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Abstract: Sustainable energy systems rely on energy yield from renewable resources such as solar
radiation and wind, which are typically not on-demand and need to be stored or immediately
consumed. Solar irradiance is a highly stochastic phenomenon depending on fluctuating atmospheric
conditions, in particular clouds and aerosols. The complexity of weather conditions in terms of
many variable parameters and their inherent unpredictability limit the performance and accuracy
of solar power forecasting models. As renewable power penetration in electricity grids increases
due to the rapid increase in the installation of photovoltaics (PV) systems, the resulting challenges
are amplified. A regional PV power prediction system is presented and evaluated by providing
forecasts up to 72 h ahead with an hourly time resolution. The proposed approach is based on a
local radiation forecast model developed by Blue Sky. In this paper, we propose a novel method
of deriving forecast equations by using an irradiance classification approach to cluster the dataset.
A separate equation is derived using the GEKKO optimization tool, and an algorithm is assigned
for each cluster. Several other linear regressions, time series and machine learning (ML) models are
applied and compared. A feature selection process is used to select the most important weather
parameters for solar power generation. Finally, considering the prediction errors in each cluster, a
weighted average and an average ensemble model are also developed. The focus of this paper is
the comparison of the capability and performance of statistical and ML methods for producing a
reliable hourly day-ahead forecast of PV power by applying different skill scores. The proposed
models are evaluated, results are compared for different models and the probabilistic time series
forecast is presented. Results show that the irradiance classification approach reduces the forecasting
error by a considerable margin, and the proposed GEKKO optimized model outperforms other
machine learning and ensemble models. These findings also emphasize the potential of ML-based
methods, which perform better in low-power and high-cloud conditions, as well as the need to build
an ensemble or hybrid model based on different ML algorithms to achieve improved projections.

Keywords: PV power forecasting; probabilistic forecast; machine learning; ensemble models; solar;
weather classification; clear sky index

1. Introduction

The output of PV systems is highly variable, especially due to the stochastic formation
and movement of clouds in the sky. Energy storage and generation forecasts are the two
most important and widely adapted strategies to mitigate the adverse impact of highly
variable renewable energy production for the stability of an electricity grid [1]. Accurate PV
power forecasting has become a critical factor not only in the overall effective management
of electricity grids; it also provides financial benefits in energy market trading, supporting
effective decision making based on forecast data.

Accurate and optimized forecasting models based on the use of on-site measurements
and data from weather forecast providers are needed [2].
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The output of PV power plants mainly depends on solar irradiance (W/m2) falling on
the PV panel. Therefore, global horizontal irradiance (GHI) is the most important input
parameter in most PV power prediction systems, and increasing effort is currently spent on
research on forecasting of GHI as a basis for PV power forecasts. Different input data and
forecasting models are used depending on the forecast horizon.

Numerical methods are based on the actual atmospheric conditions. The dynamic
process of weather evolution in a given period is estimated using equations based on fluid
thermodynamics [3]. Numerical weather data and satellite images are typically used as
input variants for this method. The Global Forecast System (GFS), the European Centre for
Medium-Range Forecasts (ECMWF), the North American Mesoscale Model (NAM) and
Weather Research Forecast (WRF) are all examples of numerical weather prediction (NWP)
approaches [4]. They can be classified as global (worldwide) or mesoscale (local) models
based on the area of simulated atmosphere [5].

At a 6 h refresh rate and 1–3 h granularity, these models often yield forecasts for
multiple variables important for predicting solar radiation, with forecast horizons ranging
from 24 to 72 h or longer. Spatial resolution of these models is variable, and on average,
each forecast grid cell is on a scale of a few to hundreds of square kilometers. The quality
of NWP forecast is limited by the quality and horizon of the model utilized. Proprietary
models, such as satellite-based models or total sky imager models based on cloud cover and
cloud motion vectors, are also used to further enhance forecast accuracy. The latest detailed
study of solar power forecasting, its dependence on meteorology and grid implications is
presented by Yang et al. [6].

Current forecasting methods are based on the individual or small groups of time
series. The model parameters for each time series are derived independently from previous
observations. Different factors, such as autocorrelation structure, trend, seasonality and
other explanatory variables, determine the selection of a particular model. Based on the
model dynamics, the fitted model is then utilized to predict the time series into the future.
These models also have a scope of probabilistic forecasts through simulation or closed-form
expressions for the predictive distributions. Box–Jenkins methodology [7] is widely used
for this class of forecasting.

However, instead of predicting individual or a limited number of time series, a
new form of forecasting challenge has emerged in recent years, involving forecasting a
huge number of related time series [8]. PV power forecasting is one such example that
involves time series forecasting of GHI, temperature and several other parameters. In
such a case, a large amount of historical data on similar, linked time series can be used to
make predictions. Using historical data not only allows for fitting of more complex and
potentially more accurate models, but it can also attenuate the time and intensive manual
feature-engineering and model-selection steps required by the classical techniques [8].

A plethora of forecasting methodologies for PV power systems has recently been
developed and published in the literature. One approach for categorizing forecast method-
ologies is based on the forecast horizon, which is the amount of time between the actual
time and the effective period of prediction [9].

The second classification is based on the forecasting method, which can be statistical
or time-series-based, physical, hybrid or ensemble. Statistical approaches are based on a
set of observations of one or more parameters taken at a successive sequence of times [10].

Regression methods and persistence methods (primarily used as a standard to test
other models) are examples of statistically based forecasters. These methods rely primarily
on historical data and do not require any information about PV systems or their installation
site. Models such as the autoregressive integrated moving average (ARIMA) work well
with non-stationary time series [11]. The drawback of statistical regression models or
time series ARIMA models is that they are computationally more intensive and require
continuous times series historical data.

According to several reviews, artificial neural network (ANN)-based forecasting is
one of the most effective methods. ANNs can capture sharp changes in the input–output
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relationship due to varying environmental conditions [12] compared with statistical or time
series models. However, the fundamental disadvantage is that ANNs necessitate a vast
amount of data for training. Any erroneous or insufficient initial data can compromise the
predictability of the findings and the accuracy with which the model parameters are chosen.
ANNs outperform conventional statistical methods in terms of accuracy and adaptability
under intermittent meteorological conditions [12]. A hybrid approach has been applied
to enhance the forecasting accuracy of ML and ANN methods by using statistical post
processing in conjunction with weather clustering assessment for day-ahead PV power
forecasting [13]. Recent publications have also shown interest in forecasting accuracy
with varying spatial distribution of PV plants. Various ML models have been compared
and examined in terms of technical and economic performance for point forecast with
spatial distribution [14].

