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Abstract: Recently, due to the ever-increasing global warming effect, the proportion of renewable
energy sources in the electric power industry has increased significantly. With the increase in
distributed power sources with adjustable outputs, such as energy storage systems (ESSs), it is
necessary to define ESS usage standards for an adaptive power transaction plan. However, the
life-cycle cost is generally defined in a quadratic formula without considering various factors. In this
study, the life-cycle cost for an ESS is defined in detail based on a life assessment model and used
for scheduling. The life-cycle cost is affected by four factors: temperature, average state-of-charge
(SOC), depth-of-discharge (DOD), and time. In the case of the DOD stress model, the life-cycle
cost is expressed as a function of the cycle depth, whose exact value can be determined based on
fatigue analysis techniques such as the Rainflow counting algorithm. The optimal scheduling of
the ESS is constructed considering the life-cycle cost using a tool based on reinforcement learning.
Since the life assessment cannot apply the analytical technique due to the temperature characteristics
and time-dependent characteristics of the ESS SOC, the reinforcement learning that derives optimal
scheduling is used. The results show that the SOC curve changes with respect to weight. As the
weight of life-cycle cost increases, the ESS output and charge/discharge frequency decrease.

Keywords: energy storage system; life-cycle cost; optimal scheduling; reinforcement learning

1. Introduction

Recently, consumers’ perception of energy has changed due to the development and
demonstration of an operating system for regional power grids characterized by VPP
and MG. Under the influence of economic factors, such as decreasing installation costs of
renewable energy and technological advances, consumers have become energy prosumers
who can trade their own electricity through distributed power systems [1,2]. Because
the power surplus can be sold to neighbors, the energy flow in the energy market has
changed from one-way to two-way. In addition, the existing hierarchical market structure
has transformed into a network structure.

With the adoption of distributed energy, the need to establish usage standards is
increasing with an increasing use of ESSs. When conducting trading through ESSs, cer-
tain usage standards, such as the fuel cost function of the generator, must be considered.
The life-cycle cost of the ESS can be considered as one of these standards. As research
on the ESS life-cycle, Ref. [3] proposed the total capital cost and life-cycle cost models
for ESSs. The cost function was introduced and modeled for the system, and a learning
model that can accurately estimate the life-cycle cost based on various battery types was
built. Reference [4] proposed an analytical optimization for the capacity and sizing of solar
power and ESSs connected to the grid. Ref. [5] studied the efficiency difference between
HESS and LESS in an independent microgrid. The constraint variable was set by combining
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the SOC with the cost function, and the stability of the system was considered in prepara-
tion for the surge currents of LIB and LAB. Ref. [6] proposed an ESS life-cycle definition
using SOC and SOH models. They established an equation via correlation analysis and
introduced a cycle depth variable. Ref. [7] introduced an overall cost evaluation model for
ESS and used fuzzy comprehensive evaluation theory to analyze the model, considering
basic facility and operating costs. Ref. [8] proposed a life assessment method for ESS in dis-
tributed energy systems and established an evaluation method classified into four scenarios.
Ref. [9] introduced a P2P energy sharing scheme using ESSs. In their study, scheduling was
set to maximize system profits depending on the existence of an ESS. Ref. [10] conducted a
comparative study on single/hybrid ESSs to examine stable energy transfer capabilities
of these systems. This model considered the charge/discharge rate function of the bat-
tery, and data analyses were performed for situations with varying supply and demand.
Ref. [11] defined a cycle life model of a battery considering the SOC, DOD, average C-rate,
and aging of the lithium-ion battery. A comparative analysis was performed on the battery
temperature, output, and resistance values with varying parameters. Ref. [12] introduced
an ESS life-cycle cost optimization method through an energy consumer scheduling scheme.
The battery life was calculated using the Rainflow counting algorithm for maximizing
battery life. Scheduling was configured based on unstable PV and WT output data and the
composed ESS life results. Ref. [13] introduced an improvement in the prediction accuracy
of lithium-ion batteries. A BP neural network was used to predict the life-cycle cost of
the battery, and the weights were set using the DE algorithm. Ref. [14] analyzed the ESS
life-cycle cost using various forecasting techniques, such as the RVM and CNN models.
Ref. [15] conducted a study on the battery output considering the life-cycle cost of an ESS
used in the grid. Their study, conducted on the stability of the system, included measuring
the frequency fluctuations over time. Moreover, a scheduling scheme for an ESS used in the
auxiliary service market was established. Ref. [16] presented a methodology for the optimal
location, selection, and operation of battery energy storage systems (BESSs) and renewable
distributed generators in medium- to low-voltage distribution systems. Ref. [17] proposed
a new formulation of the battery degradation cost for the optimal scheduling of BESSs. This
paper defined a one-cycle battery cost function based on the cycle life curve and an auxiliary
state of charge (SOC) that tracks the actual SOC only upon discharge. Ref. [18] proposed a
mixed-integer nonlinear programming (MINLP) model for the PV-battery systems which
aims to minimize the life-cycle cost (LCC), and solved LCC Problem by a novel two-layer
optimization, and Ref. [19] studied the multi-objective operation of BESS in AC distribu-
tion systems using a convex reformulation. Ref. [20] proposed a two-stage multi-objective
optimal operation scheduling method to improve the operation efficiency and reduce the
emission of a solar-power-integrated hybrid ferry with shore-to-ship (S2S) power supply,
and Ref. [21] addressed the problem associated with economic dispatch of BESSs in alter-
nating current (AC) distribution networks. Ref. [22] addressed the problem of the optimal
operation of BESSs in AC grids from the point of view of multi-objective optimization.
Ref. [23] proposed a distributed multi-agent consensus-based control algorithm for multiple
BESSs, operating in a microgrid, for fulfilling several objectives, including: SOC trajectories
tracking control, economic load dispatch, active and reactive power sharing control, and
voltage and frequency regulation. Ref. [24] proposed an optimal BESS scheduling for
MGs to solve the stochastic unit commitment problem, considering the uncertainties in
renewables and load.

