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Abstract: Driven by the development of machine learning (ML) and deep learning techniques, prog-
nostics and health management (PHM) has become a key aspect of reliability engineering research.
With the recent rise in popularity of quantum computing algorithms and public availability of first-
generation quantum hardware, it is of interest to assess their potential for efficiently handling large
quantities of operational data for PHM purposes. This paper addresses the application of quantum
kernel classification models for fault detection in wind turbine systems (WTSs). The analyzed data
correspond to low-frequency SCADA sensor measurements and recorded SCADA alarm logs, fo-
cused on the early detection of pitch fault failures. This work aims to explore potential advantages
of quantum kernel methods, such as quantum support vector machines (Q-SVMs), over traditional
ML approaches and compare principal component analysis (PCA) and autoencoders (AE) as feature
reduction tools. Results show that the proposed quantum approach is comparable to conventional
ML models in terms of performance and can outperform traditional models (random forest, k-nearest
neighbors) for the selected reduced dimensionality of 19 features for both PCA and AE. The overall
highest mean accuracies obtained are 0.945 for Gaussian SVM and 0.925 for Q-SVM models.

Keywords: quantum machine learning; quantum kernels; wind turbine systems; SCADA system;
pitch fault diagnostics; feature reduction; principal component analysis; autoencoders; machine
learning; prognostics and health management

1. Introduction

The role of wind turbine systems (WTSs) in decarbonizing the electrical grid has
steadily increased in recent years [1]. In 2020, the estimated global cumulative capacity of
both onshore and offshore installations was over 743GW. These numbers are expected to
grow further in the quest to supply renewable and sustainable energy [2]. A key factor to
reduce the levelized cost of energy (LCOE) of wind power is to increase the performance
and reliability of these systems [3]. In this context, the implementation of preventive
maintenance techniques for WTSs aims to reduce operating expenditures (OPEX) related to
unexpected maintenance events, expected to be of critical importance in the case of offshore
installations [4]. These variable OPEX can account for 11–30% of the LCOE of onshore
installations, up to 30% in offshore installations, and 20–25% of the total LCOE wind power
systems [5].

The operation of WTSs depends on a multitude of elements, including external factors
such as wind availability and grid stability. Hence, addressing health diagnostics and
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prognostics requirements in WTSs is a complex task that depends on system behavior, com-
ponent degradation, and varying environmental conditions [6]. Several issues may lead to
system downtime, including mechanical, electrical, and connectivity failures. A breakdown
of common WTS faults per component is presented by Liton Hossain et al. [7]. In particular,
pitch system failures may account for up to 20% of total turbine downtime [8]. Determining
the cause and identifying early signs of system degradation have proven to be key when
developing adequate planning and scheduling of actions to maintain grid stability. Here,
the development of prognostics and health management (PHM) frameworks designed for
WTS operations can play a major role in deriving comprehensive maintenance policies and
increasing system reliability [9]. Complementing traditional reliability methods based on
statistical failure event analysis, PHM leverages the collection and analysis of sensor moni-
toring data to provide diagnostics and prognostics models, aimed at detecting, localizing,
and/or predicting future failures and faulty states.

Most WTSs use the supervisory control and data (SCADA) system for their monitoring
data collection [10–12]. SCADA is a computer-based system that gathers and processes
monitoring data from multiple sensors. Even though the standard sampling rate of SCADA
data is 1 s, the reported data correspond to average values over 10 min time intervals,
essentially converting the data acquisition into low-frequency measurements [13]. SCADA
also records anomalous behavior or system failures detected by a built-in rule-based alarm
system. However, due to the high number of false positive alerts, plus the noisy and
intractable nature of the generated alarm logs, most researchers have focused on using
either the low-frequency SCADA sensor measurements or additional component-specific
local high-frequency measurements to develop data-driven diagnostics and prognostics
models [14,15]. Indeed, few published works explicitly perform a joint analysis of sensor
measurements, alarm logs, and maintenance records [8,14,16]. This is exacerbated by the
lack of standardized maintenance reporting procedures in the industry [17,18].

