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Holmberg, S.; Wang, Q. Performance

Analysis of a Geothermal Radiant

Cooling System Supported by

Dehumidification. Energies 2022, 15,

2815. https://doi.org/10.3390/

en15082815

Academic Editors: Hashem

Akbari and Farhad Mofidi

Received: 28 February 2022

Accepted: 8 April 2022

Published: 12 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Performance Analysis of a Geothermal Radiant Cooling System
Supported by Dehumidification
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Abstract: Space cooling demand is increasing globally due to climate change. Cooling has also been
linked to all 17 sustainable development goals of the United Nations. Adequate cooling improves
productivity and thermal comfort and can also prevent health risks. Meanwhile, policy initiatives such
as the European Union’s Green Deal require participants to cut greenhouse gas emissions and reduce
energy use. Therefore, novel cooling systems that are capable of efficiently producing high levels
of thermal comfort are needed. Radiant cooling systems provide a design capable of fulfilling these
goals, but their application in hot and humid climates is limited due to the risk of condensation. In this
study, we compare the performances of radiant cooling systems with and without dehumidification.
The studied systems are supplied by geothermal energy. The study is conducted using building
energy models of a small office building belonging to a three-building school complex located in Sant
Cugat near Barcelona in Spain. The studied location has a Mediterranean climate. The simulations
are conducted using IDA Indoor Climate and Energy 4.8 simulation software. The results show
that the radiant cooling system with dehumidification (RCD) produces considerably improved
thermal comfort conditions, with maximum predicted mean vote (PMV) reached during the cooling
season being 0.4 (neutral) and the maximum PMV reached by the radiant cooling system without
dehumidification (RC) being 1.2 (slightly warm). However, the improved thermal comfort comes at
the cost of reduced energy and exergy efficiency. The RCD system uses 2.2 times as much energy
and 5.3 times as much exergy as the RC system. A sensitivity analysis is also conducted to assess the
influence of selected input parameters on the simulation output. The results suggest that maximising
dehumidification temperature and minimising ventilation flow rate can improve the energy and
exergy efficiency of the RCD system while having a minor effect on thermal comfort.

Keywords: radiant cooling; energy efficiency; exergy; dehumidification; thermal comfort

1. Introduction

The growing significance of space cooling is gathering increasing attention [1]. The
demand for cooling is growing due to several factors. Increasing the living standards of the
people living in the tropics means they have better access to the increased comfort provided
by cooling systems [2]. Meanwhile, the rise in global temperatures due to climate change
creates cooling demand in areas where space cooling conventionally was not needed [3].
The rise in cooling demand is especially notable in temperate climates such as central and
southern Europe [4]. Increasing urbanisation is likewise causing increased demand for
cooling due to the urban heat island effect. The energy needed for space cooling is projected
to triple globally between 2019 and 2070 [1] and increase by 25–50% in Europe between 2010
and 2050 [5]. Providing affordable, accessible and efficient cooling is, therefore, becoming
increasingly important. A recent review article by Khosla et al. [6] linked cooling to all
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17 of the United Nations’ (UN) sustainable development goals (SDG). It should be noted
that some of these connections have a negative correlation with one another. For example,
improving the accessibility of cooling to boost well-being (SDG 3) and working conditions
(SDG 8) can pose a burden on the goal of ensuring clean and affordable energy (SDG 7) [6].
Balancing these goals is an important consideration from the level of policymaking down
to system design.

Heat exposure has also been linked to reduced learning outcomes [7] and economic
productivity [8,9]. Three-quarters of humanity will face health risks from heat [10]. There-
fore, it is clear that more and more cooling apparatuses will be installed, not only in new
constructions but also in existing buildings. The importance of retrofit projects is recognised
in the European Union’s (EU) Green Deal, which lists increasing the energy efficiency of
buildings as one of the six key actions required for reaching the EU’s target of climate neu-
trality by 2050 [11]. Retrofitting solutions also have a central role in the International Energy
Agency’s (IEA) report “Net Zero by 2050” [12]. The report also stresses the importance of
increasing the use of heat pumps and improving the efficiency of cooling systems. To this
end, the EU has launched a renovation initiative, which aims to double the rate of energy
renovations by 2030, cut buildings’ heating and cooling energy use by 18% and increase
the use of renewable and waste heat from 33% to 38–42% from the current levels [13].

Hot and humid climates have been indicated as an especially significant subject for
study, as compounded latent and sensible heat loads pose a particular challenge for cooling
systems [14]. High relative indoor humidity can limit the cooling system’s performance, as
was shown in our previous study [15]. High relative indoor humidity has also been found
to be detrimental to thermal comfort and productivity [16]. While the active cooling tech-
nologies that currently dominate the market are well established and have comparatively
lower upfront costs, they may come with long-term negative impacts on energy demand
and greenhouse gas emissions [6]. Especially in residential use, an overwhelming majority
of cooling systems are split units [17]. These units use low-temperature chillers that require
high temperature lifts and consequently perform considerably worse than more innovative
high-temperature cooling systems in terms of energy and exergy efficiency.

