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Abstract: Maximum power-point-tracking techniques applied for partially shaded photovoltaic array
yield maximum power output via operating the panel at its most efficient voltage. Considering
the noticeable issues existing with the available methods, including steady-state oscillations, poor
tracking capability and complex procedures, a new bioinspired Spotted-Hyena Optimizer (SHO)
is proposed. It follows simple implementation steps, and does not require additional controller-
parameter tuning to track the optimal power point. To validate the versatility of the proposed method,
the SHO algorithm is applied to track the maximum power of different string arrangements under
six partial-shade conditions. Further, to authenticate SHO’s methods, its results are compared with
perturb-and-observe (P&O), and particle-swarm-optimization (PSO) methods. As a result of its
implementation, it is observed that the tracking speed of SHO towards the global convergence for
four patterns under 4S2P are 0.34 s, 0.24 s, 0.2 s, and 0.3 s, which is far less than the PSO and P&O
methods. Further, to demonstrate its suitability, a hardware prototype is built and tested for various
operating conditions. The experimental results are in good agreement with the simulated values.

Keywords: maximum power point tracking (MPPT); optimization; partial shading; perturb-and-observe
algorithm (P&O); photovoltaic (PV) array; solar energy

1. Introduction

With numerous benefits such as zero noise, zero pollution, and less maintenance,
power generation from PV installations has increased up to 49% globally in the last
decade [1]. Whilst being employed in many sectors, the main frailty associated with
PV modules are limited conversion efficiency, high capital investment, and hindrance
in output power due to partial shading (PS). Accumulation of dust, bird spitting, soiled
panels due to aging, and passage of clouds are its major causes [2–4]. Hence, to handle
PS and improve energy yield, many maximum power-point-tracking (MPPT) techniques
are proposed. Some of desirable characteristics of MPPT are high tracking accuracy, faster
convergence, ability to eliminate local peaks, and lesser oscillations. Thus, the tracking
of maximum power points (MPP) has been the subject of study for the past few decades.
Various MPPT methods seen in literature can be categorized into (1) analytical and (2) bioin-
spired methods.

The well-recognized analytical MPPT methods such as fractional short-circuit cur-
rent [5], hill-climbing (HC) algorithm [6], incremental conductance (Inc. Cond.) [7], perturb
and observe (P&O) [8], and fractional open-circuit voltage [9] often show incredible charac-
teristics such as less complexity, easy implementation, and good tracking performance at
zero shade. However, the majority of them are prone to steady-state oscillations, tracking
efficiency subject to duty-cycle initialization, and ineffectiveness during PS conditions.

Thus, fuzzy logic control (FLC) [10] and artificial neural network (ANN) [11] are
used as alternative methods. However, as an alternative method, the requirement of
period training, involvement of large memory to handle a voluminous dataset, and high
computational burden restricts its usage.
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Other than the above, optimization techniques with the ability to solve nonlinear multi-
model optimization problems effectively are also often used for MPPT. These techniques are
extremely popular due to their quick response, faster convergence to MPP even in PS con-
dition, and high efficiency at any shade conditions [12]. Different optimization techniques
attempted so far include teaching learning-based optimization (TLBO) algorithms [13], the
fireworks algorithm [14], wind-driven optimization (WDO) [15], salp-swarm optimization
(SSO) [16,17], moth-flame optimization (MFO) [18], grey-wolf optimization (GWO) [19],
cuckoo-search optimization [20], tunicate-swarm optimizer [21], squirrel search [22], and
musical chairs algorithms [23].

Most often, particle-swarm optimization (PSO) [24] and its variants such as modified
PSO [25,26], velocity-based PSO [27], and levy-flight PSO [28] are employed for power
tracking. However, the system performance is tampered due to premature convergence
and poor balance between exploration and exploitation. To resolve such limitations, nested
loops in PSO [29] and fast adaptive PSO [30] are introduced. Nevertheless, to achieve
enhanced solutions, the merits of two methods are hybridized. For instance, PSO with
P&O [31], PSO and shuffled frog-leaping algorithm (SFLA) [32], grey-wolf optimizer
alongside with fuzzy logic control (GWO-FLC) [33], and fireworks combined with P&O [34],
ANN combined with INC (ANN-INC) [35], and Gaussian process regression with Jaya
algorithm (GPR-Jaya) [29] are made to enhance convergence. Although hybridization is
incorporated in PSO, GWO methods show improvements in performance at the cost of large
computation time [31,33], even though sometimes the strengths of these techniques have
been ignored. Moreover, additional parameter tuning increases complexity and prolongs
settling time [36].