In this work, the evaluation and comparison of various statistical regression models
(SK-Learn linear regression, ridge regression, elastic net), time series models (SARIMAX,
Facebook Prophet (FBP)) and ML (gradient boosting (GB), extreme gradient boost (XGB),
random forest (RF)) are presented, and forecast equations are derived using GEKKO
optimization tool based on the irradiance classification approach to cluster the dataset. The
purpose of irradiance classification is to improve on the forecast accuracy, as the irradiance
distribution pattern randomly depends on the type and height of clouds. The mentioned
models are explained in detail in Section 3. The main contributions of this paper are
twofold: (1) The forecast-equation-derived method can be adapted to any location and any
technology by deriving the regressive coefficients. (2) This work empirically demonstrates
that ML models work better in highly variable cloud conditions; in future, with larger
datasets, such models can be used with GEKKO to build a better ensemble model.

2. Materials and Methods
2.1. PV System Description

The ground measurement data employed in this analysis were taken from the PV sys-
tem of the University of Applied Sciences Upper Austria (FHOOE). The university building
is in Wels, Austria (latitude 48.17◦ N, longitude 14.03◦ E, elevation 317 m). The system
is composed of five types of PV technologies: copper indium selenide (CIS), amorphous
silicon (a-Si), cadmium telluride (CdTe), polycrystalline silicon (p-Si) and monocrystalline
silicon (c-Si). Figure 1 shows images of the rooftop PV system, as well as the solar radiation
measurement station.

The output power of the mono-Si PV system, which is used for the modelling analysis
in this paper, is described in Table 1.

Table 1. PV system data.

PV Technology: Silicon mono crystalline Manufacturer: Sharp

Rated Power: 185 Wp No. of Modules: 12

Maximum Power of the String STC: 2200 Wp Inverter: SMA Sunnyboy 1.5/2.0/2.5

Azimuth Angle: 0◦ south direction PV Panel Tilt Angle (β): 32◦

2.2. Forecasting Methodology

The PV power forecast is based on GHI (W/m2) and temperature (◦C) forecasts
with hourly resolution and a forecast horizon of 72 h ahead. These meteorological fore-
casts (“Blue Forecast”) are provided by Blue Sky Wetteranalysen [15]. The Blue Forecast
is an automated local weather forecasting tool developed based on statistical methods
and meteorological knowhow to correct global GFS-NWP models with historical ground
measurements from local weather stations. Local characteristics and conditions such as
orography, terrain and climatological factors are used in the model, along with other
meteorological features, to enhance the accuracy of global NWP.
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Figure 1. PV system and solar radiation measurement station on the rooftop of the University
of Applied Science Upper Austria (FHOOE) at Wels Campus, Austria. Two pyranometers and a
pyrheliometer are mounted on a tracker for the measurement of global, diffuse and direct irradiance.

The methodology adopted for this study and the basic steps of the modelling and
evaluation algorithm to evaluate power forecast are shown in Figure 2.

The rolling cross-validation approach is used because time series data have a tem-
poral structure, and the data cannot be randomly mixed in a fold while preserving
the structure [16].

2.3. Performance Metrics

There are several parameters and metrics used for the evaluation of any solar energy
forecasting model to assess the accuracy of the forecasting methods. The three most widely
used metrics for forecast accuracy are the mean bias error (MBE), the mean absolute error
(MAE) and the root mean square error (RMSE) [17]. The relative MAE (rMAE) and relative
RMSE (rRMSE) are calculated by dividing the respective metrics by the average value of
the observed parameter, and the normalized metrics (nMAE and nRMSE) are normalized
to the maximum variable (power in this case) under consideration.

RMSE is better suited to applications such as grid operation and stability, where high
errors are critical [18], whereas MAE is more suited to applications such as day-ahead
markets, which have linear costs relative to error [19]. MAE is used as the benchmark
metric when calculating the weight factor for a weighted-average ensemble model, as it is
appropriate for application with linear cost functions, with the primary goal of day-ahead
forecasting with hourly resolution.

The skill score is an important parameter used to evaluate the performance of any
model by comparing it with a reference model, which is typically a persistence model in
the case of solar forecasting. Mathematically, the skill score (SS) of the forecast is defined
by the following equation [20]:

SS = 1−
Score f orecast model

Score Persistence model
(1)

where score can be MAE or RMSE.
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Specific metrics, such as accuracy, bias, reliability, calibration and sharpness are used
for the validation of probabilistic forecasts [21]. Accuracy and bias for point forecasts
can also be used for probabilistic forecasts. However, reliability and sharpness are impor-
tant properties specific to probabilistic forecasts. The similarity between a priori forecast
probability and a posteriori observed frequency is measured by reliability. If a forecast
appears to be derived from the same distribution as the observation, it is considered reliable.
The ability of a forecast to focus the probabilistic information about future outcome(s) is
characterized as sharpness. Sharpness is a property of the forecast alone, and its assessment
does not involve the observations. Therefore, it is recommended practice that any model’s
reliability be supported with a sharpness assessment, as otherwise, prediction distribution
mis-specifications may go undetected [22].

2.3.1. Probability Integral Transform

Probability integral transform (PIT) is a commonly used metric for reliability. It is
performed by converting data values modeled as random variables from any continuous
distribution to random variables with a standard uniform distribution [23]. If a random
variable (forecast power), X, has a continuous distribution for which the cumulative
distribution function is F̂, then the random variable, Y, defined as Y = F̂ (X) has a uniform
distribution. Therefore, a uniform PIT histogram means that the forecasting model is
perfectly reliable. The shape of the PIT histogram gives information about the reliability
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index, e.g., a convex U-shaped PIT histogram means overconfident forecasts with an
excessively narrow prediction interval, whereas a concave inverse U-shaped PIT histogram
means underconfident forecasts with a too widely dispersed forecast distribution and
prediction interval [24].