The number of collected sensor signals varies from system to system depending on the
WTS, manufacturer, and operators [12,18]. The available sensors and their data quality will
determine the possible anomaly detection and diagnostics models that can be trained and
their performance. As such, although most of these diagnostics models are based on data
collected through the SCADA system, the data preprocessing used in different architectures
will likely converge to system-specific solutions. Hence, there is a need for a systematic
preprocessing methodology that can be implemented to different systems requiring no or
minor adjustments. In this regard, previous studies have addressed some of the global
challenges presented in data collected from the SCADA system. For instance, [15] analyzed
highly imbalanced SCADA data with the purpose of designing a more accurate alarm
system. Here, principal component analysis (PCA) is used to preprocess SCADA sensor
data, oversampling techniques are implemented to address class imbalance, and time splits
were employed to avoid class contamination.

In WTSs, fault detection and diagnostics tasks have mainly been addressed through
three different approaches: model-based, signal-based, and knowledge-based methods [14,19].
In this case, model-based approaches refer to statistical or data-driven models (DDMs).
Among these, machine learning (ML) and deep learning (DL) have become powerful al-
ternatives to train diagnostic and prognostic models in the context of PHM frameworks.
Popular ML models include support vector machines (SVM), k-nearest neighbors (k-NN),
and random forest (RF) algorithms, and they are frequently used for diagnostics tasks in a
variety of settings [20–23]. For instance, in [15], a comparative analysis of fault diagnostics
with k-NNs and SVM is presented, achieving F1 scores over 0.95 for both models after
balancing the datasets for healthy and degraded classes. Furthermore, Stetco et al. [23] pre-
sented a comprehensive review of ML models applied for both diagnostics and prognostics
in WTSs. It was identified that, for diagnostics tasks, class imbalance and noisy features
can hinder model performance, and significant attention must be given to the feature
selection and reduction process. Deep learning models have also been implemented to take
advantage of their hierarchical structure to extract abstract features from the available data.
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Chen et al. [24] implemented an unsupervised anomaly detection model for WTSs based on
long short-term memory (LSTM) autoencoders (AEs) using data from the SCADA system.
The model is trained based on data considered to be operating at normal states to then
be evaluated for new unseen data. Depending on the network’s reconstruction error, an
adaptive threshold is defined to determine whether the system is operating under normal
or anomalous conditions. Encalada-Davila et al. [25] presented another anomaly detection
method based on the prediction of one of the sensor variables (i.e., the quantity of interest)
based on other selected variables, where a residual is defined as the difference between
the sensor reading and the model’s predicted value. The model is trained on healthy data,
defined as long operational periods where no failures were observed. A faulty state is then
defined based on the model’s prediction error, where it is expected that faulty states will
produce a higher prediction error than a healthy state.

Two important challenges are thus identified in the literature for WTS diagnostics
models based on data from the SCADA system. On the one hand, most algorithms are
focused on unsupervised or semi-supervised anomaly and fault detection models. This is
due to the difficulties of acquiring robust and reliable labels from the system. It is observed
that the number of failures is negligible with respect to the available nominal or healthy
data (i.e., normal operation) [8]. Therefore, new methodologies to acquire health state
labels are required. On the other hand, the selection and implementation of ML and DL
approaches have been shown to be difficult. SVM can be unstable when analyzing large
multidimensional datasets, while RF tends to overfit over the training sets. DL models are
highly complex and require large amounts of data to be trained. Determining the structure
of a DL model is challenging given the high number of hyperparameters, and models tend
to overfit. However, although ML models also tend to overfit, these may outperform more
complex DL architectures under limited data regimes [26]. In this regard, feature extraction
and reduction techniques have proven key to analyze smaller datasets.

In this context, quantum computing has been presented as a new computational
paradigm, in which computations are performed based on two-state quantum systems,
denoted as qubits, instead of traditional bits. Qubits allow for quantum mechanics prop-
erties such as interference, entanglement, and superposition to be used in computation
routines, in some cases obtaining exponential gains in terms of algorithmic complexity
(number of iterations required to perform a certain task). While quantum hardware is
still in development, early quantum computers are becoming available for the general
public through cloud computing services such as IBM’s Quantum Experience. Additionally,
specialized software providing high-level APIs to develop quantum algorithms using tradi-
tional languages (e.g., Python) have also been released, such as Pennylane [27], Qiskit [28],
or Cirq [29]. With these two key developments, researchers and practitioners have been
able to test algorithms designed when quantum computing was a theoretical field. A good
example of this is Shor’s algorithm, proposed originally by Peter Shor in 1994 [30], for effi-
ciently computing the prime factors of integers, which has been recently further explored
in the area of cryptography given its relevance as a way to break modern encryption
techniques [31].