Radiant cooling (RC) systems offer a more efficient alternative to split units [18].
Seshadri et al. [19] showed that decreasing the chiller’s temperature lift from 29 ◦C to
21 ◦C results in a 29% increase in sensible cooling efficiency because the lower exergy
destruction in the cooling process leads to an improved coefficient of performance (COP)
of the chiller. This improved exergy efficiency is one of the most significant advantages
of high-temperature cooling systems, such as RC systems [14]. However, RC systems’
cooling capacity in humid environments is limited due to the risk of condensation on the
panel surfaces [20]. Several designs have been proposed to combine RC systems with
dehumidification to expand their applicability [20–24]. These systems can broadly be
categorised into two groups: dedicated outdoor air systems (DOAS), where the supply
air entering the conditioned space is dehumidified, and systems that include a separate
condensing unit inside the conditioned space.

DOAS systems are often large, complex and have comparatively high material and
installation costs [21,23], which means their application in small-sized buildings is chal-
lenging. They also often require embedding components into building structures [25],
limiting their application in retrofit projects. Separate condensing unit designs include
an open collector for the condensed water in the conditioned zone, which poses a health
hazard [23]. Furthermore, the dehumidification unit can be positioned either horizontally
(in the ceiling), which poses challenges for condensate collection, or vertically (on the wall),
leading to suboptimal heat transfer and taking some valuable floor area in the conditioned
space, which is inconvenient for the users [21]. For these reasons, other dehumidification
methods that are better suitable for small-scale retrofit projects are needed.

To overcome these shortcomings of radiant cooling systems combined with dehumidi-
fication (RCD), Chen and Norford [26] propose a system where a ground heat exchanger
supplies high-temperature cooling to radiant cooling panels to cover the sensible cool-
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ing load of the conditioned space. They then compare a range of designs for supply air
dehumidification to cover the latent heat load. In the studied low-energy building, their
approach provided a high level of thermal comfort with good energy and exergy efficiency,
as the RC system covers the sensible cooling load with excellent efficiency. The dehumid-
ification system significantly improves the thermal comfort performance of the system.
However, the system’s suitability for older, less efficient buildings and especially in retrofit
practice remains an open question. To answer this, a cooling system design following a
similar approach is proposed in this study. In the studied system, the radiant cooling panels
are supplied directly by the chilled water from the ground. A ground source heat pump
served by the same ground heat exchanger supplies a condensing dehumidification system
with chilled water.

In this study, the performance of the proposed system was assessed in a representative
office building in the Mediterranean climate. The building in question is a small office
building in Spain. This research is a part of the EU’s Horizon 2020 project, GEOFIT, and
the studied building is one of the pilot sites in the project. This study aims to compare
a conventional RC system with the proposed RCD system and quantify their thermal
comfort performance as well as energy and exergy use in a typical Mediterranean climate.
Finally, a sensitivity analysis is performed to quantify the effect of a number of building
parameters on the RCD system’s performance to give guidelines for optimising the design
and operation of the system.

2. Methods
2.1. Simulation Software

This study compares the performances of radiant cooling systems supplied by geother-
mal energy, with and without a dehumidification system. The comparison is conducted
using dynamic building energy simulations. Simulations were conducted in IDA-ICE 4.8
(Indoor Climate and Energy) performance simulation program. The physical models of
IDA ICE are compliant with industry standards [27,28], and the models are successful in
replicating the measured values of the parameters of interest [29,30].

2.2. Building Data Inventory

The one-story office building modelled in the present study has a floor area of 288 m2

and a conditioned volume of 922 m3. The building is located in Sant Cugat near Barcelona
in Spain and is a part of a three-building school complex. The building complex and the
studied building’s floor plan are presented in Figure 1. The envelope material is bricks,
making it a representative sample of the local building stock [31]. The external walls of
the building have been retrofitted with increased insulation. The thermal properties of the
building envelope are presented in Table 1. As a part of the GEOFIT project, a geothermal
heating and cooling system will be installed on the site, which presents an opportunity
to study the performance of the RC system in practice. The ground heat exchangers are
designed to supply heating for the entire building complex and cooling for the studied
office building.

2.3. Determination of the Critical Parameters

The physical properties of the building, as well as other modelling parameters, were
obtained through measurements and user interviews wherever possible. Where no data
were available, the values for the modelling parameters were estimated based on standards
and relevant literature. A sensitivity analysis was conducted to quantify the uncertainty
related to these estimations. The critical parameters and their sources are presented in
Table 2. Further description regarding selecting the critical parameters can be found in
our previous study [15]. Coefficients for thermal bridges and pressure coefficients for the
envelope sections were estimated using the reference values from IDA-ICE. The values used
for thermal bridges are consistent with the values used by Evola et al. [32] and pressure
coefficients with those given in [33]. The occupation profile of the building, presented
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in Figure 2, is based on results of Ahmed et al. for an office building [34]. The studied
building is occupied during weekdays and empty during weekends.
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Figure 1. A 3D schematic view of the building complex and the floor plan of the studied office
building. The location of the indoor temperature sensor is indicated by * [15].