2.3.2. Continuous Ranked Probability Scores

Continuous ranked probability score (CRPS) accounts for the overall accuracy, reliabil-
ity and sharpness of the forecasts. It is widely used in weather forecasting and atmospheric
science, as it allows for comparison of actual results with the whole prediction distribu-
tion instead of just comparing to the mean prediction distribution. The standard way to
calculate CRPS is given by the integral [25]:

CRPS =
1
N

∫ ∝

−∝

N

∑
i=1

( Fi(x)− F̂i(x) )2 (2)

where Fi(x) is the cumulative distribution function (CDF) of the probabilistic forecast
for the ith value, whereas F̂i(x) is the CDF of the corresponding ground measurement.
Equation (2) has a severe limitation due to the inherent slowness of calculating such an
integral for a large database. Gneiting et al. [24] suggested a closed-form solution for a
Gaussian distribution, as per the following equation:

CRPS
(

Fµ,σx
)
= σ

((
2Φ

(
(x− µ)

σ

)
− 1
)
+ ϕ

(
(x− µ)

σ

)
+

1√
π

)
(3)

2.3.3. Brier Score

The Brier score (BS) is another extensively used skill score that allows for verification
and comparison of probabilistic forecasts of dichotomous events. It is defined by the
following equation:

BS =
N

∑
t=1

( pt − ot)
2 (4)

where pt and ot are the respective probabilities of predicted power and observed power
that would exceed a fixed threshold. BS is also negatively oriented, and BS = 0 implies a
perfect forecast.

2.4. Database Clustering

The collected GHI and on-site power data measurements are of 10 min resolution and
include night hours. For forecasting purposes, the data are averaged to hourly resolution.
The PVLIB irradiance clear sky index is used to calculate the clear sky index [26]. The clear
sky index is the ratio of global to clear sky global irradiance.

Kt =
GHI

GHIcsky
(5)

Negative and non-finite clear sky index values are truncated to zero. A maximum
value of the clear sky index of 2.0 is applied to account for over-irradiance events typically
seen in sub-hourly data due to cloud enhancement and refraction phenomena [26].

We adopted a novel method of classifying the clear sky index into five clusters depend-
ing on the value of clearness index, Kt, based on the observation of hourly distribution, Kt,
from annual data of Wels for 2018 and the current year trend, as shown in Figure 3. The
criteria for the classification of different clusters is illustrated in Table 2.
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Table 2. Classification of sky conditions based on clear sky index.

Cluster Class CSI Range Variability

Overcast csi < 0.3 low
Highly Cloudy 0.3 ≤ csi < 0.5 high

Cloudy 0.5 ≤ csi < 0.7 high
Almost Clear 0.7 ≤ csi < 0.9 low

Clear csi ≥ 0.9 low

The forecast meteorological data of GHI and temperature are used from 1 May 2021
onwards on a daily basis for 72 h forecast horizon.

The GHI data collected are duly checked and validated. However, pyranometers
are highly sensitive to dust, which can lead to an underestimation of GHI. This could
possibly lead to a limitation for the lower boundary data of each bin falling into an adjacent
lower bin.

There have been calibration and cable problems at the site due to which gaps in the
measured data are noted. The recorded ground measurement data used for training and
testing are for the periods listed in Table 3. All the models are tested for 96 days during the
period, starting from 1 May 2021 until 30 September 2021 for three-days-ahead forecast,
and the results are divided into 24 h, 48 h and 72 h forecast horizons for analysis.

Table 3. Training and testing period.

Date (from) Date (to)

1 January 2021 10 July 2021

22 July 2021 30 July 2021

20 August 2021 25 August 2021

1 September 2021 3 September 2021

21 September 2021 30 September 2021

As the GHI and PV production is 0 for hours before sunrise and after sunsets, these
values are excluded from the testing phase by applying a cos(θz) > 0 filtering of the data,
where θz is the solar zenith angle. cos(θz) is used in all models as one of the key variables
in training and testing, as it strongly influences the GHI.

Month, day of the month, hour of the day, year and season are added as additional
feature values, as they define the seasonality of GHI.

GHI, temperature and cos(θz) values are scaled, whereas all other variables are em-
ployed as feature values (binary 0 or 1) in machine learning and linear regression models
for training and testing. For GEKKO optimization to derive the equations, forecast values
of GHI, temperature and cos(θz) are used without scaling.
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The Fourier transform series are added as features to handle the multiple seasonality.
This converts a time and signal function into a frequency and power function. This provides
information about which frequencies make up the signal and how strong they are [27].
Fourier transform aids in seeing through the noise and determining which frequencies are
important in the real data.

Multiple Fourier series with different k terms in the form of sin(2kπ) and cos(2kπ) are
added, with k value of 5 for each season of the year, hour of the day and week of the year
as additional feature values for training and testing ML and times series models.

3. Models

In this study, various statistical linear regression, time series and machine learning
models were analyzed and compared to allow for higher degrees of model complexity.
This also helps to identify and to model dependency structures. The decision to use these
techniques over the many other ML methods is based on a comparison of the models
to find the best fit, as well as the possibility of merging them to form ensemble models
to increase forecast accuracy. Although different energy forecast models have already
been compared [28], the focus of this paper is on improving forecast accuracy through
the formulation of prediction equations under different clusters of the clear sky index.
Furthermore, the probabilistic forecast of the three best-performing models is evaluated as
a measure of uncertainty, and the resulting quantile forecasts are evaluated by different
probabilistic forecasting skill scores. The different models applied in this study are:

3.1. Linear Regression

This is the simplest form of a regression model, where the target value is the linear
combination of the features [29].

ŷ(β, x) = β0 + β1x1 + · · ·+ βnxn (6)

Equation (6) fits a linear model with coefficients β = (β1 . . . βn) to minimize the residual
sum of squares between the observed and anticipated targets in the dataset.

The coefficients β = (β1 . . . βn) are determined using least square estimation (LSE),
which minimizes the following cost function:

CL(β) =
N

∑
n=1

(ŷ(n)− y(n))2 (7)

3.2. Ridge Regression

Ridge regression is used to estimate the coefficients of multiple regression models,
where independent variables are highly correlated [30]. Placing a penalty on the size of the
coefficients overcomes some of the issues with regular least squares. The ridge coefficients
minimize a penalized residual sum of squares.

A ridge-regularized cost function has two components, i.e., the error term and the
regularized term, as illustrated in Equation (8).

Cλ
R(β) = CL(β) + λ

n

∑
i=1

(βi)
2 (8)

The loss is nothing but an error term (first term on the RHS of Equation (8)), followed
by a regularized term, λ is a hyperparameter to tune or a balancing factor and β is the
sum of squared coefficients. The penalty term (second term on the RHS of Equation (8)) is
controlled by changing λ, where λ = 0 implies using only the error term with any penalty,
and high value of λ implies the penalty leading to the reduction in the magnitude of
coefficients. It is imperative to choose an optimal λ value.
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3.3. Elastic Net

LASSO means ‘least absolute shrinkage selector operator’ and is a linear model that
estimates sparse coefficients. The key difference between the LASSO and ridge regres-
sion is that LASSO employs the absolute value of coefficients and sets redundant feature
coefficients to zero, making it easier to choose the best features.

