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Abstract: Thermal bridges in building envelopes can cause significant heat loss and heat gain. In this
study, the developed thermal bridge breaker was applied to an interior insulation finishing system
in residential buildings to minimize the thermal bridges in building envelopes. To investigate the
thermal and energy performance of the developed thermal bridge breaker, the surface temperatures
and heat flow at the wall and floor junctions were predicted using Physibel. In addition, the heating
and cooling energy consumption in a residential building was analyzed by EnergyPlus. As a result,
the use of the thermal bridge breaker can minimize the effective thermal transmittance in the building
envelope system. Moreover, when the building envelopes were equipped with the thermal bridge
breaker, the heating and cooling load through the exterior walls was decreased by 15–27%. Thus,
the thermal bridge breaker can play an important role in minimizing the heat loss and occurrence of
condensation in building envelopes.

Keywords: thermal bridge; envelop; energy performance

1. Introduction

Globally, one-third of the total energy consumption is consumed by buildings accom-
panied by the rapid increase in CO2 emissions [1–3]. Current studies report that the energy
consumed by buildings has kept increasing significantly, and in the foreseeable future, it
will become of notable concern [4–7]. Dong et al. [8] observe that the energy consumption
in buildings can be remarkably reduced with only a slight improvement in the building
energy efficiency. Thus, it is important to find ways to improve the energy efficiency in
buildings. In South Korea, the energy consumption of buildings has also become a major
issue. According to the “Energy Statistics Handbook in 2020”, provided by the Korea
Energy Agency [9], about 20% of total energy is consumed by buildings. Among building
types, nearly 40% of the total building energy consumption is consumed by residential
buildings [9]. Concerning the improvement in building energy efficiency, the Korean
government has developed a renewable energy policy to achieve the goal of producing
20% of total electricity by implementing green technologies by 2030 [10–12]. In 2018, “The
Amendment Plan of 2030 GHG Reduction Roadmap” was also released to reduce GHG
emissions by 9.6 million tons of CO2, by improving building energy efficiency [13,14]. With
regard to the reduction in building energy and GHG emissions, several policies, such as
building energy efficiency and zero energy buildings, have also been developed.

To achieve the goal of net or nearly zero energy buildings, several design strategies are
needed that combine passive and active design solutions, and renewable energy systems.
As one of the passive design strategies, improvements in building envelopes’ performance
can provide the potential for reductions in energy consumption, as well as improvements in

Energies 2022, 15, 2854. https://doi.org/10.3390/en15082854 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en15082854
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://doi.org/10.3390/en15082854
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en15082854?type=check_update&version=1


Energies 2022, 15, 2854 2 of 11

thermal comfort for the occupants [15]. Architectural design parameters, such as window-
to-wall ratios, natural ventilation, and building shapes, can also be considered as passive
design solutions [15]. Moreover, the high degree of functional integration in mechani-
cal systems, such as heating, ventilation, and air conditioning (HVAC), can provide an
opportunity for active design strategies to lead to better control of thermal comfort and
energy saving [16]. By offsetting building energy consumption through passive and active
design strategies, the remaining energy needs should, as much as possible, be covered by
renewable energy systems [17]. Among these available design solutions and technologies,
the first consideration is to determine the most energy efficient measures among the passive
design solutions [18].

As mentioned earlier, passive design solutions mainly include the design parameters
of building envelopes and building shapes. Lin et al. [19] reviewed zero energy buildings
and found that the thermal properties and airtightness of building envelopes, including
walls, exterior windows, and roofs, have a significant impact on the building energy
consumption and the indoor environment. Specifically, the building envelope-related
technologies include a high insulation performance of the materials of building envelopes,
advanced window systems, and external and internal shadings [16,20–25]. While previous
studies have focused on the investigation of the thermal performance of materials and the
energy efficiency of several design parameters of building envelopes, a few studies have
analyzed the impact of thermal bridges in building envelopes on the energy efficiency and
thermal performance of buildings [26].