In summary, most previous studies derive their results by defining the life-cycle cost
in a quadratic manner or simplifying it. This study aims to define it in detail based on
a life-cycle cost assessment method and utilize it for scheduling. Because the defined
life-cycle cost cannot be derived analytically and explicitly, a solution is derived using
reinforcement learning techniques.

The contributions of this study are as follows:

(1) By defining the life-cycle cost of an ESS, and deriving and utilizing it for optimal
scheduling, prosumers with ESSs can make the best choice between incurring life-
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cycle costs due to ESS use and profiting from transactions. In addition, because of the
active adjustment of prosumers with ESSs, it is possible to reduce the line loss inside
a system.

(2) Through analysis of the trading tendency of flexible prosumers with respect to changes
in ESS life-cycle cost weights, prosumers who own an ESS have the choice of partici-
pating in P2P energy trading to make profits.

2. Life Degradation Model for ESSs Based on a Life-Cycle Assessment Method

This chapter presents the design of an ESS life-cycle cost metric for prosumer partic-
ipation in P2P energy trading with ESSs. ESSs can be classified according to the type of
battery they use. In this study, lithium-ion batteries, which are commonly used in ESSs,
are chosen, and their life-cycle cost is designed. The life-cycle cost was designed based on
existing studies related to battery life assessment. The life assessment model consists of
four stress models: temperature, average state-of-charge (SOC), depth-of-discharge (DOD),
and time Ref. [25].

The degradation ratio of the battery life-cycle is determined by the corresponding
stress models, and it can be evaluated using the corresponding degradation ratio. The
degradation ratio, four stress models, and the consumption life-cycle ratio are formulated
as follows:

fd,1 = [Sδ(δ) + St(tc)]Sσ(σ)ST(Tc) (1)

ST(Tc) = ekT(Tc−Tre f )(
Tre f
Tc ) (2)

Sσ(σ) = ekσ(σ−σre f ) (3)

Sδ(δ) = kδ,q1δkδ,q2 (4)

St(t) = ktt (5)

L = 1− αseie−βsei fd − (1− αsei)e− fd (6)

where fd is the degradation ratio, and ST , Sσ, Sδ are the stresses for temperature, aver-
age SOC, and DOD, respectively. Tc is the battery cell temperature, Tre f is the reference
temperature, and kT is the temperature stress coefficient. σ is the average SOC, σre f is the
reference average SOC, and kσ is the average SOC stress coefficient. St is the stress for time,
δ is the cycle depth, and k δ,q1, k δ,q2 are the DOD coefficients. t is time, kt is the time stress
coefficient, L is the consumed life-cycle, and αsei, βsei are the solid electrolyte interphase
(SEI) film formation coefficients.

In the case of a DOD stress model, various models such as linear, exponential, poly-
nomial, and power are applicable, but the power function is used according to references.
Stress models for average SOC and time can be used immediately for life-cycle cost design
because they are explicit. The same does not hold for DOD and temperature stress models.

First, in the case of the DOD stress model (4), which is expressed as a function of the
cycle depth, the exact value of the cycle depth can be determined through a post evaluation
based on fatigue analysis techniques, such as the Rainflow counting algorithm. In the
case of the temperature stress model (2), additional analysis is required because a model
for the internal battery temperature is required with respect to the output ESS. Therefore,
additional design stages for these two models are required. The model for temperature
is designed by analyzing the relationship between battery output and temperature using
the thermoelectric model of the battery. Furthermore, for the DOD model in this case,
an approximation that considers one charge or discharge of the battery as a half cycle
is assumed.