Elastic net is a fusion of the ridge and LASSO regression techniques. Elastic net
regression uses shrinkage to prevent overfitting by minimizing a modified cost function:

Cλ1,λ2
ElN (β) = CL(β) + λ1

n

∑
i=1
|βi|+ λ2

n

∑
i=1

(βi)
2 (9)

The second term on the RHS of Equation (9) represents LASSO penalty (L1), whereas
the third term represents the ridge penalty (L2), and λ1 and λ2 control shrinkage of L1 and
L2, respectively.

In a situation with a larger dataset with 500 or more variables, ridge regression
only reduces the magnitude of coefficients; if LASSO is used, then reduces coefficients of
redundant features to zero (feature selection), which leads to loss of information. Therefore,
it is recommended to use elastic net, as it performs well on large datasets. λ1 and λ2 are
hyperparameters to be tuned by the user.

3.4. SARIMAX

The seasonal ARIMA (SARIMA) model is a generalized form of the ARIMA model that
is used to handle seasonality in data. SARIMA uses seasonal autoregressive (AR), moving
average (MA) and differencing elements in the model to explicitly deal with seasonality in
data. SARIMA is used to model non-stationary series or data that do not oscillate around
the same mean, variance or co-variance. As the GHI data (and hence PV power) are not
stationary because they has a trend (changing mean) and seasonality, which means that the
covariance function does depend on time. The most common way to identify stationarity
(or its absence) is by testing a dataset for stationarity with the Dicky Fuller test [31], which
tests for a unit root. Basically, if the p-value of the test is too small (i.e., less than 0.05,
achieving 95% confidence), the hypothesis that the data are non-stationary is rejected, and
data are assumed to be stationary. The standard method of differencing the dataset is
adopted to ensure stationarity and then integrated by the same order in as that used in
the case of SARIMAX. This model can identify trends and seasonality, which makes it
so important.

SARIMAX is seasonal ARIMA with exogenous regressors, which allows it to incorpo-
rate the impacts of external factors into the model via an exogenous regressor term. The
general form of the SARIMAX model, (p, d, q)(P, D, Q)s, is mathematically represented by
Equation (10) [32], where:

• p: is the order of the AR term.
• d: order of differencing to make the data stationary.
• q: order of the MA term.
• P: order of the seasonal AR term.
• D: order of the seasonal differencing to make the data stationary.
• Q: order of the seasonal MA term.
• S: number of periods in a season.

yt = β0 + β1X1,t + .. + βkXk,t +

(
1− θ1B− θ2B2 − ..− θqBq)(1−Θ1BS −Θ2B2s − ..−ΘQBQs

)(
1−∅1B−∅2B2 − ..−∅pBp

)
(1−Φ1BS −Φ2B2s − ..−ΦPBPs)

Zt (10)

where:

• yt denotes the value of the series at time t.
• X1,t . . . Xk,t denote observations of the exogenous variables.
• β0, β1 . . . βk is the coefficient value for the k-th exogenous (explanatory) input variable.
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• ∅1, ∅2 . . . ∅p is the weight of the nonseasonal autoregressive terms.
• Φ1, Φ2 . . . ΦP is the weight of the seasonal autoregressive terms.
• θ1, θ2 . . . θq is the weight of the nonseasonal moving average terms.
• Θ1, Θ2 . . . ΘQ is the weight of the seasonal moving average terms.
• BS denotes the backshift operator such that Bsyt = yt−s
• Zt denotes the white noise terms.

3.5. Facebook Prophet

Facebook Prophet uses a decomposable time series model with three main model com-
ponents: trend, seasonality and holidays. They are combined in the following Equation [33]:

y(t) = g(t) + s(t) + h(t) + εt (11)

where:

• g(t): piecewise linear or logistic growth curve for modeling non-periodic changes in
time series;

• s(t): periodic changes (e.g., weekly/yearly seasonality);
• h(t): effects of holidays (user-provided) with irregular schedules;
• εt: error term, accounting for any unusual changes not accommodated by the model.

Using time as a regressor, FBP tries to fit several linear and non-linear functions
of time as components. Instead of directly examining the time-based dependence of
each observation inside a time series, FBP addresses the forecasting problem as a curve-
fitting exercise.

3.6. Random Forest

Leo Breiman and Adele Cutler introduced and patented random forest (RF), which ag-
gregates the output of numerous decision trees to arrive at a single outcome [34]. However,
this concept was first proposed in the literature by Ho [35], who employed a consensus of
trees generated in random subspaces of the features.

Bagging is a technique to minimize the variance of an estimated prediction func-
tion [36]. Bagging works well for high-variance, low-bias procedures. The same regression
trees are fit several times to bootstrap-sampled versions of the training data and average
the result in case of regression. For classification problems, a committee of trees vote for
the projected class.

RF is a significant refinement and expansion of bagging in which a large number
of uncorrelated trees is built and then averaged. RF performs similarly to boosting in
many problems, but is easier to train and tune, which makes it widely popular and easy to
implement in several applications.

The RF algorithm has three critical hyperparameters that need to be tuned before
training, viz., node size, the number of trees and number of feature samples. RF classifiers
can be used thereafter to solve for regression or classification problems [37].

Classification in RF is performed using ensemble methodology, consisting of collection
of decision trees. The training data are fed with a replacement, called the bootstrap
sample, to train various decision trees. The correlation among decision trees is reduced by
introducing further randomness through feature bagging, thereby adding more diversity.
This dataset contains observations and features that will be chosen at random during the
splitting of nodes [37].

The RF system relies on various decision trees. Every decision tree consists of decision
nodes, leaf nodes and a root node. Each tree’s leaf node represents the final output produced
by that particular decision tree. The prediction depends on the type of problem, e.g., for a
regression task, the individual decision trees will be averaged, and for a classification task,
a majority vote, i.e., the most frequent categorical variable, will yield the predicted class.
The out-of-bag (oob) sample is then eventually used for cross-validation and prediction [37].
The functioning of RF is illustrated in Figure 4.
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The essential algorithm for RF applies bagging bootstrap aggregation of the trees.
In other words, the primary goal is to average many noisy but approximately unbiased
models and hence reduce the variance.