In general, thermal bridges can occur due to discontinuous thermal insulation (e.g.,
repetitive structural members and their junctions) in the building envelope, causing signifi-
cant heat loss and gain in the winter and summer, respectively [26–28]. Theodosiou and Pa-
padopoulos [29] showed that about one-third of heating energy can be lost through thermal
bridges in residential buildings, even where they were equipped with high-performance
windows and highly insulated building envelope systems. To minimize these thermal
bridges, several studies have been conducted to reduce the annual energy consumption
in buildings by utilizing thermal bridge breaks or advanced materials in the exterior insu-
lation finishes of building envelopes [30–34]. Insulation that was 10 to 80 mm thick and
1100 mm long was installed on both sides of the partition wall, in contact with the external
wall, which was made of concrete to prevent thermal bridging [35]. In South Korea, most
residential buildings have generally been constructed with an interior insulation finishing
system, where the fixing components can become a major path for heat flow, causing
thermal bridges between the slab and the exterior walls [36,37]. In addition, it is difficult
to apply an exterior insulation finishing system to remove thermal bridges, as this can
increase the construction cost, as well as require specific construction skills. Therefore,
thermal breaks for interior insulation finishing systems need to be developed to minimize
thermal bridges in building envelopes.

Focusing on minimizing thermal bridges in building envelopes, this study develops
the thermal bridge breaker for an interior insulation finishing system, by analyzing the
thermal performance of a high-rise apartment building. Specifically, the effect of thermal
transmittance, by the influence of thermal bridges with the developed thermal break, on the
total heat flow is estimated by Physibel. In addition, the impact of the developed thermal
break, for the interior insulation finishing system, on the building energy consumption
can be compared with that on the conventional building envelope system by utilizing
EnergyPlus.

2. Thermal Bridge Breaker

Figure 1 shows the developed thermal bridge breaker in an interior insulation finishing
system, to minimize the thermal bridge between an exterior wall and a concrete slab.
Specifically, it is a complete system, where 150 mm insulation boards and 50 mm concrete
(ultra-high-performance concrete, UHPC) ribbed slabs alternate. In addition, each concrete
slab in the developed thermal bridge breaker is connected with a reinforcing bar, as shown
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in Figure 1. One module is composed of five insulation boards and concrete slabs, and the
length of a module is 1 m.
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Figure 1. Thermal bridge breaker.

Figure 2 shows that the connection between the exterior wall and the concrete slab
in a building is equipped with a thermal bridge breaker to test the performance of the
thermal bridge breaker, where this structure is constructed based on the design guidelines
for building energy efficiency provided by the Korea Energy Agency [38]. In detail, 190 mm
and 30 mm insulation boards for the wall and slab were used, respectively. Additionally,
the insulation board (thickness: 15 mm, depth: 450 mm) was located in the ceiling, where
severe thermal bridges might occur. The use of additional insulation boards in the ceiling
is generally recommended for the construction of residential buildings in South Korea, to
prevent condensation by the thermal bridge.
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Figure 3 presents the three-dimensional model of a thermal bridge breaker at the
joint between the slab and wall. The Physibel program, based on ISO 10211 [39], is a
building physics software for analyzing heat transfer in building façade elements, and can
be used for various applications, such as building energy performance and condensation
control [40–43]. Using this software, the present study predicted the surface temperatures
of the slab and walls, and calculated the heat loss. To analyze the thermal performance of
the developed thermal bridge breaker more accurately, the size of the model created by
Physibel was at least 1 m, where the structure and building materials were used for typical
residential buildings in South Korea.
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2.1. Thermal Properties and the Cases

Table 1 and Figure 2 show the thickness and thermal conductivities of the building
envelopes. Among these values, the 30 mm thickness insulation for the slab was intended
to prevent heat loss, as well as for noise control at the floor construction, based on the
building energy standard in South Korea [38].

Table 1. The thermal properties of the building envelopes and the thermal bridge breaker.

Component Thickness (mm) Thermal Conductivity
(W/mK)

Exterior Wall
Concrete 200 1.6

Insulation 190 0.029
Gypsum board 10 + 10 0.18

Slab

Concrete 210 1.6
Insulation 30 0.030

Lightweight Concrete 40 0.16
Mortar 40 1.4

Wood flooring 10 0.17

Thermal bridge
breaker

Insulation 150 0.025
Concrete (UHPC) 50 0.2
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Table 2 shows the cases for the analysis of the thermal performance of the walls and
slabs with/without the thermal bridge breaker and rebar. The thermal performance of
the structure was calculated by the thickness and thermal conductivity of the building
materials. Case 1 presents the general concrete structure, composed of an exterior wall and
a slab. To analyze the thermal influence of rebars, the structure was equipped with rebars
(Case 2). In general, the rebars are distributed at regular intervals. For the present study,
the simulations were conducted with and without rebars to determine how the rebar can
influence the thermal bridge (Case 1 and Case 2). For Case 3, the structure with rebars was
equipped with the thermal bridge breaker, as shown in Figure 1. The rebar distribution for
Case 2 was based on the guidelines for the construction of residential buildings.