Recently, the focus of quantum computing research has been shifted into three main ar-
eas. The first is the usage of quantum computing to improve existing established algorithms,
such as query search or decryption algorithms. Examples of this can be found in [32,33].
The second is the use of quantum properties to accelerate general optimization problems
such as the quantum approximate optimization algorithm (QAOA), originally proposed in
2014 by Farhi et al. [34] to solve combinatorial optimization problems. The third area is the
use of quantum computing to either improve or accelerate ML models, where research has
focused on two different topics: designing quantum circuits that can be identified as neural
networks [35] and developing quantum circuits that can be used as kernels for traditional
algorithms such as SVMs [36].

Given this context, two research gaps are identified. Firstly, how to objectively select
feature reduction techniques when training ML diagnostic and prognostic models based
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on SCADA data. Secondly, given the recent advances in quantum machine learning
(QML) algorithms, how can quantum kernels be used for PHM purposes and how these
compare to traditional ML techniques. This paper discusses the potential of quantum SVMs
(Q-SVMs) for system prognostics through a WTS case study. Details on the preprocessing
methodology of SCADA sensors data and alarm logs are presented to train a quantum-
enabled prognostics model, which is compared with traditional ML algorithms. Here,
special attention is given to the feature reduction process through PCA and deep AE.
Challenges, advantages, and prospects are discussed when using QML models in PHM.

The main contributions of this paper are the following:

• Development and implementation of a quantum kernel-based fault prognostics model
in WTSs;

• Provide a comparative analysis of PCA and AE as feature reduction tools;
• Methodology to obtain health state labels based on SCADA alarm logs;
• Comparison with traditional ML models used for classification tasks.

The remainder of the paper is structured as follows. Section 2 presents a review of
current research and challenges in the application of PHM to WTSs. Section 3 presents a
detailed introduction to QML and quantum kernels. Section 4 describes in greater detail the
WTS case study. Section 5 presents the development of the proposed prognostics models
employed in this study and the obtained results, comparing the performance between
classical and quantum approaches. Finally, Section 6 presents the main conclusions of
this work.

2. Prognostics and Health Management in Wind Turbine Systems

Maintenance activities can be addressed through three different approaches: correc-
tive, preventive, and condition based. Corrective maintenance corresponds to a reactive
approach, where failed components are repaired or replaced after they have failed. Pre-
ventive maintenance is a more conservative strategy, where maintenance is performed
before the component’s estimated failure time, frequently based on fixed schedules. Here,
maintenance scheduling is based on the component’s statistical study, where it is ensured
that a certain percentage of the failures are prevented. This approach significantly reduces
the number of failures when compared to corrective maintenance; however, it is costly
since it frequently results in unnecessary stoppages to perform maintenance in equipment
that does not need it. In WTS farms, having these unprofitable stoppages is undesired.
In this regard, condition-based maintenance (CBM) uses information from monitoring
data collected from sensor networks to infer the health state of the system. This is a dy-
namic and proactive approach that allows integrating the health state of the system into
the optimization of maintenance policies. Integrating the CBM health assessment to the
decision-making process is known as PHM.

Prognostics and health management is an approach derived from CBM developed
to aid the optimization of maintenance policies. PHM seeks to implement end-to-end
frameworks that integrate sensor monitoring data into the decision-making processes,
including everything from data acquisition and preprocessing to the training of diagnostics
and prognostics models. As it is shown in Figure 1, most PHM frameworks are broadly
divided into four different stages: data acquisition, data preprocessing, diagnostics and
prognostics, and decision making [37].