Hence, exploring new methods for MPPT and detailing about its merits in achieving
best results is inevitable. Therefore, with the objective of accurately tracking the global
peak in the presence of partial-shading conditions, a new method utilizing the behavior of
Spotted Hyena is proposed. This stochastic optimization technique proves to be superior in
solving complex numerical and nonlinear computational problems effectively [31]. Further,
the notable characteristics of the SHO method are a good balance among population-based
searches during exploration (the process of searching in a bigger area of search space for
promising solutions) and exploitation (restricting the search to a small area of the search
space), fewer tuning parameters, and easy implementation. Thus, based on its distinctive
characteristics it is expected to produce minimal power fluctuations and faster convergence
with low steady-state oscillations [31].

The proposed technique’s performance is assessed in both simulation and hardware
to verify its effectiveness. Various experiments have been carried out with various shade
patterns on PV arrays/strings of various sizes. Furthermore, a detailed analysis is per-
formed using the SHO simulated findings as well as well-established methodologies such
as P&O and PSO. Furthermore, the superiority of these techniques has been demonstrated
in a variety of pattern-change scenarios. The SHO method’s capabilities in terms of global
MPP convergence at minimal settling time and zero steady-state oscillations is supported
by performance analysis and experimental testing.

This paper is organized in subsequent sections, detailed as follows: Section 2 deals
with SPV modeling and describing the impacts of PS conditions. Further, Section 3 briefly
presents the SHO algorithm, and Section 4 explains the obtained simulation and experi-
mental results with the proposed SHO method and its comparative study with P&O and
PSO. Moreover, the obtained results are also compared with existing literature to prove the
efficacy of SHO methods.

2. Modeling of PV Module

Typically, a solar PV cell can be represented by an electrical equivalent circuit model
that comprises of an ideal current source, diode, and resistors. Because of the nonlinearity
characteristics, several modeling methods evolved in the recent past to model PV character-
istics. Prominently used PV models are one-diode, two-diode, and three-diode models. The
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number of diodes present indicates the accuracy of V-I curves predicted with additional
implementation complexity.

2.1. Single-Diode Model

Due to simplicity, the single-diode model of the PV module is commonly used in
practice for modeling and simulation purposes. It is found that in many cases, the accuracy
of the single-diode PV model is satisfactory, even after neglecting diode-recombination
losses [33,34]. The photovoltaic cell modeling using a single-diode electrical equivalent
circuit is depicted in Figure 1. The series resistor (Rs) and parallel resistance (Rsh) account
for metallic junction loss and recombination loss that occur in a diode, respectively.
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Applying KCL, the output current of the solar PV cell is obtained using

I = IPV − ID −
V + IRS

RP
(1)

Assuming the diode to be ideal, its corresponding diode current ID equation is given by

ID = I0(e
VD
αVt − 1) (2)

where a is the diode ideality factor and its thermal voltage Vt is defined for any value of
temperature T (Kelvin) in the below equation:

Vt = NskT/q (3)

where q is the electron charge equal to 1.6 × 10−19 C, k is the Boltzmann constant equal to
1.3805 × 10−23 J/K and Ns is the number of series-connected cells forming the PV module.

2.2. Impact of Partial Shading and Significance of MPPT

PV modules when arranged in series and parallel form a PV string or array. A PV
string is formed by connecting modules in series (6S); while strings are in parallel, they
form a PV array (6S2P). The relevant PV characteristics of both unshaded and shaded array
are depicted in Figure 2.
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Here, it is noteworthy to mention that the PV characteristics vary depending on the
irradiance and temperature that the module receives. For instance, PV array with zero
shade i.e., uniform irradiance at 100 W/m2 and at a temperature of 25 ◦C, produces a single
power peak. Meanwhile, panels with shade introduce multiple peaks, causing voltage
differences due to shade activating the bypass diode; hence, panels are effectively bypassed
for safety.

MPP tracking is used in power electronic converters to electronically extract the
maximum power delivered by PV string/array to handle the effect of partial shade. Various
MPPT algorithms are expected to be proposed in order to achieve maximum power. The
effectiveness of tracking, on the other hand, is determined by the procedure employed. PS
causes both local and global MPP when it occurs. As a result, caution must be exercised
when developing the MPPT approach. Many bioinspired strategies have recently evolved
to achieve a better solution to the given optimization challenge.

A new technique based on the hunting behavior of Spotted Hyena is proposed in
this work. The major advantage associated with the method includes faster convergence,
avoidance of local power settlement, no controlling-parameter tuning, and optimum con-
vergence time.