2.1. Temperature Stress Model Formulation

A thermoelectric model is used as the temperature stress model, which is categorized
into two types: an electric circuit model and a thermal model Refs. [26–29].
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2.1.1. Electric Circuit Model

The electric circuit model of the battery used in the temperature stress model is shown
in Figure 1 Ref. [28]. The open circuit voltage (OCV) can be expressed as a function of
the SOC and internal temperature of the battery. OCV, characteristically, rises during
charging and falls during discharging, and this tendency varies according to SOC. The
internal resistance Rin can also be expressed as a function of SOC and temperature. The RC
network located to the right of the internal resistance is a secondary model and represents
the diffusion resistance and capacitance. R1 and C1 are related to the charge transfer
processes occurring in the middle frequency range, whereas R2 and C2 are responsible
for reproducing the diffusion processes. Vh is an additional voltage component caused by
the hysteresis characteristics of the RC network, which refers to the fluctuations on the
open voltage during charge/discharge. This component is ignored, assuming its effect is
relatively small. Moreover, the corresponding model for life-cycle cost analysis does not
require detailed dynamic characteristics of the battery.

Energies 2022, 15, x FOR PEER REVIEW 4 of 20 
 

 

approximation that considers one charge or discharge of the battery as a half cycle is as-
sumed. 

2.1. Temperature Stress Model Formulation 
A thermoelectric model is used as the temperature stress model, which is categorized 

into two types: an electric circuit model and a thermal model Refs. [26–29]. 

2.1.1. Electric Circuit Model 
The electric circuit model of the battery used in the temperature stress model is 

shown in Figure 1 REF. [28]. The open circuit voltage (OCV) can be expressed as a function 
of the SOC and internal temperature of the battery. OCV, characteristically, rises during 
charging and falls during discharging, and this tendency varies according to SOC. The 
internal resistance 𝑅  can also be expressed as a function of SOC and temperature. The 
RC network located to the right of the internal resistance is a secondary model and repre-
sents the diffusion resistance and capacitance. 𝑅  and 𝐶  are related to the charge transfer 
processes occurring in the middle frequency range, whereas 𝑅  and 𝐶  are responsible for 
reproducing the diffusion processes. 𝑉  is an additional voltage component caused by the 
hysteresis characteristics of the RC network, which refers to the fluctuations on the open 
voltage during charge/discharge. This component is ignored, assuming its effect is rela-
tively small. Moreover, the corresponding model for life-cycle cost analysis does not re-
quire detailed dynamic characteristics of the battery. 

 
Figure 1. Battery electric circuit model. 

The function for the SOC of the OCV (7) is based on the parameters listed in Table 1. 𝑂𝐶𝑉 = 𝑓(𝑆𝑂𝐶) = 𝑎𝑒( ∙ ) + 𝑐𝑒( ∙ ) (7) 

Table 1. Battery OCV curve parameters. 

Parameter a b c d 
Value 3.263 0.02451 −0.2297 −7.666 

Regarding the effect of temperature on the OCV, Equation (8) shows the correlation 
between the OCV bias component and temperature. It can be expressed as a polynomial 
with the following related parameters in Table 2:                                 𝑏 = 𝑔(𝑆𝑂𝐶, 𝑇 )= 𝑝00 + 𝑝10 ∙ 𝑆𝑂𝐶 + 𝑝01 ∙ 𝑇 + 𝑝20 ∙ 𝑆𝑂𝐶 + 𝑝11 ∙ 𝑆𝑂𝐶 ∙ 𝑇 + 𝑝02 ∙ 𝑇 + 𝑝31 ∙ 𝑆𝑂𝐶+ 𝑝21 ∙ 𝑆𝑂𝐶 ∙ 𝑇 + 𝑝12 ∙ 𝑆𝑂𝐶 ∙ 𝑇 + 𝑝40 ∙ 𝑆𝑂𝐶 + 𝑝31 ∙ 𝑆𝑂𝐶 ∙ 𝑇 + 𝑝22 ∙ 𝑆𝑂𝐶 ∙ 𝑇+ 𝑝50 ∙ 𝑆𝑂𝐶 + 𝑝41 ∙ 𝑆𝑂𝐶 ∙ 𝑇 + 𝑝32 ∙ 𝑆𝑂𝐶 ∙ 𝑇  

(8) 

  

Figure 1. Battery electric circuit model.

The function for the SOC of the OCV (7) is based on the parameters listed in Table 1.

OCV = f (SOC) = ae(b·SOC) + ce(d·SOC) (7)

Table 1. Battery OCV curve parameters.

Parameter a b c d

Value 3.263 0.02451 −0.2297 −7.666

Regarding the effect of temperature on the OCV, Equation (8) shows the correlation
between the OCV bias component and temperature. It can be expressed as a polynomial
with the following related parameters in Table 2:

bOCV = g(SOC, Tin)
= p00 + p10·SOC + p01·Tin + p20·SOC2 + p11·SOC·Tin + p02·Tin

2 + p31·SOC3

+p21·SOC2·Tin + p12·SOC·Tin
2 + p40·SOC4 + p31·SOC3·Tin + p22·SOC2·Tin

2

+p50·SOC5 + p41·SOC4·Tin + p32·SOC3·Tin
2

(8)

Table 2. Correlation parameters between OCV bias component and temperature/SOC.