Table 1. Physical properties of the retrofitted building envelope.

Walls Windows

Area U-Value Area U-Value
Item [m2] [W/(m2 K)] [m2] [W/(m2K)]

North 83.0 0.27 15.8 2.90
South 87.0 0.27 25.2 2.90
East 66.1 0.27 1.92 2.90
West 66.1 0.27 1.96 2.90
Roof 301 0.26
Floor 288 2.90

Table 2. Parameters used in the cooling simulation.

Parameter Source Value Unit

Indoor temperature set point [35] 25.0 ◦C
Peak outdoor temperature [36] 31.4 ◦C

Undisturbed ground temperature * 16.6 ◦C
Ground heat capacity * 2.11 MJ/(m3K)

Ground thermal conductivity * 1.96 W/(mK)
Borehole depth ** 120 m

Brine (ethylene glycol) ** 15%
Brine heat capacity ** 3.90 kJ/(kgK)
Internal heat gain

(lighting & appliances) [37] 15.0 W/m2
floor area

SHGC [38] 0.76
Infiltration rate [39] 7.50 m3/(hm2

external surface) at 50 Pa
Number of occupants ** 8
Building occupancy ** 7–18

Data indicated with * were obtained from an on-site thermal response test and ** from the building owner.
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Figure 2. Occupancy profile of the office used in the simulation model. The building is occupied
during weekdays.

2.4. Details of the Studied HVAC System

A geothermal energy system supplies the cooling for the studied systems. The geother-
mal system consists of a ground heat exchanger in a 120 m deep vertical borehole. The
ground heat exchanger consists of a PE100RC double U-pipe with an outer diameter of
32 mm. In a thermal response test (TRT) conducted on the site in 2019, the undisturbed
ground temperature below the surface layer was established to be stable at 16.6 ◦C. Based
on the data from the TRT, a borehole model was constructed in IDA-ICE following the
process described in [40]. The borehole model of IDA-ICE has been found to be accurate by
Arghand et al. [41]. Because the geothermal energy system is used for heating and cooling,
and the heating demand on the site is much higher than the cooling demand, the heat
extraction from the ground during heating operation will exceed the heat rejection into the
ground during cooling operation. This is shown in Figure 3, which presents the monthly
heating and cooling degree days over a year based on Eurostat data from Barcelona be-
tween 2011 and 2020 [42]. Therefore, the deterioration of the ground conditions for cooling
over time is not considered in this study. A range of available supply temperatures was
included in the sensitivity analysis to quantify the inherent uncertainty of the available
cooling resource.
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Figure 3. Monthly heating (HDD) and cooling (CDD) degree days in Barcelona. Average values
between 2011 and 2020.
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The studied cooling system is a radiant panel system, where the cooling is transferred
to the conditioned space via ceiling cooling panels. The studied cooling panels’ technical
parameters are based on performance data from a manufacturer of cooling panel products
available on the market [43]. With the baseline supply temperature of 18 ◦C, indoor
temperature set point of 25 ◦C and the design supply water flow of 17.2 kg/(hm2

panel area),
the panels’ cooling capacity is 40 W/m2

panel area according to manufacturer data. This
value is in line with heat transfer coefficients found in the literature by Rhee et al. [14],
varying between 7.8 and 13.2 W/(m2K). The total area of the cooling panels is 182 m2,
corresponding to approximately 70% of the building’s floor area. This yields a nominal
cooling capacity of 7280 W (approximately 25 W/m2

floor area). The panel system is equipped
with a recirculation shunt to reduce the risk of condensation. The supply water temperature
to the cooling panels is maintained at least 1 ◦C above the dew point temperature in the
room with the highest condensation risk. This approach is based on the findings of Hao
et al. [44]. During the unoccupied time, the cooling system is shut down, and the room
temperature is allowed to drift. The control principle of the supply water temperature to
the cooling panels is presented in Figure 4.
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An air handling unit (AHU) is also modelled to improve the indoor air quality in the
building. Two types of AHU are considered: a simple fan system supplying untreated
outdoor air as a reference system and a system that includes a dehumidification process to
remove latent cooling load from the supply air. Henceforth, the two studied systems are
referred to as radiant cooling (RC) and radiant cooling with dehumidification (RCD).