3. Spotted-Hyena Optimizer

The Spotted-Hyena Optimizer (SHO) is a swarm-based metaheuristic optimization
algorithm that solves constrained and unconstrained optimization problems using a hierar-
chy based on social and hunting behavior within a clan of spotted hyenas. The close-knit
clusters help the spotted hyena clan members work together in a well-ordered manner
to improve hunting effectiveness. Observation, gleaning, and scent are used by spotted
hyenas to track for possible prey. Trailing, chasing, encircling, and ambushing mechanisms
are shown in Figure 3 as different phases of spotted-hyena hunting behavior. The first
step is prey tracking, in which possible prey targets are scouted from the entire roster; the
second phase is prey chasing and rundown, in which prey is carefully isolated from the
group to reduce disruption throughout the overall hunting process. The encircling and
harassing phase is the third phase, during which the numerous members of the spotted
hyena clan disperse the hunt’s spoils in a methodical and hierarchical order of precedence.
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Figure 3. Various phases of spotted hyena hunting behavior: (A) searching and tracking prey;
(B) chasing; (C) troublesome and encircling; (D) immobilize situation and attack prey [31].

Spotted hyenas hunt their prey in packs or clusters; these cooperative clan animals
scout and attack prey in a well-coordinated manner. Every hyena updates its position with
regard to the prey position, since the latter represents the solution to a given optimization
problem. Moreover, hyenas in the cluster update their distance with respect to the prey;
therefore, it must be reduced before attacking the prey. Since the prey position is initially
unknown, the best position of the targeted prey and other hyena locations are updated.
This behavior is mathematically modeled as

→
Dh =

∣∣∣∣→B →
·Pp (x)−

→
P (x)| (4)

→
P(x + 1) =

→
Pp(x)−

→
E ·

→
Dh (5)

In the above equation to promote exploration as well as randomness to avoid the
convergence to local optima, SHO uses vectors B and E as coefficients. Further, Pp, P and
Dh represent the best, current positions of the hyena and the distance between spotted
hyena and prey, respectively. These vectors are computed using:

→
B = 2 · r

→
d1 (6)

→
E = 2

→
h · r

→
d2 −

→
h (7)

h = 5− (iteration ∗ 5)
Max_iterations

(8)

To have an equilibrium between exploration and exploitation, the value of the ‘h’
vector is linearly reduced from 5 to 0 until maximum iteration is reached. Here, the
random vectors rd1 and rd2 take values in [0, 1]; application of Equations (4) and (5) in
two-dimensional form is indicated in Figure 4. In this figure, the spotted hyena (A,B) can
update its position towards the position of prey (A∗, B∗).
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The number of optimal positions in the group or cluster during the hunting phase is
recorded based on the coefficient vector E and is given by

Ch = Pk + Pk+1 + . . . . . Pk+N (9)

where Pk indicates the accompanying location of spotted hyenas and Ph is defined as
foremost best spotted hyena location. Here, N indicates the number of spotted hyenas
which is enumerated as follows:

N = countnos(Ph + Ph+1 + . . . . .(Ph + M)) (10)

where M is a vector which is random between the range of [0.5, 1] and Ck is a cluster or
group of N optimal solution numbers. Hyenas attack the prey when they are in close
proximity to the prey; this is indicated mathematically using the coefficient vector E. When
the vector E < 1, the pack of spotted hyenas moves in to kill the prey. The attacking of prey
is mathematically represented as follows:

P(x + 1) =
Ch
N

(11)

where P(x + 1) captures the preeminent solution and location updates of the other search
entities in accordance with the position of the preeminent entity of search. The final
termination of the SHO algorithm is conducted through the satisfaction of a termination
criterion. The hunt and attack of the prey are pictorially presented in Figures 5 and 6,
respectively. The complete algorithm steps are indicated with the help of the flowchart in
Figure 7.
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4. Results and Discussions

Simulations are run for three distinct PV array designs with six different shade patterns,
encompassing both uniform and partial-shade circumstances, with the goal of testing the
efficacy of the suggested SHO approach. As a result, specific software codes for SHO,
P&O, and PSO algorithms have been written in MATLAB for simulation. The software
application for all three methods is built and tested for the PV array configuration shown
in Figure 8. A DC–DC converter and a digital MPPT controller with inputs from voltage
and current sensors make up the system setup.
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Figure 8. Block diagram of simulated system.

The MPPT controller is used to implement all of the MPPT techniques. The parameter
values C and L of a DC–DC boost converter are 330F and 10 mH, respectively, and this
is meant to run in continuous mode. The switch operates at a 10 kHz frequency. For
algorithm testing, an additional R load of 50 volts is supplied to the converter. Under
identical test conditions, existing methodologies such as P&O and PSO methods are also
used for comparison. The values are obtained from the current literature to reach the best
feasible answer because the settling point of the PSO method is dependent on the suitable
selection of controlling parameters.