Table 2. Simulation cases.

Case 1 Case 2 Case 3
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For the simulation condition, the temperatures for the indoor and outdoor were set
at 25 ◦C and −15 ◦C, respectively. These thermal conditions were based on the design
guidelines for residential buildings for preventing condensation in Korea [44].

2.2. Simulation Results

Table 3 shows the interior surface temperatures, heat flow and effective thermal
transmittance for each case. As shown in Case 2, the surface temperature for the wall and
floor junctions was about 21.0 ◦C, which was the lowest temperature on the upper part
of the model. In addition, the surface temperature of the upper part of Case 2 differed by
about 2 ◦C.

For the lower part of the model, the lowest temperature, about 14.3 ◦C (Case 2),
was observed at the wall and floor junctions, where the end of the insulation was at the
ceiling to protect against condensation (width: 450 mm, thickness: 15 mm). It can be
observed that condensation can easily occur in this situation, when the relative humidity is
above 52%. Moreover, the surface temperatures of Case 2 at the ceiling show about 8.8 ◦C
difference between the floor and wall junctions (14.3 ◦C), and the corner of the walls (23.1
◦C). Furthermore, 92.6 W/m2 of the heat loss occurred at the wall and floor junctions at
the ceiling in Case 2. Compared with Case 3, a large surface temperature difference was
observed at the lower part, due to the influence of the thermal bridge breaker, which was
14.3 ◦C and 19.4 ◦C for Case 2 and 3, respectively. For residential buildings in South Korea,
it can be observed that the installation of the thermal bridge breaker can minimize the heat
loss and condensation occurrence at the wall and floor junctions. To analyze the energy
consumption using the thermal bridge breaker, the effective thermal transmittance was
calculated. When simply calculating the thermal transmittance of the wall in all cases, it
was 0.144 W/m2 K. However, the effective thermal transmittance considering the thermal
bridge increased higher about 0.1 W/m2 K when three-dimensional modeling was used
(0.241 W/m2 K).
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Table 3. Simulation results for cases.

Case 1 Case 2 Case 3

Surface
temperature

[◦C]

The upper part of the
model
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For Case 2, where reinforcing bars were installed, the effective thermal transmittance
was 0.241 W/m2 K. For Case 1, where an assumption was made that no reinforcing bar
was installed, it was 0.234 W/m2 K, which showed that the thermal performance of Case
1 was better than that of Case 2, by 0.007 W/m2 K. When the developed thermal bridge
breaker was equipped in the structure (Case 3), the effective thermal transmittance was
0.174 W/m2 K. In addition, the effective thermal transmittance in Case 3 was lower than
that in Case 2, about 0.067 W/m2 K. It can be observed that the use of the thermal bridge
breaker can have a significant impact on the thermal insulation performance. In the next
section, Case 2 and 3 were applied to the apartment building in South Korea, to investigate
the energy performance.



Energies 2022, 15, 2854 7 of 11

3. Heating and Cooling Analysis
3.1. Simulation Setup

To analyze the energy performance of the apartment unit equipped with the ther-
mal bridge breaker, EnergyPlus 9.3.0 was used [45]. Figure 4 shows the plan and three-
dimensional view of the residential building for this analysis. The model was created by
OpenStudio [46]. As the standard unit size of residential buildings, the size of the unit was
84 m2 and each floor had four units. To consider the heat transfer among floors, the energy
simulation models with three floors were created, and Units 1© and 2© in the middle of the
floors were the main focus for the analysis.
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It was assumed that the residential building was located in Seoul in South Korea. The
other boundary conditions are presented in Table 4. The simulation was conducted over a
period of a year.

Table 4. Simulation condition.