Given a training set, X = x1, . . . , xn, with responses Y = y1, . . . , yn, bagging repeatedly
(N times) selects a random sample with replacement of the training set and fits trees to
these samples:

For n = 1, . . . ., N.

1. Sample, with replacement, n training examples from X, Y; (Xn, Yn)
2. Create a classification or regression tree fn and train it on Xn, Yn

After training, the predictions for unknown samples, x’, are calculated by averaging
the predictions from all the separate regression trees on x’ [37]:

f̂ =
1
N

N

∑
n=1

fb
(
x′
)

(12)

In case of classification, the same task is performed by a majority vote.
The standard deviation of the predictions from all of the individual regression tress on

x’ is used to measure the forecast uncertainty [38]:

σ =

√
∑N

n=1 ( fb(x′)− f̂ )
2

N − 1
(13)

RF uses a modified tree-learning method to select a random subset of new introduced
features at each candidate split in the learning process besides the bagging approach. The
reason for doing this is to inject decorrelation among the trees. The study examines how
bagging and random subspace projection lead to accuracy gains under various scenarios [39].

Variable m is chosen before each split for a classification in such a way that m ≤ p of
the input variables at random as candidates for splitting.

Typical values for m are
√

p or as low as 1. In practice, the best value for these
parameters depends on the problem and are usually treated as tuning parameters. The
following recommendations are widely used [40]:

• For a classification problem, the default value of m is
√

p, and the smallest node size is 1;
• The default value for m is p/3, and the minimum node size is 5 for a regression problem.

3.7. Gradient Boosting

Boosting algorithms were originally introduced for classification problems [40], and
subsequently, a statistical viewpoint of boosting was introduced, connecting the algorithm
to the loss function [41]. The key approach is to iteratively merge many simple models,
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known as “weak learners”, to produce a “strong learner” with higher forecast accuracy [41].
Boosting was further extended to the regression problem by introducing the gradient
boosting machines (GBM) method [42].

Gradient boosting (GB) is a machine learning model that uses the gradient descent
optimization method on boosting technique classification, regression and prediction in
supervised learning. Boosting differs from RF in that it sequentially constructs an ensemble
by training a new weak base learner model (most commonly a decision tree) with respect to
the error of the entire ensemble learned so far, as opposed to RF, which depends on simple
averaging of models in the ensemble. The error value of a weak classifier is marginally
better than that of a random guess. The boosting technique repeats the application of this
classifier on modified data, and all predictions are aggregated using a weighted majority
vote to obtain a final prediction [43].

In typical supervised learning, given a dataset, (x, y)N
i=1, where output variable y and

vector of input variable x = (x1, x2, . . . , xn), related to each other by some probabilistic

distribution function, the objective is to reconstruct functional dependence x
f→ y with an

estimate, f̂ (x), such that the specified loss function, Ψ(y, f (x)), is minimized:

f̂ (x) =
argmin
f (x) (Ψ (y, f (x)) (14)

Once f̂ (x) is initialized as constant, the GB algorithm [42] proceeds with the iteration of:

• Computation of so-called pseudo variables or the negative gradient:

zi = −
∂Ψ(yi, f (xi))

∂f(xi)
| f (xi)= f̂ (xi)

(15)

• Fitting a base learner (or a week learner, e.g., tree) regression model, g(x), to pseudo-
residuals, i.e., training the model using the training dataset (xi, zi)

N
i=1 and predicting

zi from the covariates of xi;
• Computation of multiplier γ by solving the following one-dimensional problem to

choose a gradient descent step size as:

γ =
argmin
γ

N

∑
i=1

Ψ(yi, f̂i + γg(xi)) (16)

• Updating of the model estimate of f (x) as:

f̂ (x) ← f̂ (x) + γg(x) (17)

The algorithm determines the direction and the gradient in which it needs to improve
at each iteration to fit the data and select a particular model.

The trees are iteratively fitted to the residuals using GB to optimize any arbitrary
differentiable loss function, such as the squared error cost function, where the negative
gradient is equal to the residuals [44].

The GBM algorithm performs better if at each iterative step, the contribution of the
added decision tree is shrunk by using a shrinkage parameter, α, also known as the learning
rate, which ranges between 0 and 1. This helps to constrain the fitting procedure and
address the overfitting problem [45].

3.8. Extreme Gradient Boosting

Extreme gradient boosting (XGB) is comparable to GBM in that it uses the same
gradient boosting technique to construct an ensemble of trees [46]. There are, however,
important differences and a few advantages of XGB over GBM [47], such as:

� Regularization: XGB offers additional regularization hyperparameters that provide
added protection against overfitting.
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� Early stopping: XGB implements early stopping, allowing for stopping of the process
of modelling when additional trees offer no improvement.

� Parallel Processing: It is particularly difficult to parallelize GBM because of its sequen-
tial nature. XGB has introduced methods to support GPU and Spark compatibility,
which enables the use of distributed parallel processing to fit gradient boosting.

� Loss functions: Using specific objective and evaluation criteria, users can define and
optimize gradient boosting models in XGB.

� Continue with existing model: A user can train an XGB model, save the results and
later return to that model and continue building onto the results, thereby allowing
continued training of the model without starting from scratch.

� Different base learners: Most GBM implementations are built with decision trees, but
XGB also provides boosted generalized linear models.

The XGB algorithm proceeds with the following iterations once f̂ (x) is initialized as
constant using Equation (14):

• Computation of gradients and hessians as:

gi =
∂Ψ(yi, f(xi))

∂f(xi)
| f (xi)= f̂ (xi)

(18)

hi =
∂2Ψ(yi, f(xi)

)
∂f(xi)

2 | f (xi)= f̂ (xi)
(19)

• Fitting a base learner (or a week learner, e.g., tree) regression model, g(x), to pseudo-

residuals, i.e., training the model using the training dataset (xi −
gi
hi
)

N
i=1

by solving the
following optimization problem:

∅̂ =
argmin
∅

N

∑
i=1

1
2

ĥi[−
ĝi

ĥi
−∅ ]

2
(20)

f̂ (x) = α ∅̂ (x) (21)

• Update the model estimate of f (x) as:

f̂(m)(x) = f̂(m−1)(x) + f̂(m)(x) (22)

• Model output:

f̂ (x) = f̂(M)(x) =
M

∑
m=0

f̂m(x) (23)

A detailed overview, implementation suggestion and hyperparameter tuning for GBM
and XGB are presented by Boehmke [47].