Further, the simulation-sampling period is chosen as 0.03 s. As previously mentioned,
three types of PV arrangements with 4 × 2, 5 × 1, and 6 × 1 panels are used. Various
uniform and partial-shade conditions that have been utilized for testing are indicated
in Figure 9. As indicated in Figure 9–Pattern 1, uniform irradiation, i.e., zero shade,
refers to the standard test condition (STC) of 1000 W/m2 at 25 ◦C, while during partial-
shade conditions, irradiation levels of PV modules are kept lower than STC at a constant
temperature of 25 ◦C. Different shades applied for the 4 × 2, 5 × 1, and 6 × 1 PV arrays
built are indicated in Figure 9–Pattern 2 to 6, respectively. While selecting the patterns
for simulation, specific measures have been taken to diversify the occurrences of local
and global peaks in order to test the method validity at different operating conditions.
With each shade is given a unique pattern number—say, 1 to 6—its PV curves plotted for
different test patterns indicate the occurrence of multiple local peaks due to panel bypass.
During simulation, it is confirmed that all three techniques are compared and analyzed at
the same instant and operating conditions in order to estimate the efficiency of the proposed
algorithm under the same scenario. Further, the details of the panel specifications used are
indicated in Table 1. The GMPP values for Patterns 1–6 are 439.8, 320.2, 206.8, 210, 105, and
120.2 W, respectively.
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Table 1. Technical specification of simulated system.

S.No Parameter Value

1 Power rating 440 W

2 Inductor 10 mH

3 Capacitor 330 uF

4 Switching Frequency 10 kHz

S. No SM 55 PV Panel Details Value

1 Maximum PV Module Power
(

Pmpp ) 55 W

2 Maximum PV Module Voltage
(
Vmpp ) 17.4 V

3 Maximum PV Module Current
(

Impp ) 3.15 A

4 PV Module Open Circuit Voltage (Voc ) 21.7 V

5 PV Module Short Circuit Current (Isc ) 3.45 A

The system was tested with and without pattern change in two different scenarios. In
Case A, throughout the simulation, just one pattern was used to determine the technique
convergence features, speed of convergence, and capacity to detect the global peak. Case B,
on the other hand, introduces pattern modifications inside the simulation time limit. This
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discovery is crucial for understanding the method’s behavior during abrupt transitions.
The PV power, voltage, current, and duty cycle obtained in each simulation are recorded.

4.1. Case Study—A
4.1.1. Pattern 01 (MPPT under Zero or Uniform Shading)

In this pattern, all the panels of 4 × 2 PV array receive equal irradiance of 1000 W/m2

at 25 ◦C. Under this condition, only a single power peak emerges at 439 W. Reaching the
peak is not a laborious task for any method; however, this case is helpful to understand
the time taken for convergence. As it is valid to point out that P&O method convergence
depends upon initialization, the method converges to peak value at 1.35 s with initial duty
of 0.5, while the PSO method reaches the peak at half of the P&O time at 0.78 s. On the other
hand, SHO takes the lowest time relatively among the methods, at 0.34 s. The obtained
simulation results are plotted in Figure 10. It can be inferred that during the search process
both the SHO and PSO method experience variations in voltage, current, and power values
due to random initial guess. Meanwhile, P&O follows a definite increment in duty value,
hence no oscillations are observed at steady state. The performance of SHO is proved to be
superior at uniform shading in comparison to the P&O and PSO techniques.

Case—A
Pattern 1
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(Pattern 1).

4.1.2. Pattern 02 (MPPT under Partial Shading—Two Peaks)

In this pattern, the last row of the 4 × 2 PV array is exposed to a shade of 600 W/m2,
creating two power peaks: (1) closer to Voc of PV array, and (2) far from Voc, as indicated
in Figure 9. The details of the power peaks appearing in the PV curve are: 315 W global
peak and 250 W local peak. The obtained simulation results are depicted in Figure 11.
All the three methods managed well to converge at a global peak of 315 W. However, the
P&O and PSO methods’ convergences to a global peak of 315 W took 0.95 s and 1.23 s,
respectively, while in the case of PSO there were larger oscillations as well as took large
time for convergence. It is important to note that P&O is able to converge at a global peak
under partial shading due to the initial duty-cycle initialization from the left side of the
curve. At the same time, there will be higher probability that P&O will converge to the
local power peak when it is incorrectly initiated. The better performance of SHO continues
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in Pattern 2 as well, since the method had converged to a global peak of 315 W in 0.24 s
with minimal oscillations.

Pattern 2
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4.1.3. Pattern 03 (MPPT under Partial Shading—Three Peaks)

The earlier two patterns proved the assimilating performance of the SHO method,
hence the additional local peak in close proximity with the global peak is created in Pattern
3. This case is important to estimate the capability of the SHO method to differentiate
between the global and local peak and the amount of randomness created during the search
process. The three power peaks include two local peaks of 175 W and 90 W and one global
peak at 206.8 W, respectively. Referring to Figure 12, of the three methods the SHO method
reaches a global peak of 203 W in 0.2 s, while PSO makes a larger oscillation to reach the
global peak of 201.1 W. Above all, from the simulation result it is clear that the P&O and
PSO methods converge nearer to the global peak of 201.1 W at 0.61 s and 1.4 s, respectively.