Parameter p00 p10 p01 p20
Value −0.001202 0.2458 8.558× 10−5 −1.248

Parameter p11 p02 p30 p21
Value −0.007113 1.552× 10−5 2.328 0.03044

Parameter p12 p40 p31 p22
Value −1.063× 10−5 −1.899 −0.04233 −7.069× 10−5

Parameter p50 p41 p32
Value 0.569 0.01919 8.263× 10−5
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Finally, the open circuit model is constructed as a linear sum of the OCV model for
SOC in Equation (9).

OCV = f (SOC, Tin) = f (SOC) + g(SOC, Tin) (9)

The SOC is updated according to the output current, whose unit can be set as
% (or p.u.). The sign of the discharge current was set to positive. The discrete equation can
be described as:

SOC(k) = SOC(k− 1)− i(k− 1)
Cn

Ts

3600
(10)

where Ts is the sampling time (unit: second [s]), Cn is the battery capacity (unit: Ampere
hour [Ah]), i is the output current, and k is a time index.

The internal resistance is also configured as a function of the internal temperature
and SOC, similar to the OCV. However, the internal resistance remains constant without
significant changes over the general battery SOC usage period and is dominantly affected
by the internal temperature Ref. [19]. Therefore, the internal resistance is expressed as a
function of the internal temperature with the battery internal resistance curve parameters
in Table 3 and formulated as follows:

Rin = fR(Tin) = aebTin + cedTin (11)

Table 3. Battery internal resistance curve parameters.

Parameter a b c d

Value 0.0003448 −0.2954 0.01771 −0.008504

The relationship between voltage, resistance, and current in an RC network can be
represented as

v1(k) = a1v1(k− 1) + b1i(k− 1), a1 = e−(
Ts

R1C1
), b1 = R1(1− a1) (12)

v2(k) = a2v2(k− 1) + b2i(k− 1), a2 = e−(
Ts

R2C2
), b2 = R2(1− a2) (13)

where Ts is the sampling time, and k is the discrete time index. The second network time
constant does not change Ref. [28]; thus, what remains to be estimated are the resistance
and time constant of the first RC network and the resistance of the second RC network.
If R1 and τ1 are known, then using the time constant relational expression (τ = RC) C1
can be calculated, and C2 can be calculated in a similar manner if R2 and τ2 are known.
Network resistances are based on a polynomial model, whereas the first time constant is
based on an exponential equation. The equations are stated below and parameters are
shown in Tables 4–6.

R1 = fR1(SOC, Tin)
= p00 + p10·SOC + p01·Tin + p20·SOC2 + p11·SOC·Tin

+p02·Tin
2 + p21·SOC2·Tin + p12·SOC·Tin

2 + p03·Tin
3

(14)

R2 = fR2(SOC, Tin)
= p00 + p10·SOC + p01·Tin + p20·SOC2 + p11·SOC·Tin

+p02·Tin
2 + p30·SOC3 + p21·SOC2·Tin + p12·SOC

·Tin
2 + p03·Tin

3 + p31·SOC3·Tin + p22·SOC2·Tin
2 + p13

·SOC·Tin
3 + p04·Tin

4

(15)

τ1 = fτ1(SOC) = aeb·SOC (16)
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Table 4. Correlation parameters between RC Network R1 and SOC/internal temperature.

Parameter p00 p10 p01 p20
Value 0.04375 −0.05367 −0.000974 0.01182

Parameter p11 p02 p21 p12
Value 0.0005085 7.661× 10−6 0.0004819 −6.957× 10−6

Parameter p03
Value 1.993× 10−8

Table 5. Correlation parameters between RC Network R2 and SOC/internal temperature.

Parameter p00 p10 p01 p20
Value 0.05018 −0.1373 −0.002979 0.1224

Parameter p11 p02 p30 p21
Value 0.005049 0.0001103 −0.02099 −0.001888

Parameter p12 p03 p31 p22
Value −9.877× 10−5 −2.118× 10−6 −0.001455 5.704× 10−5

Parameter p13 p04
Value 2.744× 10−7 1.708× 10−8

Table 6. Correlation parameter between RC Network first time constant and SOC.

Parameter a b

Value 53.99 −1.573

2.1.2. Lumped Thermal Model

As shown in Figure 2, the battery thermal model is affected by the temperature values at
three points: the cell inside the battery shell, shell surrounding it, and environment Ref. [19].

Energies 2022, 15, x FOR PEER REVIEW 7 of 20 
 

 

 
Figure 2. Configuration of battery internal system. 