3.9. GEKKO

GEKKO is a mixed-integer and differential algebraic equation optimization software tool.
It provides large-scale solvers for linear, quadratic, nonlinear and mixed-integer programming
(LP, QP, NLP, MILP, MINLP). Data reconciliation, real-time optimization, dynamic modeling,
and nonlinear predictive control are some of the modes of operation [48,49].

GEKKO is a package that includes the ability to run model-predictive control, dynamic
parameter estimation, real-time optimization and parameter update for dynamic models
in real-time applications. It provides an algebraic modeling language (AML) for solving
optimization problems in simple object-oriented, equation-based models to interface with
powerful built-in optimization solvers [48].

GEKKO uses nonlinear approaches in model development, dynamic data reconcilia-
tion and dynamic optimization to meet research and industrial application objectives [50].
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The interface between advanced solvers and human users is generally facilitated by
AML. Variable limits, constraint functions and bounds, goal functions, and first and second
derivatives of the functions, all in consistent array format, are required by high-end, off-
the-shelf gradient-based solvers. AMLs make the process easier by allowing the model to
be written in a straightforward, user-friendly manner. AML takes in a model (constraints)
and an optimization goal [48].

The GEKKO optimization tool solves a problem in the form Equation (24) using
AML design.

min
u, x

J(x, u)

0 = f (x, u)
0 ≤ g (x, u)

(24)

By tuning and optimizing the state variables, x, and inputs, u, the objective function in
Equation (24) is minimized. The inputs, u, typically include variables such as measured dis-
turbances, unmeasured disturbances, control actions, feed-forward values and parameters.
The solver determines these parameters to minimize the objective function, J. Differential
or algebraic equations, which include equality constraints (f ) and inequality constraints (g),
are used based on the application to solve the state variables, x [48].

A detailed overview of GEKKO with nine different modes of operation for different
solutions and applications is presented in [48].

The basic set of variable types includes constants, parameters and variables (with initial
values and bounds). Fixed variables (FV) inherit parameters but have the possibility to add
a degree of freedom, and they remain constant over the horizon. The built-in optimizer
implicitly solves all user-defined equations simultaneously. Equations are discretized
across the entire time horizon in dynamic modes, and all time points are solved at the
same time [48].

The following settings are applied in the optimization algorithm in this study to esti-
mate the multivariate polynomial coefficients to derive the equation between PV power out-
put as a function of forecast GHI, forecast temperature, forecast clear-sky index and cos(θz):

• Variable type: fixed variable;
• Equation: user-defined;
• Optimization simulation type: non-dynamic steady state;
• Estimation: model parameter update (IMODE = 2);
• Measure power value to provide an initial guess: (y.STATUS = 1);
• APOPT solver: (m.SOLVER = 1), as the number of degrees of freedom is less than 2000.

After multiple iterations with various equation formats, the following forecast equation
is generated:

ŷ = ax1 + bx2
1 + cx3

1 + dx2 + ex2
2 + f x3

2 + gx3 + hx2
3 + ix3

3 + jx4 + kx2
4 + lx3

4
ŷ = 0 ; i f x1 = 0
ŷ = 0 ; i f x3 ≤ 0

(25)

where:
ŷ = Forecast power;
x1 = Forecast GHI;
x2 = Forecast temperature;
x3 = cos(θz);
x4 = Forecast clear-sky index.
Five sets of coefficients of Equation (25) optimized and derived using GEKKO for

different sky conditions by applying clustering on forecast clear-sky index as per Table 2
are listed in Table 4.
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Table 4. GEKKO-optimized coefficients for different sky conditions.

Coefficients

Clear Sky Conditions

Clear Almost
Clear Cloudy Highly

Cloudy Overcast

a 1.067684687 −0.461843016 −2.828685511 11.89417827 12.06287803
b 0.00025502 0.007193564 0.009622766 −0.022698139 −0.09306182
c −1.04 × 10−6 −5.42 × 10−6 −5.35 × 10−6 2.63 × 10−5 0.000287555
d −1.19666093 101.6616766 20.19126047 55.41016311 122.701323
e 0.139029555 −6.15386442 −1.77577578 −6.238438444 −10.7498668
f −0.00652831 0.101729804 0.040920868 0.184678849 0.287472093
g −890.843258 830.2304169 800.9744453 −2954.010321 −892.164004
h 4878.199184 −1303.08823 1879.956472 1135.067326 435.5724609
i −2772.24594 985.3253282 −1807.3081 −8.943386893 231.1234833
j 29.6447275 4332.245064 −1373.59256 1948.511962 −6901.24578
k 3.28850648 −13063.3550 3732.719303 −7003.472994 33939.9029
l −6.25419753 8462.759824 −2893.75276 4896.689361 −58542.1699

3.10. Ensemble Model

As illustrated in Section 4, the performance of linear and time series regression models
is much lower than that of ML models and GEKKO; therefore, only RF, RF with Fourier,
GB, XGB and GEKKO models are considered for the evaluation of average and weighted
averaged ensemble models. In an average ensemble model, the average forecast of each
individual model is evaluated under different clusters based on the forecast value of clear
sky index, i.e.,

ŷav =
ŷRF + ŷRFF + ŷGB + ŷXGB + ŷGEK

5
(26)

In the weighted average ensemble, the weight of each model performance is first
evaluated for different clusters by using the inverse value of MAE, e.g., the weight of
RF forecast:

wr f =
IMAEr f

IMAEr f + IMAErr f + IMAEgb + IMAExgb + IMAEgek
(27)

where IMAE = 1/MAE.
The weighted average ensemble forecast is then evaluated on an hourly basis for each

cluster based on the forecast value of clear sky index as:

ŷwav =
wr f ŷRF + wr f f ŷRFF + wgb ŷGB + wxgb ŷXGB + wgek ŷGEK

wr f + wr f f + wgb + wxgb + wgek
(28)

4. Results and Discussion
4.1. Overview and Analysis

In this section, the evaluation of the power forecasts obtained by the different models
described in Section 3 is presented, and a comparison of different methods is performed
to assess which models perform best under given conditions. This is followed by a more
detailed analysis with respect to the performance of the forecasts for different clear sky index
clusters, as well as monthly forecasts. Finally, information on the variation in performance
of each model with increased forecast horizon and the probabilistic forecast for the best
performing models is provided.