Site Location Seoul (Seoul weather data)
Design Day −11.4 ◦C (21 January), 32.1 ◦C (21 August)

Setpoint Temperature 20 ◦C (heating), 26 ◦C (cooling)

Thermal Transmittance Wall 1 (0.241 W/m2 K), Wall 2 (0.174 W/m2 K),
Fenestration (0.98 W/m2 K, SHGC 0.58)

Infiltration 0.12 ACH (air change per hour)
Ventilation 0.5 ACH
Schedule Residential building schedule
Lighting 3.84 W/m2

3.2. The Result of the Simulation for Heating and Cooling Analysis

The effective thermal transmittances for the exterior walls in Unit 1© in Figure 4 were
set to 0.241 W/m2 K and 0.174 W/m2 K for heating and cooling loads, respectively. As a
result of the simulation, Figure 5 shows the cooling and heating loads for the components
at Unit 1©. As shown in (a) within Figure 5, the cooling load was measured at 3920 W,
when the effective thermal transmittance of 0.174 W/m2 K was applied to the exterior
walls of Unit 1©. Through the exterior walls, 159 W was gained, which consisted of 4.1%
of the total cooling load. Around 47% of the heat (1840 W) was gained through window
systems, and, thus, a way to improve the thermal performance of the window systems
is required, in order to reduce the cooling load. In the case of heating, the total heating
load was 3577 W, as shown in (b) of Figure 5. An estimated 12% of heat (439 W) was lost
through the exterior walls. Specifically, the heat losses from ventilation and infiltration
were measured at 64% and 15%, respectively. Additionally, 17% and 5% of the total heating
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load were lost through the window system and the entrance door, respectively. Overall,
the heating load has different aspects from the cooling load.
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Figure 5. The cooling and heating loads for the units of the residential building by different effective
thermal transmittances. (a) Cooling load of the unit with the wall’s thermal transmittance of 0.174
W/m2 K; (b) heating load of the unit with the wall’s thermal transmittance of 0.174 W/m2 K;
(c) cooling load of the unit with the wall’s thermal transmittance of 0.241 W/m2 K; (d) heating load
of the unit with the wall’s thermal transmittance of 0.241 W/m2 K.
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To investigate thermal influence through the thermal bridge breaker, a heating and
cooling analysis was conducted. The effective thermal transmittance of 0.241 W/m2 K
was applied to Unit 1©, without the thermal bridge breaker, while the effective thermal
transmittance of 0.174 W/m2 K was used for Unit 1©, which was equipped with the thermal
bridge breaker. The heating load for Unit 1©, with/without the thermal bridge breaker,
was measured at 3744 W and 3577 W, respectively. This reveals that a 4.5% decrease in
the heating energy occurred when the thermal bridge breaker was equipped. For cooling
energy, an estimated 0.7% increase was observed when the thermal bridge breaker was
used. It can be observed that the heat gained through the exterior walls in the summer was
smaller than the heat lost through the walls in the winter.

In the case of Unit 2©, the size of the exterior walls was 67.8 m2, while the size of the
exterior walls of Unit 1© was 100.4 m2. When the thermal bridge breaker for Unit 2© was
used, an estimated 2.9% decrease in the heating load was observed. This reveals that the
reduction in heating load in the unit equipped with the thermal bridge breaker can be
greater when the area of the exterior walls is larger.

Figure 6 presents the cooling and heating loads through the exterior walls with the
thermal bridge breaker, since the exterior wall was the main component thermally influ-
enced by the thermal bridge breaker. When the developed thermal breaker was used, the
heat gain through the exterior walls in the summer decreased from 188.7 W to 159.1 W,
which was about 15.7%. In the winter, the heat loss through the exterior walls was reduced
from 600 W to 439 W (about 26.9%). In sum, the use of the thermal bridge breaker can
improve thermal performance, such as heating and cooling, by 15–27% for residential
buildings equipped with an interior insulating finishing system.
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4. Conclusions

The present study investigated the thermal and energy performances of the developed
thermal bridge breaker for residential buildings constructed using reinforced concrete, to
minimize the thermal bridges in building envelopes. By using Physibel, thermal behaviors
with/without the thermal bridge breaker, such as interior surface temperatures, heat flow,
and effective thermal transmittance, were calculated. Among the cases, the effective thermal
transmittance was the lowest when the developed thermal bridge breaker was equipped. It
can be observed that the use of the thermal bridge breaker can have a significant impact on
thermal insulation performance, as well as improve the thermal performance. In the case
of the cooling and heating load analysis, the EnergyPlus program was utilized. In general,
heat was greatly lost through the exterior walls in the winter, while heat was significantly
gained through the window systems in the summer. When the thermal bridge breaker was
equipped, the total heating was decreased by 4.5%, while the cooling load was increased by
0.7%. Specifically, the heating and cooling load through the exterior walls with the thermal
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bridge breaker was decreased by 15–27%. Therefore, the use of the thermal bridge breaker
can have a significant impact on the thermal insulation performance, and can also reduce
the building energy consumption.
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