The ventilation demand for both modelled systems is calculated to be 0.6 l/(sm2
floor area)

(0.53 ACH), according to category II of the EN 15251 standard for very low-polluting office
buildings [35]. The modelled AHU operation schedule follows the occupancy of the build-
ing, starting one hour before the first occupant arrives (6–18). The studied dehumidification
system is a condensing dehumidifier. The intake air is cooled to 8 ◦C to cause excess
moisture to condensate [23], the condensate water is removed, and the supply air is finally
reheated to 15 ◦C before it is delivered to the conditioned zone to avoid discomfort due to
cold draught. The cooling is supplied using the geothermal cooling system complimented
by a heat pump, and the reheating is done using heat recovery from the exhaust air. The
use of heat pump for the condenser is necessary, as the temperature of the water coming
from the ground heat exchanger is too high to sufficiently cool the supply air for moisture
to condensate. A heat pump will be installed in the site for heating use, so utilising it as the
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cooling source is a practical solution. Other cooling sources could be used to reach similar
performance. A schematic description of the system is presented in Figure 5.
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2.5. Model Validation

The simulated building model was validated by comparing the simulation results with
measured indoor temperature data from the studied building. The location of the Netatmo
temperature sensor [45] is indicated by a star (*) in Figure 1. The building in its current
state does not have a cooling or ventilation system, which is reflected in the validation
model. The validation model was simulated using on-site measured outdoor temperatures
as a boundary condition. The measured period was between June 1 and September 5, 2019.
Simulated and measured indoor temperatures and the difference between them, as well as
the outdoor temperatures used in the validation, are presented in Figure 6. To confirm the
validity of the model, the coefficient of variation of the root mean square error (CV(RMSE))
is calculated using hourly measurement and simulation data. The formula for CV(RMSE)
is given in Equation (1):

CV(RMSE) =
1
m

√
∑n

i=1(mi−si)
2

n
×100, (1)

where mi are the measured indoor temperatures, si are the simulated indoor temperatures,
m is the arithmetic mean of measured indoor temperatures and n is the number of data
points in the validation period. The resulting CV(RMSE) is 2.9%, well within the limit
of 30% suggested in ASHRAE guideline 14–2002 [46]. To visualise the uncertainty of the
prediction, the RMSE (Equation (1) without the 1/m term) is often used. The uncertainty
band of mi ± RMSE is presented as the grey area in Figure 6. The simulated operative
temperatures fit well within the uncertainty band, as can be observed from Figure 6. These
small differences between the simulated and measured data suggest that the building
model created in IDA ICE is valid. A more detailed description of the validation process is
available in [15].
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2.6. Exergy Destruction in the Evaluated Cooling Systems

The concept of cool exergy, introduced by Shukuya [47], is a vital concept for the
analysis of cooling systems. Exergy flow is defined as the flow of thermal energy contained
by the system to disperse into the environment. Cool exergy flow reverts this process for
the purpose of studying cooling systems. Therefore, cool exergy is a measure of energy
flows from the environment into to system, which is undesirable in cooling applications.

To assess the effectiveness of the studied cooling systems, the exergy destruction in
the heat exchangers ExGHEx, ExCP, ExAHU (ground heat exchanger, cooling panels and
dehumidifier in the AHU, respectively) was calculated based on the concept of cool exergy
as presented in [48]. The exergy destruction in the ground heat exchanger ExGHEx was
calculated using Equation (2):

ExGHEx =
( .

ExG − ∆
.
ExGC

)
∆t, (2)

where
.
ExG = −

.
QG

(
1 − T0

TG

)
(3)

and

∆
.
ExGC =

.
mb × cp,b

[
(Tb,out − Tb,in)− T0 × ln

Tb,out

Tb,in

]
(4)

Here
.
ExG is the cool exergy flow rate from the ground to the brine, ∆

.
ExGC is the

exergy consumption rate in the ground circuit,
.

QG is the rate of heat removed from the
anti-freeze mixture to the ground, Tg is the ground temperature T0 is the ambient outdoor
air temperature,

.
mb is the brine mass flow in the ground heat exchanger, cp,b is the specific

heat capacity of the brine, Tb,out is the temperature of the brine coming out from the ground,
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Tb,in is the temperature of the brine going into the ground and ∆t is the length of the
simulation time step.

The exergy destruction in the cooling panels ExCP was calculated using Equation (5):

ExCP =
(

∆
.
ExCW −

.
ExC

)
∆t, (5)

where
.
ExC = −

.
QC

(
1 − T0

Ts

)
(6)

and

∆
.
ExCW =

.
mw × cp,w

[(
Tw,sup − Tw,ret

)
− T0 × ln

Tw,sup

Tw,ret

]
. (7)

Here
.
ExC is the exergy supplied from the cooling system to the indoor space, ∆

.
ExCW

is the exergy consumption rate in the cooling water circuit,
.

QC is the rate of heat removed
from the circulation fluid into the conditioned zone, Ts is the average temperature of the
ceiling cooling panel surface,

.
mw is the cooling supply water mass flow in the cooling panel

circuit, cp,w is the specific heat capacity of water, Tw,sup is the temperature of the cooling
supply water going into the cooling panel circuit and Tw,ret is the temperature of the cooling
return water coming out from the cooling panel circuit.

The exergy destruction in the AHU ExAHU was calculated using Equation (8):

ExAHU =
(

∆
.
Exw,AHU − ∆

.
Exa,AHU

)
∆t. (8)

Here ∆
.
ExW,AHU is the net exergy input by the cooling water to the AHU-cooling coil,

and ∆
.
ExA,AHU is the cool exergy flow rate to the supply air. Equation (7) can be adapted

for both of these, replacing the values of mass flow, specific heat capacity and respective
temperatures from water to air where necessary.