Figure 5 shows the box plot for the aggregate forecast data for different models
compared with the actual measured value (y) and Figure 6 shows rMAE and rRMSE and
associated skill scores for a 24 h forecast horizon for the entire test period. It is evident that
GEKKO outperforms all the models both in rMAE (20.9%) and rRMSE (32.4%), with the
skill score of both indices close to 0.48.
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(y: measured power; yhat: forecast power; slr: sklearn linear; rr: ridge regression; en: elastic net; rf:
random forest, sar: sarimax; fbp: Facebook Prophet; rfff: random forest with Fourier; entf: elastic net
with Fourier; xgb: extreme gradient boost; gb: gradient boost).

Linear regression models SKlearn, ridge and elastic net and time series models SARI-
MAX and FBP did not perform well. These models apparently require continuous data
without any serious gaps, and as such, their forecast performance deteriorated due to gaps
in the measured data, as explained in Section 3.3. Solar power is not a linear function of the
GHI, and as such, the performance of the linear models deteriorates compared with ML and
polynomial regressions models. Furthermore, as the purpose is to build a robust forecast
model with minimal dependence on historical data, the focus lies on further analysis of the
five best-performing models, i.e., GEKKO, GB, XGB, RF and RFF.

Figure 7 shows important metrics under different clear sky conditions and the ag-
gregate during the whole test period. Normalized indices are calculated by dividing the
respective metrics by installed power capacity, i.e., 2200 W.

It is evident that overall (aggregate), GEKKO outperforms all other models for all
metrics. Furthermore, GEKKO outperforms other models under clear sky and almost clear
sky conditions, i.e., for clear sky index≥0.7, whereas the weighted average ensemble model
performs the best under cloudy, highly cloudy and overcast conditions, i.e., under clear sky
index <0.7. The performance of ML models (GB, XGB, RF) is close, with the advantage of
introducing multiple Fourier transform series as additional features evident from the fact
that RF with Fourier performs better than RF, especially under highly variable cloudy and
highly cloudy conditions.

The month-wise analysis shows results in line with expectations that all models
perform better than the aggregated model during summer (June and July), as there are
more instances of clear sky hours during these months compared to other months (May,
Aug, Sept), where the performance of all the models drop compared to the aggregate model.

It is evident from hourly variation analysis of metrics (Figure 8) that GEKKO outper-
forms all the models from 8:00 to 14:00 h, followed by the weighted and average ensemble
models. The performance of GEKKO is relatively poor in the early morning hours from
6:00 to 8:00 h This is corroborated by the analysis of the distribution of the forecast clear sky
index, which shows a higher density of forecast, Kt < 0.5, during the period. The statistical
difference in the performance of all the models is insignificant from 16:00 to 18:00 h.
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Figure 9 illustrates the variation in aggregate nMAE and nRMSE of different models
for 24 h, 48 h and 72 h forecast horizons. As anticipated, the forecasting error rises as the
forecast horizon increases for all metrics.
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Detailed analysis of Figure 9 shows that the drop in performance of GEKKO is much
higher compared with that of other models. The nMAE for GEKKO increases by 11% and
26%, whereas for all other models, the increase in nMAE is around 7% and 19% for 48 h
and 72 h forecast horizons, respectively, compared to a 24 h forecast horizon. A similar
observation is made on the other scores. This is because the coefficients in Table 3 derived
for GEKKO are based on the forecast data for a 24 h horizon, and the same coefficients
and equations are used to forecast for 48 h and 72 h horizons, as the main purpose of this
study is to forecast for a 24 h horizon. Nevertheless, GEKKO still performs better than
other models for 48 and 72 h horizons.
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4.2. Probabilistic Forecast

The forecasting accuracy of PV power greatly depends on the forecasting quality of
meteorological parameters, particularly on GHI and temperature. Therefore, uncertainty is
bound to play a major role in forecasting of power because of the associated uncertainty in
meteorological parameters due to the stochastic nature of weather conditions. Probabilistic
forecasting is therefore very important in quantifying the forecast uncertainty by delivering
not only the deterministic forecast but also a full predictive distribution.

A probabilistic forecast enables users to adapt their decisions based on additional
uncertainty information. For example, the uncertainty in forecast estimates is critical
in determining the best bidding approach for a microgrid with a high proportion of
renewable energy sources [51]. A study showed that probabilistic forecast for day-ahead
energy bidding of an Italian wind farm can result in a 23% increase in the annual profit in
comparison to point forecasts [52].

A point forecast with a confidence interval is desirable to show the claimed accu-
racy [53]. For a reasonably large sample size, an x% confidence interval, by definition,
gives the probability that future ground measured data will fall in x% confidence interval
for the forecast under simulated conditions, with an assumption that the model is correct.
Statistically, it is defined as [53]:

Con f idence interval = f orecast ± (critical t− value)× (std. f orecast error) (29)
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The lower and upper quantile limits for the 95% confidence interval are calculated
using a t distribution for GEKKO and weighted ensemble probabilistic forecast comparison
and analysis. GB is one of several ML models that can be adapted to predict quantiles. The
GB tree-boosting algorithm predicts α quantile with an appropriate quantile cost function
and hence can be used for quantile regression [54]. As the primary focus of this work is to
compare the probabilistic forecasts of the models, quantile GB is also used to predict two
quantiles, i.e., 0.05 and 0.95.

Figure 10 shows the intraday time series plot of forecast with a 95% confidence interval
for a 24 h forecast horizon, along with measured power for eight consecutive days starting
at 21 September 2021 for the three models under consideration for probabilistic forecast. The
light-blue shaded region between the red and orange lines is the 95% confidence interval.
The statistical analysis shows that 90.6% of the ground-measured data fall within the 95%
confidence interval of GEKKO, whereas the same is 89.8% and 88.3% for weighted average
ensemble and GB, respectively. There is also a statistically significant higher percentage of
absolute errors in the lower quantile for all three models.
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Figure 11 shows the PIT histograms of GEKKO, weighted ensemble and GB models
with a 95% confidence interval for each bin shown as a red error bar, with the dashed
line representing significant level 1 of uniform distribution. The high value on the first
bin for all the models suggests that these models underestimate the lower quantile. The
performance of GEKKO is almost 100% uniform in bins 0.5–1.0, suggesting its excellent
reliability skill in the respective quantiles.

Figure 12a shows the relative CRPS (rCRPS) of three models for overall and different
sky conditions. rCRPS is calculated by dividing the CRPS score by the average value of
observed power in the corresponding cluster for better resolution and visualization. The
difference in the overall rCRPS score of all the models is statistically insignificant, with all
models close to 0.475. However, it is evident that GEKKO performs significantly better
compared with the two other models for Kt ≥ 0.7, whereas weighted average ensemble has
better CRPS for Kt < 0.7, and the statistical difference between weighted average ensemble
and GB is insignificant.
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The rCRPS of the three models is shown as a function of the time of the day in
Figure 12b. The rCRPS of GEKKO is significantly lower for 70% of the hours of the day.