However, the heat generated due to the overpotential of the RC network and entropy 
change also need to be considered. The total heat generated by the cell is given by 𝑄 = 𝑅 𝑖 + 𝑣 𝑖 + 𝑣 𝑖 + 𝑖 × 𝑇 𝑑𝑂𝐶𝑉𝑑𝑇  (17) 

In general, the heat transfer in and out of a battery includes three mechanisms: con-
duction, convection, and radiation. Before modeling the heat transfer, both the battery 
shell temperature and internal temperature must be uniform, and the thermal character-
istics must also be uniformly distributed inside the battery. Only the heat conduction be-
tween the inside and shell of the battery and between the shell and environment is con-
sidered. The heat transfer model is expressed as follows: 𝐶 𝑑𝑇𝑑𝑡 = 𝑄 − 𝑘 (𝑇 − 𝑇 ) (18) 

𝐶 𝑑𝑇𝑑𝑡 = 𝑘 (𝑇 − 𝑇 ) − 𝑘 (𝑇 − 𝑇 ) (19) 

where 𝑇  is the battery internal temperature, 𝑇  is the battery shell temperature, and 𝑇  is the ambient temperature. 𝐶  and 𝐶  are the internal and shell thermal capacities 
of the battery, respectively, and 𝑘  and 𝑘  are the heat conduction coefficients between the 
battery internal and the shell, and between the battery shell and the ambience, respec-
tively. Because Equations (18) and (19) are continuous, they are discretized as follows: 𝐶 𝑧 − 1𝑇 𝑇 = 𝑄 − 𝑘 (𝑇 − 𝑇 ) (20) 

𝐶 𝑧 − 1𝑇 𝑇 = 𝑘 (𝑇 − 𝑇 ) − 𝑘 (𝑇 − 𝑇 ) (21) 

Finally, the formulae for the internal temperature and shell temperature are as given 
by 𝑇 (𝑘 + 1) = 1 − 𝑇 𝑘𝐶 𝑇 (𝑘) + 𝑇 𝑘𝐶 𝑇 (𝑘) + 𝑇 𝑄(𝑘)𝐶  (22) 

𝑇 (𝑘 + 1) = 𝑇 𝑘𝐶 𝑇 (𝑘) + 1 − 𝑇 (𝑘 + 𝑘 )𝐶 𝑇 (𝑘) + 𝑇 𝑘 𝑇𝐶  (23) 

The heat capacity coefficients and internal heat capacity are constant. The heat capac-
ity coefficient 𝑘  used in this model has time-varying characteristics; and the following 
relation holds Ref. [28]: 𝑘 = 𝑘 + 𝑘 (𝑇 − 𝑇 ) (24) 

Figure 2. Configuration of battery internal system.

Therefore, the battery thermal model can be modeled in two ways: the heat generation
that occurs inside the battery and heat transfer from the inside to the battery shell and from
the shell to the environment. In general, heat generated by the cell is considered only as the
heat generated by the internal resistance.

However, the heat generated due to the overpotential of the RC network and entropy
change also need to be considered. The total heat generated by the cell is given by

Q = Rini2 + v1i + v2i + i× Tin
dOCV
dTin

(17)

In general, the heat transfer in and out of a battery includes three mechanisms: con-
duction, convection, and radiation. Before modeling the heat transfer, both the battery shell
temperature and internal temperature must be uniform, and the thermal characteristics
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must also be uniformly distributed inside the battery. Only the heat conduction between
the inside and shell of the battery and between the shell and environment is considered.
The heat transfer model is expressed as follows:

Cq1
dTin
dt

= Q− k1(Tin − Tsh) (18)

Cq2
dTsh
dt

= k1(Tin − Tsh)− k2(Tsh − Tamb) (19)

where Tin is the battery internal temperature, Tsh is the battery shell temperature, and Tamb
is the ambient temperature. Cq1 and Cq2 are the internal and shell thermal capacities of
the battery, respectively, and k1 and k2 are the heat conduction coefficients between the
battery internal and the shell, and between the battery shell and the ambience, respectively.
Because Equations (18) and (19) are continuous, they are discretized as follows:

Cq1
z− 1

Ts
Tin = Q− k1(Tin − Tsh) (20)

Cq2
z− 1

Ts
Tin = k1(Tin − Tsh)− k2(Tsh − Tamb) (21)

Finally, the formulae for the internal temperature and shell temperature are as given by

Tin(k + 1) =
1− Tsk1

Cq1
Tin(k) +

Tsk1

Cq1
Tsh(k) +

TsQ(k)
Cq1

(22)

Tsh(k + 1) =
Tsk1

Cq2
Tin(k) +

1− Ts(k1 + k2)

Cq2
Tsh(k) +

Tsk2Tamb
Cq2

(23)

The heat capacity coefficients and internal heat capacity are constant. The heat capacity
coefficient k2 used in this model has time-varying characteristics; and the following relation
holds Ref. [28]:

k2 = k21 + k22(Tsh − Tamb) (24)

The k2 certainly depends on the heat dissipation condition, such as cooling wind
speed and temperature. k2 also increases with this temperature gradient Tsh − Tamb. To
take this effect into consideration, two cases are compared here: Constants k21 of k2 and
time-varying k22 of k2.