2.7. Uncertainty Quantification

Building energy modelling includes inherent uncertainty in a number of input param-
eters that are required for the construction of the building model. To quantify the effect of
this uncertainty on selected thermal comfort and energy related output variables, a sensi-
tivity analysis was conducted. The first step of the sensitivity analysis was determining the
expected variance of seven selected model input parameters: indoor temperature setpoint
(Ti), dehumidification temperature (Td), available supply temperature from the ground
heat exchanger (Ts,G), internal heat gain from lighting and equipment (

.
Qint), solar heat gain

coefficient (SHGC), infiltration rate (
.

Vin f ) and ventilation rate (
.

Vv). The parameters were
selected among the parameters that have been found to have a high significance in building
energy modelling [49–51], choosing parameters that involve either high uncertainty in the
source data (Ts,G,

.
Qint,

.
Vin f ) or important design or operation decisions (Ti, Td, SHGC,

.
Vv).

The selected parameters, their type of distribution, the mean values and variances (where
applicable) and studied ranges are presented in Table 3. Three parameters (Ti, Td,

.
Vv) are

user-controlled. Therefore, a uniform distribution is used, as the user can set these param-
eters to the desired level. A further three parameters, (Ts,G,

.
Qint, SHGC) were assumed

to be normally distributed, a typical approach for physical properties of the ground or
the building [49]. Finally, (

.
Vin f ) was best fitted to source data [39] assuming a lognormal

distribution because the observed infiltration values in the dataset are concentrated on the
lower end of the distribution but cannot be negative.
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Table 3. Input parameters selected for sensitivity analysis.

Parameter Source Distribution µ σ2 Range Unit

Ti EN 15251 [35] Cat I-III Uniform 24.5–26.0 ◦C
Td ASHRAE [52]/Mumma [23] Uniform 5.50–12.0 ◦C

Ts,G TRT Normal 18.0 2.00 14.2–20.4 ◦C
.

Qint ASHRAE [37] Normal 15.0 44.0 1.00–27.9 W/m2
floor area

SHGC Carmody [38] Normal 0.72 0.02 0.38–0.98
.

Vin f Feijo-Munoz et al. [39] Lognormal 7.50 2.70 0.00–15.7 m3/(hm2
external surface) at 50 Pa

.
Vv EN 15251 [35] Cat III-I Uniform 0.30–0.85 l/(sm2

floor area)

As the building energy model is computationally intensive, the Latin Hypercube
Sampling (LHS) method was used to generate a stochastic input parameter dataset to
reduce computation time compared with a simple Monte Carlo sampling [53]. Following
the process presented by Helton and Davis [53], each input parameter was divided into
three sampling strata: low-, medium- and high scenarios. This process yielded a total of 7 ×
3 = 21 samples, organised into a 7 × 21 model input matrix. The model was simulated with
the 21 input parameter samples. To confirm that the generated input parameter samples are
independent, Spearman’s rank correlation coefficients between the input parameters were
calculated. The results are presented in Figure 7. A Spearman’s rank correlation coefficient
higher than 0.6 is generally regarded to be the limit for a strong correlation between
parameters [54,55]. As the highest observed coefficient between the input parameters is
0.54, the studied input parameter samples can be considered independent.
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Five output variables were selected to assess the results. This study aims to compare
the two studied systems in terms of their ability to provide thermal comfort and their
energy use. Therefore, the selected output variables are the most important thermal
comfort parameters (predicted mean vote (PMV), RH% and Top) and the primary thermal
energy uses (Qc and Qd) [49]. A linear regression model was created to assess each output
variable’s sensitivity to the input parameters. The sensitivity analysis provides valuable
information for the system design regarding the inherent trade-offs between the systems’
thermal comfort and energy use goals. It helps to identify which design parameters should
be addressed to affect a given output variable and quantify the effect that the uncertainty
in the input parameters has on the output variables.
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3. Results
3.1. Thermal Performance

The studied systems are compared in terms of the most significant thermal comfort
parameters to assess their performance. The comparison results are presented in Table 4.
In the table, maximum values during the occupied time are presented for PMV, operative
temperature and relative indoor humidity. The table also presents how long the values of
these parameters exceed the limits of the highest and the second-highest comfort categories
as defined in relevant standards. For operative temperature and PMV [56] these are
categories A and B of ISO 7730 and for relative humidity they are categories I and II of
EN 16798 [57]. PMV is defined in the ISO 7730 standard as “an index that predicts the
mean value of the votes of a large group of persons on the 7-point thermal sensation
scale based on the heat balance of the human body”. It is dependent on a number of
factors including air temperature (which should be between 10 and 30 ◦C), mean radiant
temperature (10–40 ◦C), air velocity (0–1 m/s), the occupant’s activity level (0.8–4.0 met)
and clothing (0–2 clo). A full list of considered parameters and the equations for calculating
PMV are available in the ISO 7730 standard.

Table 4. Thermal comfort parameters with and without dehumidification.