Pattern 3
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4.1.4. Pattern 04 (MPPT under Partial Shading—Four Peaks)

Complexity arises in reaching the global peak when the number of bypasses increases.
Hence, to prove the performance of the SHO method under such circumstances, Pattern 4
with three shades causing four peaks is studied. In this case of partial shading, there are
four power peaks: the first local peak at 90 W, the second local Peak at 150 W, the third local
peak at 140 W, and the global peak at 175 W, respectively. Simulation results of Pattern 4
depicted in Figure 13 illustrate that the P&O method converges to a local peak of 170.9 W.
This scenario is expected, since the P&O duty cycle is initialized from the left side of the
PV curve. Further, from the simulation results it is understood that both PSO and SHO
methods reach a global peak of 210.9 W at 1.5 s and 0.4 s, respectively. However, the PSO
method undergoes large transients alongside steady-state oscillations before reaching the
global power peak. Moreover, the SHO method consumes only three iterations with zero
steady-state oscillations before it reaches global MPP.

Pattern 4
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4.1.5. Pattern 05 (5S1P: MPPT under Partial Shading—5 Peaks)

In order to analyze the performance of the SHO method firmly, more panels were
added to form a string with different shades creating five peaks with 5S1P PV-string
configuration. In this case of partial shading, five power peaks appeared: the first one
a local peak at 42 W, the second one a local peak at 80 W, the third one a global peak at
104 W, the fourth one a local peak at 90 W, and the fifth one a local peak at 55 W. Due to
initialization from the left of the MPP, the P&O converged to a local peak of 42 W also it
took 0.43 s. Further, PSO converged to a global peak of 104 W with an additional 0.8 s.
According to the simulation results indicated in Figure 14, the proposed SHO method
converged to a global peak of 104 W in 0.25 s. Most importantly, the PSO and SHO methods
achieved global peaks with minimal steady-state oscillations.
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4.1.6. Pattern 06 (6S1P: MPPT under Partial Shading—6 Peaks)

Additional performance analysis with more peaks is always helpful in arriving to
better conclusions. Therefore, a PV string of size 6S1P with five shades was constructed
and tested. In this case of partial shading, six power peaks appear: The first a local peak at
45 W, the second a local peak at 95 W, the third a local peak at 110 W, the fourth a global
peak at 118 W, the fifth a local peak at 98 W, and the sixth at 35 W. It is clear to note that
the P&O converges to a local peak of 90 W due the initialization from the left to the MPP
point, and took 1.44 s. Further, PSO converged to a global peak of 118 W and took 1.1 s.
On the other hand, the SHO method converged to global peak of 118 W in 0.27 s. Notably,
SHO proved again to be faster than other the two methods, with minimal oscillations, as
depicted in Figure 15. Moreover, it is notable that P&O method is not able to converge to a
global peak in partial shading when wrongly initiated.

Pattern 6
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4.2. Case Study—B (Step-Change Pattern)

In practical conditions, the PV panel irradiation undergoes changes due to weather
conditions, hence it is important to study such transients using step changes in irradiance.
In order to identify the occurrence of partial-shading conditions/Irradiation Change (IC),
threshold changes in voltage and current values between iterations are noted. When any
insolation change occurs, the algorithm is reinitialized and starts its search process. In
order to account for any insolation changes, numerous simulations were performed based
on a trial-and-error method considering large and small ICs. From the results, the optimum
values of 0.1 and 0.2 were obtained for voltage and current, respectively. Moreover, the same
values replicated in the literature are an apparent indication of the judicial investigation
of the SHO method. Therefore, the occurrence of IC can be detected by the following
condition [31].

VPV(k)−VPV(k− 1)
VPV(k)

≥ 0.2 (12)

IPV(k)− IPV(k− 1)
IPV(k)

≥ 0.1 (13)

where ‘VPV(k)’ is the PV voltage at the kth iteration; ‘VPV(k− 1)’ is the PV voltage in the
previous iteration; ‘IPV(k)’ is the PV current at the kth iteration; and ‘IPV(k− 1)’ is the PV
current at the previous iteration.

4.2.1. Step Change from Pattern 2 to Pattern 4 for 4S2P

The step change from Patterns 2 to 4 for the 4S2P configuration is depicted in Figure 16.
From the simulation result, it is clear that SHO converged to a global peak of 315 W in
0.85 s for Pattern 2 with minimal oscillation. Further, P&O and PSO converged to a global
peak of 315 W in 1.3 s and 1.4 s, respectively. However, the P&O oscillation was lower
compared to PSO and SHO due the linear change in duty cycle.