Although the models under evaluation forecast a continuous variable, BS is used to
compare the performance of the models to predict common and rare events. In this study,
BS is calculated for two rare events and one normal event:

• Rare event R1, where Kt is lower than its 10% percentile;
• Rare event R2, where Kt is higher than its 90% percentile;
• Normal event N1, where Kt is higher than its 50% percentile.

The threshold value is kept at 0.5 of the maximum power value in each cluster for BS
evaluation, as per the standard practice.

Overall values of BS for three events, as shown in Figure 13, show statistically signifi-
cant differences for the three models. GEKKO is more skilled for the normal event, N1, as
well as for higher Kt event R2. However, the performance of GEKKO drops significantly
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for R1, where GB seems to perform better, suggesting it is better at predicting extreme low
power to some degree.
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The BS of the three models is shown as a function of the time of day for each event in
Figure 14. GEKKO is apparently more skilled for common event N1, and the difference
between GEKKO and weighted average ensemble is significant for 54% of the hours of the
day, from 11:00 to 17:00 h. The performance of GEKKO is mostly lower compared to the
other models for event R1; however, its performance improves significantly for event R2
for higher power hours of the day, from 11:00 to 15:00 h.

Energies 2022, 15, x FOR PEER REVIEW 23 of 26 
 

 

 
Figure 14. Hourly variation of Brier scores for three events. 

5. Conclusions and Outlook 
The accurate and reliable forecasting of PV energy production has gained tremen-

dous importance and dynamics in recent years from both a research and economic point 
of view due to a rapidly growing integration of solar energy into the power grid. In this 
study, the prediction of PV energy based on meteorological variables is presented, which 
are available from meteorological data providers. A study was performed to evaluate the 
impact of different cloud conditions by classifying the clear sky index into clusters to en-
hance the forecast performance. As benchmark models, several linear regression models 
and time series models were applied and compared to evaluate the possible gains in ap-
plying computationally more demanding models. Several ML models were used and 
compared for both deterministic and probabilistic forecasts because solar power possesses 
nonlinear properties.  

In this paper, we also proposed a novel method based on GEKKO-optimized poly-
nomial regression forecast methodology. The overall results show that the proposed 
GEKKO-based methodology works better than any other model, even under central Eu-
ropean cloudy conditions. The forecasting accuracy can be further increased for tropical 
countries and southern Europe because of the large proportion of clear sky data in such 
datasets. 

Further improvement in GEKKO forecast is possible by optimizing regressive coeffi-
cients under cloudy and overcast sky conditions with larger datasets. This methodology 
is also verified and applied for other PV technologies, such as copper indium selenide 
(CIS), amorphous silicon (a-Si), cadmium telluride (CdTe) and polycrystalline silicon (p-

Figure 14. Hourly variation of Brier scores for three events.



Energies 2022, 15, 2837 23 of 26

5. Conclusions and Outlook

The accurate and reliable forecasting of PV energy production has gained tremendous
importance and dynamics in recent years from both a research and economic point of
view due to a rapidly growing integration of solar energy into the power grid. In this
study, the prediction of PV energy based on meteorological variables is presented, which
are available from meteorological data providers. A study was performed to evaluate
the impact of different cloud conditions by classifying the clear sky index into clusters
to enhance the forecast performance. As benchmark models, several linear regression
models and time series models were applied and compared to evaluate the possible gains
in applying computationally more demanding models. Several ML models were used and
compared for both deterministic and probabilistic forecasts because solar power possesses
nonlinear properties.

In this paper, we also proposed a novel method based on GEKKO-optimized polyno-
mial regression forecast methodology. The overall results show that the proposed GEKKO-
based methodology works better than any other model, even under central European
cloudy conditions. The forecasting accuracy can be further increased for tropical countries
and southern Europe because of the large proportion of clear sky data in such datasets.

Further improvement in GEKKO forecast is possible by optimizing regressive coeffi-
cients under cloudy and overcast sky conditions with larger datasets. This methodology is
also verified and applied for other PV technologies, such as copper indium selenide (CIS),
amorphous silicon (a-Si), cadmium telluride (CdTe) and polycrystalline silicon (p-Si) and
can be adapted for any location. The forecasting performance beyond a 24-h horizon can be
improved by optimizing the GEKKO model to separately derive coefficients for respective
forecast horizons. Different ML models show significant improvements, especially under
cloudy to overcast sky conditions. The quantile loss study presented in Section 4.2 can be
further extended in quantile gradient boosting (QGB) and other ML models, such as analog
ensemble models, to build a more robust probabilistic procedure. Forecasting accuracy
can be further leveraged in QGB by penalizing the model for overestimating or underes-
timating, thereby enhancing the forecasting accuracy. This study shows the potential of
applying various ML methods with limited input and logical clustering methodology but
nonetheless with promising forecasting results for PV energy.
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Abbreviations

PV Photovoltaics
GHI Global Horizontal Irradiance
Kt Clear Sky Index
ML Machine Learning
ANN Artificial Neural Network
GFS Global Forecast System
ECMWF European Centre for Medium Range Forecasts
NAM North American Mesoscale Model
WRF Weather Research Forecast
NWP Numerical Weather Prediction
ARIMA Auto Regressive Integrated Moving Average
SARIMAX Seasonal Auto Regressive Integrated Moving Average Exogenous
RR Ridge Regression
LASSO Least Absolute Shrinkage Selector Operator
EN Elastic Net
FBP Facebook Prophet
RF Random Forest
GB Gradient Boosting
XGB Extreme Gradient Boosting
FHOOE Fachhochschule Oberösterreich
CIS Copper Indium Selenium
CdTe Cadmium Telluride
a-Si Amorphous Silicon
p-Si Polycrystalline Silicon
c-Si Monocrystalline Silicon
MBE Mean Bias Error
MAE Mean Absolute Error
rMAE Relative Mean Absolute Error
nMAE Normalized Mean Absolute Error
IMAE Inverse of Mean Absolute Error
RMSE Root Mean Square Error
rRMSE Relative Root Mean Square Error
nRMSE Normalized Root Mean Square Error
CRPS Continuous Ranking Probability Score
rCRPS Relative Continuous Ranking Probability Score
PIT Probability Integral Transform
BS Brier Score
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