2.1.3. Coupled Thermoelectric Model

By combining the two previously defined thermal/electrical models into one,

x(k + 1) = Ax(k) + B(k) (25)

v(k) = OCV(k) + v1(k) + v2(k)− i(k)Rin (26)

where,
x(k) = [SOC(k), v1(k), v2(k), Tin(k), Tsh(k)]

T

A =



1 0 0
0 a1 0
0 0 a2

0 0
0 0
0 0

0 0 0
0 0 0

1− k1
Ts

Cq1
k1

Ts

Cq1

k1
Ts

Cq2
1− (k1 + k2)

Ts

Cq2


B(k) =

[
−i(k)

Ts

Cn
,−b1i(k),−b2i(k), Q(k)

Ts

Cq1
, k2Tamb

Ts

Cq2

]T
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2.2. Cycle Depth Stress Model Formulation

The cycle depth is derived after fatigue analysis using the Rainflow counting algo-
rithm, as mentioned earlier in the study related to the life-cycle cost evaluation of the ESS.
Therefore, it is impossible to determine the cycle depth before scheduling is configured.
The first step in solving this problem is deriving it through dynamic programming when
composing the ESS schedule. However, in dynamic programming, a cost or reward should
be calculated at the transition time between states. It is necessary to define a state, which
can be the SOC of the ESS. However, because SOC is a continuous variable, it cannot be
determined discretely; however, the state can be defined by dividing it into a specific unit
as a simplification to reduce the burden of calculation. For example, if the state is defined
in units of 0.1, when the minimum SOC is 0.1 and the maximum SOC is 0.9, nine states can
be defined in one time period (Stage). When the total schedule interval is T, the number of
cases composed by states is 9T−1. This refers to the number of cases when searching for a
path from the first to the last stage in the dynamic plan. That is, the computational power
required to search for an optimal point is quite large. To solve this problem, a reinforcement
learning-based approach is introduced, and the cycle depth to be used in this approach
is approximated. Therefore, for the cycle depth, the same half cycle was applied for all
charging/discharging cycles. To check whether this approximation is appropriate, we
created a random SOC candidate group and compared the difference between the complete
and approximate life-cycle cost analysis results.

Figure 3 shows a flowchart depicting this process. Figure 4 shows the SOC graph
where the difference between the two results is maximum and minimum when the life-cycle
costs for the approximated and total cycle depths are calculated. As a result, when charging
and discharging are repeatedly performed, the difference between the two life costs is
small, as shown in the blue graph, whereas when charging and discharging are sequentially
performed in one large cycle depth, the difference is the largest.

Figure 5 shows the approximated cycle depth for 20 candidates and the life-cycle cost
for the total cycle depth, as well as the ratio between the two life-cycle costs. Although there
is a difference in the ratio for each candidate group, we confirmed that even if the life-cycle
cost is calculated using the approximated cycle depth, the effect could be similar to the
lifetime cost calculated using the total cycle depth. When the life-cycle cost is included in
the actual objective function, it may be lower than the actual expected life-cycle cost owing
to the approximated cycle depth. However, this can be avoided because the life-cycle cost
is used for weight and not directly converted into an actual financial cost.
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2.3. ESS Life-Cycle Cost Formulation

Considering the temperature and DOD stress models, the ESS life-cycle cost can be
expressed as

fd = 0.5[Sδ(δ) + St(tc)]Sσ(σ)ST(Tc) (27)

ST(Tc) = e
kT(Tc−Tre f )(

Tre f

Tc
)

(28)

Tc = f (Pbat) (29)

Sσ(σ) = e
kσ(σt+

ηPbat
2CESS

−σre f )

(30)

Sδ(δ) = kδ,q1

(
ηPbat
CESS

)kδ,q2

(31)

St(t) = ktt (32)

L = 1− αseie−βsei fd − (1− αsei)e− fd (33)

where Pbat and CESS are the output and capacity of the ESS, respectively. η is the ESS
charging/discharging efficiency, and σt is the SOC at time t. Because the consumed
life-cycle L presented in Equation (33) is a cumulative expression of the battery aging,
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the difference in L values reflects the actual shortened lifespan. For example, if the life-
cycle L1 consumed on the first day and life-cycle L2 consumed on the second day are
determined through life assessment, the actual life-cycle consumed on the second day
becomes L2 − L1. If this is applied in the dynamic programming method mentioned
above, complex calculations, such as the number of cases for the path by the SOC state,
must proceed. Therefore, to maintain the tendency of the life-cycle cost and lower the
computational complexity, the initially consumed life-cycle value is initialized at 0. The
calculation complexity can be reduced using only the degradation ratio and life-cycle cost.