Case B: Pattern Change from Pattern 2 to Pattern 4 (4S2P)
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After 2 s, the irradiation pattern change from 2 to 4 was initiated to check the dynamic
behavior of the algorithm, and the simulation results are clear that SHO converged to a
global peak of 210 W in 0.3 s for pattern 4, whereas PSO converged to the same global peak
of 210 W in 1.44 s and P&O converged to a local peak of 168 W in 1.1 s. Notably, P&O did
not reached a global peak for Pattern 4 due to the duty cycle initiating from the left part of
the curve.

4.2.2. Step Change from Uniform Irradiation to Pattern 5 for 5S1P

It is important to evaluate the step-pattern change from a uniform to higher PV panel
configuration to access method efficiency.

Simulated waveforms with uniform irradiation are presented in Figure 17, and it is
observed that SHO converged to a global peak of 275 W in 0.94 s for uniform irradiation
with minimal oscillation. Further, the P&O and PSO methods converged to a global peak of
275 W in 0.94 s and 1.3 s, respectively. However, the P&O oscillation was lower compared
to PSO and SHO due the linear change in duty cycle for P&O.

Pattern Change from Uniform to Pattern 5 (5S1P)
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1. 4S2P 

1 
SHO 

439.8 
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P & O 68.6 6.399 439 99.81 1.35 

2 
SHO 
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3 
SHO 
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Figure 17. Simulated waveforms of (a) P& O, (b) PSO, and (c) SHO methods for pattern change in
5S1P configuration from uniform irradiation to Pattern 5.

After 2 s of running, the irradiation pattern changed from uniform to Pattern 5 to check
the dynamic behavior of algorithm. The simulation result depicted in Figure 18 shows that
SHO converged to a global peak of 103 W in 0.25 s for Pattern 5, whereas P&O converged
to a local peak of 84 W in 1.2 s and PSO converged to a global peak of 104 W in 1.3 s.
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Performance summary of all defined pattern results are tabulated in below Table 2.

Table 2. Comparative analysis of P and O, PSO, and SHO methods.

S. No Configuration Pattern
Number Method

Maximum
Power from
PV Curve

(Watts)

Vmpp (V) Impp (A) Pmpp (W) Efficiency (η) Tracking
Speed (s)

1. 4S2P

1

SHO

439.8

68.6 6.399 439 99.81 0.34

PSO 68.6 6.399 439 99.81 0.78

P & O 68.6 6.399 439 99.81 1.35

2

SHO

320.2

52.18 6.107 318.7 99.53 0.24

PSO 50.49 6.257 315.9 98.65 1.23

P & O 50.49 6.257 315 98.37 0.95

3

SHO

206.8

51.23 3.966 203.2 98.25 0.2

PSO 32.37 6.21 201.1 97.24 1.4

P & O 32.32 6.223 201.1 97.24 0.61

4

SHO

213.1

54.02 3.904 210.9 98.96 0.3

PSO 54.01 3.904 210.9 98.96 1.5

P & O 33.15 5.192 172.1 80.76 0.87

2. 5S1P 5

SHO

105

53.81 1.949 104.9 99.90 0.25

PSO 53.81 1.949 104.9 99.90 0.8

P & O 13.7 3.083 42.23 40.21 0.43

3. 6S1P 6

SHO

120.2

52.93 2.234 118.3 98.41 0.27

PSO 52.32 2.268 118.7 98.75 1.1

P & O 31.94 2.2775 89.88 74.77 1.44

4.3. Results Comparison

The comparison of any optimization method proposed for the application of MPPT
depends on the convergence time, sampling time, type of DC–DC converter, switching
frequency of the DC–DC converter, operating duty-cycle range, and the number of search
agents used. In this article, a boost converter with specifications mentioned in Table 1 is used
for both simulations and experimentations with minimum of five search agents. Further,
to emphasize the superiority of the SHO algorithm, a comparative table (Tables 3 and 4)
based on sampling time (ts) and convergence time (tc) is prepared and presented. Here, the
SHO algorithm’s performance is compared with a recently proposed MCA and improved
cuckoo search for one peak and five peak conditions. Furthermore, the two new variants
of PSO, i.e., nested PSO and fast adaptive PSO, are also compared in Table 4. However,
the defined search agents, converter-switching frequency, and sample time of the above-
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mentioned methods differ. SHO executes much better compared to the MCA, ICS, and
nested PSO methods, with a faster settling time and fewer oscillations under uniform and
partial-shading conditions (one and five peaks). Moreover, it also outperforms the nested
PSO and FA-PSO for three peaks in the MPP curve.

Table 3. Comparative results of SHO, MCA, and improved cuckoo search algorithms for one and
five Peaks.

