 26 PV systems in Chubu region. Furthermore, in
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these two regions, the forecasting errors by the proposed method with the best parameter
λ (λ = 0.019 in the case of Kansai region and λ = 0.036 in the case of Chubu region) were
~50% lower than those by the persistence forecast [31]. Therefore, it is confirmed that the
proposed method is effective for forecasting periods with a drastic change in output power.

3.3. Results of Estimation Errors

The estimation errors observed in the proposed method can be attributed to two
reasons, namely the pre-processing and motion estimation. During pre-processing, the
influence of the differences in tilt angle and installation orientation of the PV arrays is not
completely canceled out by the normalization process. Consequently, the representative
value of each mesh used in the estimation is the average of all NV values of the correspond-
ing PV systems in the mesh. Furthermore, certain errors are caused by the interpolation of
NVs in areas with no data; errors on motion estimation occur when assumptions of NV
invariance and NV having a constant velocity linear motion were inappropriate.

First, an example is presented and explained such that the result of the proposed
forecasting is substantially better than that of the persistence forecasting. Figure 13 depicts
the box plot of the estimation error at 12:00 on 21 March 2014. It indicates that the proposed
forecasting with a large parameter λ does not reduce the error compared to persistence
forecasting. Parameter λ is associated with the unity of the vector distribution. Figure 14
depicts three NV distributions at the period, which shows a lump of low NVs in the center
that expands, and the spread of NV is non-uniform depending on the direction. In this case,
the forecast can be improved with a low λ estimation that considers local motion. Figure 15
is the estimated flow visualization with different λ. It shows that the motion vectors which
is yielded with high λ values are too short compared with the practical motions of the
lump in Figure 14. However, divergence vector is too large and certain vectors cross each
other when λ is too small in Figure 15, which is also considered to be unnatural because
weather changes caused mainly by cloud motions are not considered to intersect. On the
other hand, the motion vector distributions with λ = 0.019–0.036 have few vector crossings
and the fine movement, so they seem to be appropriate.

Figure 13. Box plot of the error distribution at 12:00 on 21 March 2014. The top and bottom of the box
indicate the 75th and 25th percentile, respectively.
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Figure 14. NV distributions on 21 March 2014, at (a) 11:00, (b) 11:30, and (c) 12:00.

Figure 15. Calculated flow visualizations between 11:00 and 11:30 on 21 March 2014 (improved time).
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Another example showing that the result of the proposed forecasting is not better
than that of the persistence forecasting is explained. Figure 16 depicts the box plot of the
estimation error at 13:00 on 6 September 2013. It indicates that motion estimation does
not reduce the forecasting error compared to that of persistence forecasting at 12:30 on
6 September 2013. Figure 17 depicts three NV distributions at the period, which shows
the movement of the lumps of the NVs may differ at different times of the period, such as
between 11:30 and 12:00, and 12:00 and 12:30. The difference is clearer in the comparison
between Figures 18 and 19: Figure 18 shows the distribution of motion vectors from 11:30
to 12:00 calculated using the NV distributions at 11:30 and 12:00 with the best parameter
λ = 0.036 and 0.019, and Figure 19 depicts the distribution of motion vectors from 12:00 to
12:30. Even if the motion vectors in Figure 18 are moved forward in parallel as explained in
Figure 4 (such as from vector AB to vector BC), the moved distribution is different from
Figure 19. That is to say, the assumption that the movement from t− ∆t (11:30) to t (12:00)
persists in the period from t (12:00) to t + ∆t (12:30) is not suitable for this period.

Figure 16. Box plot of the error distribution at 12:30 on September 6, 2013. The top and bottom of the
box indicate the 75th and 25th percentile, respectively.

Figure 17. NV distribution on 6 September 2013, at (a) 11:30, (b) 12:00, and (c) 12:30.
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Figure 18. Calculated flow visualizations between 11:30 and 12:00 on 6 September 2013.

Figure 19. Calculated flow visualizations between 12:00 and 12:30 on 6 September 2013.

4. Conclusions

In this study, a parameter for motion estimation, which was insufficiently discussed in
a previous study [22], was investigated for a certain geographic area during drastic change
periods. The method proposed in this paper is achieved by normalizing the geographically
distributed PV output data, converting them to mesh data, analyzing those motions,
generating estimated mesh data from the motions, and converting them into the output of
each PV for forecasting. The forecasting was performed using the output data of 5097 PVs
located in Japan (31◦20′–39◦80′, longitude 129◦6′–141◦60′) for every 30 min from August
2013 to September 2014. The period when output changed drastically in a certain area
within a radius of 15 km in the Kanto region (latitude 35◦78′ and longitude140◦04′) was
extracted to evaluate the forecasting method. The parameters were evaluated from an error
distribution of 101 PV units. In comparison with the persistence forecasting, the parameter
for motion estimation, which exhibited the smallest error, was able to significantly reduce
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the error from 23.7% to 10.3%. Motion estimation indicates that the proposed forecasting
with a large λ does not reduce the error compared to persistence forecasting. This indicates
that low λ estimation improves the prediction by considering local motion when estimating
the motion of a wide range of non-uniform NVs.

This result indicates that the parameter presents the best forecast for motion estimation
and reduces the error by 56.6% than that of persistence forecasting. The proposed method
can effectively forecast for periods when PV output changes drastically.

The following studies should be conducted in the future

1. Correlation between the number of PV data affecting the evaluation area and forecast-
ing accuracy: The proposed forecasting was evaluated using data obtainable in this
case. However, the positional relationship and density of PV output in the evaluation
area that affect the forecasting accuracy have yet to be investigated. Therefore, it
should be considered in the future.

2. Consideration of ensemble learning: It has been reported that ensemble learning,
which combines different forecasting models, improves the forecasting accuracy.
Therefore, we believe that further improvement of accuracy can be achieved by
combining ensemble learning with statistical methodology.
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