Scenario Max PMV PMV > 0.2 [56] PMV > 0.5 [56] Max Top Top > 25.5 ◦C [56] Top > 26 ◦C [56] Max RH% RH% > 50% [57] RH% > 60% [57]

[–] [% of
Occupied Time]

[% of
Occupied Time] [◦C] [% of

Occupied Time]
[% of

Occupied Time] [–] [% of
Occupied Time]

[% of
Occupied Time]

RC 1.20 64.0 31.3 28.3 48.8 36.5 81.1 85.8 55.6
RCD 0.45 4.57 0.00 26.4 1.93 0.32 71.4 22.4 7.14

Results show that the RCD system reaches significantly lower maximum relative
indoor humidity than the RC system, as is to be expected. The RCD system also keeps the
relative indoor humidity within the limits of category II of the EN 16798 standard for 93.9%
(868 h) of the occupied time (935 h). In contrast, the RC system reaches this category for
44.4% (415 h) of the occupied time.

The combination of chilled supply air and the resulting lower indoor relative humidity
allows the RCD system to maintain a higher cooling capacity than the RC system, which
needs to modulate the supply water temperature to avoid condensation. The higher cooling
capacity enables the RCD system to keep the operative temperature within category B
of the ISO 7730 standard for 99.7% (932 h) of the occupied time. In comparison, the RC
system reaches this category for 63.5% (594 h) of the occupied time. Most notable is the
difference in operation under peak load conditions. With the RC system, the operative
temperature reaches up to 28.3 ◦C, 2.3 ◦C higher than the upper limit of category B, the
longest overshoot period being 32 h (during three days). The highest operative temperature
reached by the RCD system is 26.4 ◦C, overshooting category B by just 0.4 ◦C. The duration
of the overshoot is 0.75 h.

The lower relative indoor humidity and operative temperature generate higher per-
ceived thermal comfort for the occupants. The higher thermal comfort is clearly shown
in the PMV performance of the RCD system, which reaches the maximum value of 0.4
(neutral). In contrast, the RC system reaches PMV values up to 1.2 (slightly warm). The
RCD system can maintain the thermal comfort conditions within category B during the
entire cooling season. In comparison, the RC system satisfies this category for 68.7% (642 h)
of the occupied time. Therefore, it is safe to conclude that the RCD system performs better
in terms of thermal comfort than the RC system.

3.2. Energy and Exergy Performance

The thermal energy use of the studied systems is compared in Table 5. The table
presents a clear difference between the systems in the energy use in the AHU. In the RCD
system, energy is used for cooling the supply air to dehumidify it in two stages, first with
direct ground cooling and then further assisted with a heat pump to reach temperatures
that are low enough to dehumidify the supply air. Finally, the supply air is reheated back to
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15 ◦C through heat recovery from the return air, to avoid the unpleasant feeling of draught.
The AHU’s direct ground cooling covers approximately 23% of the AHU’s cooling energy
use and 8% of the total cooling in the building. The heat pump assisted dehumidifier
covers 77% of the AHU’s cooling energy use and 26% of the total cooling in the building.
The remaining 66% of the building’s total cooling energy use is covered by the radiant
cooling system.

Table 5. The thermal energy use of the system components with and without dehumidification.

Scenario AHU Direct
Ground Cooler

AHU
Dehumidifier Heat Recovery AHU Net Heat

Removal
Radiant Cooling

Panels

[kWh/m2
floor area] [kWh/m2

floor area] [kWh/m2
floor area] [kWh/m2

floor area] [kWh/m2
floor area]

RC 1.08 0.00 0.00 1.48 9.90
RCD 1.34 4.41 −2.22 3.70 11.1

In the RC system, the heat removed by the AHU is considerably lower as the heat pump
assisted dehumidifier is omitted. The direct ground cooling system covers approximately
10% of the total cooling energy use, while the remaining 90% is covered by the radiant
cooling system. The total cooling energy use with the RC is lower, as the condensation
control limits the cooling capacity of the radiant cooling system. The results show that
the improved thermal comfort performance of the RCD system requires 1.5 times the RC
system’s thermal energy use. Especially significant is the 4.41 kWh/m2

floor area used by
the dehumidifier, as that must be produced by the heat pump necessitating the use of high
exergy value electricity.

The thermal exergy consumption of the studied systems is compared in Table 6. With
the RCD system, the vast majority, 78%, of the thermal exergy destruction occurs in the
dehumidifier. This is due to the large temperature difference between the supply air and
chilled water required for dehumidification. The ground heat exchanger and cooling panel
are responsible for 10% and 12% of the cumulative thermal exergy destruction, respectively.
With the RC system, the thermal exergy destruction in the ground heat exchanger is only
64% of the RCD system, as less heat is extracted from the ground. The thermal exergy
destruction in the cooling panel is 5% higher than in the RCD system, as the radiant cooling
panels provide slightly more cooling energy. In total, the thermal exergy destruction using
the RC system is only 19% of the thermal exergy destruction of the RCD system. This result
clearly shows the exergy inefficiency of the dehumidification process.