Finally, the life-cycle cost of the ESS is treated as a concept of depreciation cost by
multiplying the investment cost for the battery, as shown in Equation (34).

fbat(t) = Inbat × L(t) (34)

fbat is the life-cycle cost, and Inbat is the investment cost for the battery. The DOD
stress model can be solved analytically through half-cycle approximation. However, the
temperature stress model cannot be directly used for optimization problems because it is
derived through dynamic characteristic analysis. Therefore, this problem is solved through
a reinforcement learning approach.

3. ESS Scheduling Formulation Considering the Life-Cycle Cost

The basic optimization problem regarding a prosumer who owns an ESS is the summa-
tion of the cost of electricity purchased from the grid and life-cycle cost of the ESS, which
can be expressed as follows:

f ESS
pros =

T

∑
t=1

[ωESS IESSLt
ESS + (1−ωESS)π

t
gridPt

grid] (35)

Pt
grid + Pt

dch − Pt
ch = Pt

load − Pt
PV (36)

SOCt+1 = SOCt +

(ηe f f Pt
ch −

(
Pt

dch
ηe f

)
)

CESS
∆t (37)

SOC0 = SOCinit (38)

SOCt = SOCend (39)

Lt
ESS = 1− αseie−βsei f t

d − (1− αsei)e− f t
d (40)

f t
d = F

(
St

δ, St
t, St

σ, St
T
)
= 0.5

(
St

δ + St
t
)

St
σ St

T (41)

St
δ = kδ,q1

(
δt)kδ,q2 (42)

δt =
ηe f f Pt

ch + Pt
dch/ηdch

CESS
(43)

St
t = ktt (44)

St
σ = ekσ(σt−σre f ) (45)

σt =

∣∣∣SOCt+1 + SOCt
∣∣∣

2
=

2SOCt + ηe f f Pt
ch + Pt

dch/ηdch

2CESS
(46)

St
T = e

kT(Tt
c−Tre f )(

Tre f
Tt

c
)

(47)

0 ≤ Pt
dch ≤ Prated

bat (48)

0 ≤ Pt
ch ≤ Prated

bat (49)
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SOCmin ≤ SOCt ≤ SOCmax (50)

0 ≤ Pt
grid ≤ Pmax

grid (51)

In (35), weights are applied to both the ESS life-cycle cost and system purchase cost to
reflect the subjective preference of the ESS operator regarding the life-cycle cost. The larger
this weight is, the larger the ESS life-cycle is, which is reduced when operating the ESS,
whereas the system purchase cost is considered relatively low. Regarding this problem, the
state and stage for the ESS SOC are defined as shown in Figure 6, and a reward table for
state transition is constructed for reinforcement learning.
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Figure 7 shows a flowchart for deriving a solution that applies reinforcement learning
to the optimization problem considering the life-cycle cost of the ESS. Figures 8 and 9 show
examples of internal reward tables for reinforcement learning. Because this problem is a
cost minimization problem, the cost value is treated with a negative sign.
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All problems subject to reinforcement learning can be expressed as a Markov decision
process (MDP) model, and this MDP is based on the Markov process (MP). The purpose of
reinforcement learning is to solve the Bellman Equations below.

Vπ(s) = ∑a∈Â π( a|s)Qπ(s, a) (52)

Vπ(s) = ∑a∈Â π( a|s)(Ra
s + γ ∑s′∈Ŝ Pa

ss′Vπ

(
s′
)
) (53)

Qπ(s, a) = Ra
s + γ ∑s′∈Ŝ Pa

ss′ ∑a′∈Â π
(

a′
∣∣s′)Qπ

(
s′a′
)

(54)

V∗π(s) = max(Vπ(s)) , Q∗π(s, a) = max(Qπ(s, a)) (55)

Q(s, a) = Q(s, a) + αlr∆Q (56)

(52)–(54) are the Bellman Expectation Equations. If the optimal value of Q is found
as in (55), the action state a∗ can be obtained and π∗ can be obtained accordingly. In (54),
Ra

s , the reward of action a in state s is the sum of the negative values of the cost for energy
consumption and the life-cycle cost as shown in Figure 9. Pa

ss′ , the probability of transition
from s to s′ is set to 1 in this problem. For example, when SOC 0.5 is state s and 0.4 is s′,
the action is a discharge corresponding to the amount of energy for SOC 0.1 which is a
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difference. As a result, when the action of discharging from SOC 0.5 to 0.4 is selected, the
probability of the transition becomes 1 because another state cannot exist according to this
action. The discount factor γ is used to evaluate future rewards at the point in time. When
determining the optimal scheduling, the γ is set to 1 in this problem because the reward
is not discounted. The function approximator solves the problem by finding the value
function value in the reverse order from the final state through (54) and updating the Q(s,a)
value as shown in (56).