Methods
One Peak Five Peaks

tc ts tc ts

SHO 0.34 0.02 0.25 0.02

MCA [23] 0.354 0.01 0.36 0.01

ICS [20] 0.4 0.01 0.25 0.01

Nested PSO [29] 1.515 0.05 2.04 0.05

Table 4. Comparative results of SHO, nested PSO, and FA-PSO algorithms for three peaks.

Methods
Three Peaks

tc ts

SHO 0.34 0.02

Nested PSO [29] 1.85 0.05

FA-PSO [30] 0.4 0.1

4.4. Hardware Implementation
4.4.1. Pattern 01 (MPPT under Zero or Uniform Shading)

The experimental results of Pattern 01, i.e., the 4S2P PV-array system under zero or
uniform shade conditions are plotted in Figure 19. The convergence of P&O falls in line
with the simulation results in terms of three-point behavior. Among the three methods,
P&O takes a longer time to settle, i.e., 1.32 s to reach global peak. Following the P&O
method, PSO takes 0.75 s. Above all, SHO takes the lowest convergence time of 0.4 s among
the methods. Moreover, SHO’s performance is superior only in terms of time taken at
uniform shading, as the remaining methods also reach a global peak.

4.4.2. Hardware Experimental Result: Pattern 03 (MPPT under Partial Shading—3 Peaks)

In Pattern 03, a solar-array simulator generates three power peaks to know the capa-
bility of the SHO method and its ability to differentiate between the global and local peak.
It is evident from results that all three methods reach a global peak of 250 W; surprisingly,
P&O reaches this peak value in a shorter time of 0.6 s compared to the PSO method, while
the P&O method takes 1.4 s, the longest among all the methods. From the experimental
results plotted in Figure 20, SHO takes the shortest time interval to global peak convergence.
The performance of SHO is proved to be superior at partial shading, with three peaks in
comparison with P&O and PSO.
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Figure 19. Experimental result for Pattern 1 under uniform shading (a) P&O, (b) PSO, (c) SHO.

4.4.3. Hardware Experimental Result: Pattern 05 (5S1P: MPPT under Partial Shading—5 Peaks)

In order to firmly measure SHO performance, panels of 5S1P PV-string configuration
were subjected to additional shades, creating five peaks for experimentation, and results
were recorded. Due to initialization from the left of the MPP, P&O converges to a local peak
(not reaching global peak) of 42.0 W. However, PSO and SHO are able to converge to a
global peak 105.0 W. The experimental results are indicated in Figure 21. The performance
of SHO is proved to be superior at partial shading, with five peaks in comparison with the
P&O and PSO techniques. The simulation results and experimental results are matching,
with minor variations.
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Figure 20. Experimental result for Pattern 3 under partial shading (a) P&O, (b) PSO, (c) SHO.

4.4.4. Hardware Experimental Result: Pattern 06 (6S1P: MPPT under Partial Shading—6 Peaks)

The firm and accurate performance of SHO was experimented, with more panels n the
string applied with different shades, creating six peaks for 6S1P PV-string configuration,
and results are tabulated. Due to initialization from the left of the MPP, P&O converged
to a local peak (not reaching a global peak) of 90.0 W. However, PSO and SHO were able
to converge to a global peak 120.0 W. The experimental results are indicated in Figure 22.
The performance of SHO is proved to be superior at partial shading, with six peaks in
comparison to the P&O and PSO techniques.
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4.5. Case Study B (Step-Change Pattern)

Two additional cases with step-change behavior were analyzed from the viewpoint
of the practical condition of sudden changes in weather conditions. The step change was
applied for 4S2P and 5S1P PV array.
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4.5.1. Step Change from Pattern 2 to Pattern 4 for 4S2P

The experimental result for the step change from Patterns 2 to 4 for 4S2P configuration
is presented in Figure 23. From the experimental result it is clear that SHO converged fast
to a global peak of 315.0 W in 0.3 s for Pattern 2, with minimal oscillation compared to P&O
and PSO. The step change was then initiated after 2 s. A few observations can be made from
the experimental results: (1) Step change forces the algorithm to search for a new global
peak under PS; (2) a new search for a global peak helps in the behavior characterization of
the method under transient changes. The experimental results indicate that as the number
of peaks increases in both the cases; (3) the PSO method produces high oscillation in both
patterns with the longest time for convergence. Comparatively, P&O takes a shorter time
interval even though it reaches a local peak in one of the patterns. Meanwhile, SHO proved
to be superior in performance both in terms of time taken and convergence to a global peak
with lower oscillation. This behavior matches well with the simulation case.
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(c) SHO.