Table 6. The cumulative thermal exergy destruction in the system components with and with-
out dehumidification.

Scenario Ground Heat
Exchanger AHU Dehumidifier Radiant Cooling

Panels

[Wh/m2
floor area] [Wh/m2

floor area] [Wh/m2
floor area]

RC 81.0 0.00 153
RCD 126 965 146

3.3. Sensitivity Analysis

The results of the sensitivity analysis are presented in Figures 8–12. Each of the
five figures present the importance of the input parameters, in order from most to least
important, for one of the output variables selected for investigation. The input parameter’s
importance is defined as its effect on the relevant output variable, meaning the most
important input parameter has the largest effect and the least important input parameter
has the smallest effect on the output variable in question. The importance is based on
the input variable’s correlation coefficient. Positive values indicate a positive correlation,
meaning increasing the value of the input parameter increases the value of the output
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variable, and negative values indicate a negative correlation, meaning increasing the value
of the input parameter decreases the value of the output variable. Importance values of the
input parameters are then normalised by dividing with the most important parameter for
each studied output variable.
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The results show that solar heat gain coefficient and indoor temperature setpoint are
the most important input parameters for PMV and operative temperature. This indicates
that a significant part of the cooling load is caused by solar radiation coming through the
windows, even as the windows are equipped with polyvinyl chloride (PVC) shutters to
reduce direct radiation. The most significant parameters for indoor relative humidity are
the dehumidifier temperature setpoint and air infiltration through the building envelope.
The dehumidifier temperature setpoint determines the humidity of supply air entering
the building: a lower dehumidification temperature results in a higher latent cooling load
removal rate. Infiltration through the building envelope allows humid outdoor air to pass
into the building untreated, which leads to a higher latent cooling load. The most significant
parameters for thermal energy use in the cooling panels are internal heat gains and solar
heat gain coefficient, i.e., the two studied input parameters directly linked to the sensible
cooling load of the building. Finally, the most significant variables for the dehumidifier
energy use are the ventilation flow rate and the dehumidifier temperature setpoint. A
higher flow rate requires more outdoor air to be treated, resulting in higher energy use. In
contrast, low dehumidification temperature means a higher portion of the latent load per
unit of supply air is removed, thus requiring more energy. The results are quantified in
Table 7. The table shows the most important input parameter for each output variable and
the value of the output variable with the lowest and highest value of the most important
input parameter within the studied range keeping the other input parameters fixed at the
baseline values presented in Sections 2.3 and 2.4.

The results show that the relative importance of the input parameters varies signif-
icantly between the five studied output variables: the only input parameter that is not
among the two most important for at least one of the considered output variables is the
available supply temperature from the ground. The figures also present significant correla-
tions between some of the output variables: a high ventilation rate increases the energy use
in the dehumidifier but decreases the energy use in the cooling panels, as the ventilation
system accounts for a higher portion of the sensible cooling load. It is, therefore, clear that
the building must be holistically considered when designing retrofit actions.
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Table 7. Three most significant input parameters for each output variable and the value of the output
variable with the minimum and maximum values of these input parameters. Baseline values are
used for the other input parameters.

Output Variable PMV (Average) [–] RH% (Average)
[%] Top (Average) [◦C] Qc

[kWh/m2
floor area]

Qd
[kWh/m2

floor area]

Baseline 0.10 43.7 24.9 8.06 8.19

Most significant
input parameter SHGC Td SHGC

.
Qint

.
Vv

Minimum 0.02 38.1 24.4 2.40 4.10
Maximum 0.18 49.3 25.3 12.3 11.6

2nd most
significant input

parameter
Ti

.
Vin f Ti SHGC Td

Minimum 0.03 39.0 24.4 4.87 10.2
Maximum 0.17 48.4 25.3 11.3 6.16

3rd most
significant input

parameter

.
Qint

.
Vv

.
Qint

.
Vv Ts,G

Minimum 0.05 45.9 24.6 10.4 8.67
Maximum 0.15 41.5 25.1 5.69 7.72

4. Discussion
4.1. The Studied System’s Performance

The RCD system offers notably better thermal comfort conditions than the RC system
under the same boundary conditions. However, as shown in Tables 5 and 6, this improved
comfort comes with the cost of higher energy and exergy use. The sensitivity analysis
shows that ventilation flow rate and dehumidifier temperature have a relatively weak
impact on thermal comfort but a very strong impact on energy use in the dehumidifier.
Therefore, to minimise the energy use of the heat pump, using a high dehumidification
temperature and a low ventilation flow rate is advisable within the studied range. This
approach has the added benefit of improving the energy and exergy efficiency of the heat
pump, as a lower temperature lift improves the heat pump’s COP [19]. A similar conclusion
was reached by Mumma [23], who found that using a DOAS system to cover the latent
cooling load yields energy and cost benefits compared with a variable air volume (VAV)
cooling system. However, the sensible cooling load should be covered with radiant cooling
panels as far as feasible to optimise the cooling system’s installation and operation costs.
As shown in our previous study [58], the higher exergy efficiency of a high-temperature
cooling system such as the RC and RCD systems studied in this article is also directly
correlated with lower CO2 emissions compared with a conventional VAV-system.