4. Simulation Results

The MDP object is defined through the configured table, and the problem is solved us-
ing the reinforcement learning toolbox of MATLAB 2019a. Figure 10 shows the battery open
circuit voltage fitting curve and Figure 11 shows the bias model for temperature and SOC.
Figure 12 shows the battery internal resistance/temperature curve and Figures 13 and 14
show RC network R curves and surface with respect to SOC/Internal Temperature. Table 7
shows the settings for the agent and training options.
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Table 7. Setting parameters for the Q-learning agent and training options.

Q-Learning
Agent Options Learning Rate Epsilon Greedy

Exploration Probability Epsilon Decay

Parameter value 0.1 0.9 0.01
Trading Options Max steps per episode Max episodes
Parameter Value 20,000 20,000

For the optimal scheduling of ESS, the power system’s architecture is shown as
Figure 15a and is behind the meter. Figure 15b shows the load power curve and PV output
curve. In the case of the ESS used in this paper, the load and PV were modeled in the
behind the meter (BTM) method. Figure 16 demonstrates the process of finding the path to
the SOC through reinforcement learning.

By changing the weight for the life-cycle cost through reinforcement learning, we checked
whether the effect of the life-cycle cost is reflected in the ESS SOC results in Figure 17.

The results in Figure 17 compare the optimal ESS SOC results when the life-cycle cost
is not reflected and when it is reflected. In the figures, the green graphs represent the price
curve. In Figure 17a, when the initial life-cycle cost is not considered, the ESS repeats a
charging/discharging pattern due to the price difference and discharging during the most
expensive time period to maximize profits.

However, in Figure 17b–e, when the life-cycle cost is considered, frequent charg-
ing/discharging is reduced. As the life-cycle cost weight increases, discharge is not
performed even in a time period when the price is low. It was also confirmed that no
charging/discharging was performed when the weight of the life-cycle cost increased by
more than a certain amount in Figure 17f. This is because the investment cost value of the
ESS itself dominates the difference between the system purchase cost and absolute size.
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5. Conclusions

In this study, the life-cycle cost for an ESS is defined in detail based on a life assessment
model and is used for scheduling. Prosumers with ESSs can make an assessment on the
price of P2P energy transactions based on the defined ESS life-cycle cost. The life-cycle cost
is affected by four factors: temperature, average SOC, DOD, and time. Among the four
stress models, the temperature and DOD cannot be approached analytically; therefore, they
are solved by approximation and reinforcement learning. The life-cycle cost of an ESS is
verified through the reinforcement learning toolbox of MATLAB. Regarding the life-cycle
cost, it is confirmed that the SOC result curve changes according to the weight, and as the
weight of life-cycle cost increases, the ESS output and charge/discharge frequency decrease.
When the initial life-cycle cost is not considered, the ESS repeats a charging/discharging
pattern due to the price difference and the ESS discharges during the most expensive time
period to maximize profits. However, when the life-cycle cost is considered, frequent
charging/discharging is reduced. As the life-cycle cost weight increases, discharge is not
performed even in a time period when the price is low. It was also confirmed that no
charging/discharging was performed when the weight of the life-cycle cost increased by
more than a certain amount. In the future, we shall investigate the connection between the
community grid, general distribution system and a real-time P2P energy trading strategy
that considers real-time uncertainty.
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Nomenclature
The following Nomenclatures are used in this manuscript:

fd The degradation ratio
ST , Sσ, Sδ The stresses for temperature, average SOC, and DOD
Tc The battery cell temperature
Tre f The reference temperature
kT The temperature stress coefficient
σ The average SOC
σre f The reference average SOC
kσ The average SOC stress coefficient
St The stress for time
δ The cycle depth
k δ,q1, k δ,q2 The DOD coefficients
t Time
kt The time stress coefficient
L The consumed life-cycle
αsei, βsei The solid electrolyte interphase (SEI) film formation coefficients
Ts The sampling time (unit: second [s])
Cn The battery capacity (unit: Ampere hour [Ah])
i The output currents
k Time index
Tin The battery internal temperature
Tsh The battery shell temperature
Tamb The ambient temperature
Cq1, Cq2 The internal and shell thermal capacities of the battery
k1, k2 The heat conduction coefficients
Pbat The output of the ESS
CESS The capacity of the ESS
η The ESS charging/discharging efficiency
σt The SOC at time t
fbat The life-cycle cost
Inbat The investment cost for the battery
Vπ(s) The value of state s
Qπ(s, a) The value of action a in state s
π( a|s) The policy of action a in state s
Ra

s The reward of action a in state s
Pa

ss′ The probability of transition from state s to state s′ by action a
γ The discount factors
αlr The learning rates
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