4.5.2. Step Change from Uniform Irradiation to Pattern 5 for 5S1P

Figure 24 describes the experimental results for the step change from uniform irradia-
tion to Pattern 5 for 5S1P configuration. The experimental results show that SHO converged
quickly to a global peak of 270.0 W in 0.5 s for the uniform pattern with minimal oscillation
compared to P&O and PSO. After 2 s of running, the irradiation pattern changed from
uniform to 5 and SHO converged quickly to a global peak of 106.0 W in 0.45 s for Pattern 5
compared to PSO and P&O. The simulation results and experimental results are matching,
with minor variations.
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5. Analysis on Energy Saving

The efficient use of energy boosts a country’s income-generating activities and en-
hances its overall economic status. In addition to the software simulation and hardware
results analysis, a few parameters such as energy saving, units produced, and income
generated are analyzed. Though the previous discussions indicate the supremacy of the
SHO method in terms of convergence to global maxima and time taken for convergence, it
is advisable to evaluate the economic impact as well as its practical significance. Therefore,
energy-saving analysis for real-time conditions is carried out. For experimentation, the
hardware setup was arranged at the Technology Tower building of VIT University, Vellore
was utilized. For this analysis, an average sunshine time of 5 h/day was considered and
different patterns were applied between 10:00 a.m.–3:00 p.m. The solar rooftop PV-plant
capacity installed at VIT was 1 kW. For practical significance, five patterns (Patter 1–5) with
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different shade intensities were applied at an interval of 1 h. All the algorithm performances
were monitored for a period of 5 h a day and presented in Table 5. From the below Table 5,
it can be observed that SHO produces the highest number of units generated per day
compared to PSO and P&O. The impact on energy generated by SHO is also noticeable.

Table 5. Economical Assessment of different methods.

Pattern
Energy Generated in Whr Unit Generated

SHO PSO P&O SHO PSO P&O

Pattern 01 for 10:00–11.00 a.m. 439 439 439 0.439 0.439 0.439

Pattern 02 for 11:00–12:00 noon 320 315 315 0.32 0.315 0.315

Pattern 03 for 12:00–1:00 p.m. 203 201 201 0.203 0.201 0.201

Pattern 04 for 1:00–2:00 p.m. 211 211 172 0.211 0.211 0.172

Pattern 05 for 2:00–3:00 p.m. 105 105 42 0.105 0.105 0.042

Net Energy Generated/Day 1278 1271 1169 1.278 1.271 1.169

Net Energy Generated/Year
(280 days considered) 357,840 355,880 327,320 357.84 355.88 327.32

Total Income Generated @ INR 10 per Unit 3578 3559 3273.2

The revenue generated by SHO is comparatively higher than PSO and P&O. Although
the income generated between SHO and PSO has a minor difference, it will have significant
impact for the larger solar power-plant application.

6. Conclusions

In this work, the Spotted Hyena Optimizer (SHO) algorithm for global MPP tracking
is proposed and validated for several partial-shading scenarios. The proposed technique
for all shade patterns tracked the highest power at a shorter tracking time compared to PSO
and P&O. The comparative results are extremely satisfying and also deliver an in-depth
elucidation about the supremacy of the proposed method in tracking the global peak.
For all the shade patterns considered, the SHO method outperformed all the methods
considered. For instance:

1. In the case of shade Pattern 01, even though SHO, PSO, and P&O were able to track
global peak, the convergence times of SHO were 4 and 2 times shorter than P&O
and PSO.

2. For Pattern 2, SHO generated 2% higher power compared to P&O and better conver-
gence time compared to PSO and P&O.

3. Similarly for shade Patterns 3 and 4, the convergence times of SHO were 3 and 7 times
shorter than P&O and PSO.

4. Even for shade Patterns 5 and 6, the proposed technique retained its first position in
attaining better convergence at a shorter time.

The outcomes of the simulation and hardware results have strengthened the belief
that SHO is effective in tracking optimal power in less time. Hence, the proposed technique
is suitable and highly recommended to track the maximum power point effectively for
complex PSCs.
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Nomenclature

STC Standard Test Conditions
PV Photovoltaic
TCT Total Cross Tied
PS Partial Shading
MPPT Maximum Power Point Tracking
IPV & VPV Current and voltage generated by a PV cell
IO &VO Output current and voltage of a PV module
ID Diode current
Ish & Iph Shunt current and Photo-generated current
Rs, Rp Series and Shunt resistances
G& GSTC Irradiance (W/m2) and Irradiance level at standard testing conditions
ANN Artificial Neural Network
SSO Salp-Swarm Optimization
MFO Moth-Flame optimization
HC Hill Climbing
Inc. Cond. Incremental Conductance
FLC Fuzzy Logic Control
GWO Grey-Wolf Optimization
WDO Wind-Driven Optimization
SHO Spotted-Hyena Optimizer
P&O Perturb and Observe
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