4.2. Practical Implications of the Study

In this study, we have focused on the potential of using the geothermally supplied RC
and RCD systems to improve thermal comfort conditions in the conditioned space. The
ground heat exchanger system was simulated as an infinite cooling source with a constant
temperature. In practice, the heating demand of the school complex far outweighs the
cooling demand of the office building. Therefore, the ground heat exchanger system will
be radically oversized for the modest cooling demand of the studied building and will not
limit the availability of cooling energy. Furthermore, operating the system in heating mode
will decrease the ground temperature in the borehole, thus making the conditions more
favourable for the cooling operation. The cooling operation will conversely regenerate the
borehole, improving the conditions for heating operation slightly. The results are, therefore,
applicable in the studied climate where yearly number of HDDs far exceeds the number of
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CDDs. In climates where the cooling load is similar to or higher than the heating load, the
design of the borehole system has to take this into consideration.

A similar approach was taken with the heat pump, assuming that it had sufficient
capacity to produce the cooling energy needed for the dehumidifier. Electricity use of
auxiliary components such as pumps and fans was also outside the scope of the current
research and will be studied in a future article. An LCA analysis of the studied systems is
also planned to be carried out in our future research. The scope of the sensitivity analysis is
limited to the most important input parameters and output variables to keep the simulation
time manageable. It should be noted that the simulation model presents an idealised
version of the building, the cooling system components and their controls. In a real case,
control delays and component inefficiencies would lead to worse performance of the system.
As the RC system will be installed in the building as a part of the GEOFIT project, these
effects can be quantified and the performance of the RC system verified by conducting
measurements in the building.

5. Conclusions

This study examined the performance of a radiant cooling system supplied by passive
geothermal energy, with and without dehumidification, in the Mediterranean climate.
Based on the results of the study, the following conclusions are drawn:

1. A radiant cooling system with dehumidification (RCD) offers significantly better
thermal comfort than a radiant cooling system without dehumidification (RC). The
highest PMV value reached by the RCD system was 0.4 (neutral), while the RC system
reached a maximum PMV value of 1.2 (slightly warm);

2. The improved thermal comfort performance comes at the cost of higher energy use.
The RC system’s thermal energy use is only 45% of the RCD system’s energy use
over the cooling season. Especially significant is the exergy destruction in the chiller
producing the low supply water temperature needed for dehumidification, which
results in cumulative exergy destruction in the RCD system being 5.3 times the exergy
destruction in the RC system;

3. The most important input parameters for PMV are solar heat gain, indoor temperature
set point and internal heat gains. These are also the most important parameters for
operative temperature and cooling panel energy use. Conversely, ventilation flow
rate and dehumidification temperature are the most important parameters for indoor
relative humidity and dehumidification energy use;

4. The sensitivity analysis results suggest that maximising dehumidification temperature
and minimising ventilation flow rate decreases the energy use in the heat pump and
therefore reduces exergy destruction while having a minor effect on thermal comfort.
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Nomenclature

Abbreviations
ACH Air Changes per Hour [1/h]
AHU Air Handling Unit
ASHRAE American Society of Heating, Refrigerating and Air-Conditioning Engineers
CDD Cooling Degree Day
clo Clothing unit
COP Coefficient of Performance
CV(RMSE) Coefficient of Variation of the Root Mean Square Error
DOAS Dedicated Outdoor Air System
EU European Union
HDD Heating Degree Day
IDA-ICE Indoor Climate and Energy simulation software
IEA International Energy Agency
LHS Latin Hypercube Sampling
met Metabolic unit
PMV Predicted Mean Vote
PVC Polyvinyl Chloride
RC Radiant Cooling
RCD Radiant Cooling with Dehumidification
SDG Sustainable Development Goal
SHGC Solar Heat Gain Coefficient [–]
TRT Thermal Response Test
UN United Nations
VAV Variable Air Volume
Symbols
m Measured indoor operative temperature [◦C]
s Simulated indoor operative temperature [◦C]
n Number of observations [–]
.

Q Cooling heat flow [W]
Ex Cumulative exergy destruction [Wh]
.
Ex Exergy destruction rate [W]
∆t Length of time step [h]
.

m Mass flow rate [kg/s]
µ Median of a distribution [–]
cp Specific heat capacity [J/(kgK)]
T Temperature [◦C] or [K]
σ2 Variance of a distribution [–]
.

V Volume flow rate [L/s] or [m3/(hm2
external surface) at 50 Pa]

Subscripts
0 Ambient environment
a Air
b Brine
C Cooling supplied to the conditioned space
CP Cooling panels
CW Cooling water circuit
d Dehumidification
dew, min Lowest observed dew point in the building
G Ground
GC Ground circuit
GHEx Ground heat-exchanger
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i Indoor setpoint
inf Infiltration
int Internal heat gain
ret Cooling return water or air
s Cooling panel surface
supply (sup) Cooling supply water or air
v Ventilation
w Water
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