In the last decade, research works have focused on obtaining diagnostics and prognos-
tics models to assess the system’s state of health. These models are traditionally physics-
based models (PBMs), DDMs, or hybrid (i.e., a combination of PBM and DDM). On the
one hand, mathematical models are highly accurate and provide interpretability. However,
PBMs are rarely available to describe the degradation processes in complex systems. On the
other hand, DDMs such as ML and DL techniques, have gained interest since they do not
require prior knowledge on the data or system under study and present great generalization
capabilities. This comes at the cost of low interpretability due to their black-box behavior
and lower precision in their prediction when compared to PBMs. ML applications can be
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adapted to study degradation processes at a local scale in components for which mathemat-
ical models for the physics of degradation are not available. These require highly precise
and localized sensors. These applications are common in additive manufacturing [38]. An-
other approach considers the discovery of general degradation behavior from operational
sensor measurements. This is more suitable for CESs, since knowledge on the degradation
behavior is scarce and sensor networks are designed to monitor the operation of the asset
rather than for diagnostics or prognostic purposes. In this case, extracting degradation
data is a challenging task, since the degradation can occur at any location in the system
and not necessarily where the sensors are placed. Sensor networks are also designed to
simultaneously monitor several components; thus, the resulting diagnostic models usually
focus on system-level degradation rather than local phenomena. Furthermore, hardware
development in the last decade has allowed the training of powerful models with millions
of data points using graphical power units (GPUs). As such, implementing ML and DL
algorithms to obtain diagnostics and prognostics models has become the center of research
in PHM. Examples of this are variational autoencoders (VAE) for fault detection [39], deep
convolutional neural networks (CNNs) for damage detection and quantification [40,41],
deep LSTM and recurrent neural networks (RNN) for quantity of interest prediction and
anomaly detection [42,43], and physics-informed neural networks (PINNs) for remaining
useful life estimation (RUL) [44].
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Multiple works have been published exploring different data-driven techniques em-
ployed for both diagnostics and prognostics in WTSs. Due to the lack of reliable labels and
the difficulties presented when training prognostics algorithms, most of these DDM-PHM
architectures in WTSs are used for anomaly detection and fault diagnostic tasks. These
are mostly trained on data collected through the SCADA systems [12]. Among these mod-
els, SVMs, RF, and neural networks (NNs) are the most popular [45–47]. More complex
DL architectures have also been implemented for anomaly detection [48]. For instance,
Wu et al. [49] proposed a methodology to diagnose gearbox bearings and generator faults
using SCADA sensor measurements based on a hybrid statistical–ML approach, combining
LSTM and Kullback–Leibler divergence. LSTM models have also been used with AEs to
develop an adaptive anomaly detection method, which then was employed with support
vector regression as an adaptive threshold of performance index [24]. A hybrid approach
was proposed in [50], where NNs were combined with statistical proportional hazard
models for real-time performance and stress condition assessment.

Given the model-agnostic nature of ML and DL algorithms, their performance heavily
relies on data availability and quality. Data preprocessing has been identified as a funda-
mental stage in PHM frameworks [37]. The importance of feature selection and outlier
detection for diagnostic and prognostic models in WTSs have been studied thoroughly
by Marti-Puig et al. [12,51]. The outlier detection process provides features with more
representative domains, which in turn yields models with better generalization capabilities.
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ML techniques such as SVMs tend to perform better for small input dimensions; thus,
feature extraction and selection play an important role in generating smaller and represen-
tative datasets. Hence, for these models, a smaller dataset results in shorter model training
and evaluation times and models with high performance. This is key to enable the online
deployment of these models for WTSs. In this regard, PCA and AE have been implemented
to train diagnostic and prognostic DDMs, as well as for feature reduction techniques [37,52].
Regarding WTS analysis, PCA has been implemented for different applications, including
a data visualization tool [53], feature selection and reduction [54,55], and fault detection
methods [56,57]. In this regard, utilizing and comparing AE and PCA as effective feature
reduction tools have not been as widely studied in WTS settings.

3. Theoretical Background: Quantum Computing

This section discusses the required background for quantum computing and quantum
machine learning. Section 3.1 introduces quantum computing and presents the concepts of
qubit, quantum gates, and encoding schemas. Finally, Section 3.2 presents a brief revision
on quantum machine learning and describes the quantum kernel circuit.

3.1. Quantum Computing

In the traditional paradigm of computation, the most basic unit of information is
represented as a deterministic two-state artifact known as a bit. At a conceptual level, a bit
is only able to represent, in a deterministic manner, one of two possible states: 0 or 1. At a
hardware level, modern computers implement bits in microcircuits where the presence
or absence of current determines the state of the bit. These bits can be utilized in logical
operations to construct logical gates, such as the well-known AND and OR gates. These
gates can also be combined to generate more complex artifacts, such as arithmetic circuits,
memory components, and basically everything else that conforms to what is known today
as a modern computer. In this regard, since the early 1950’s the concept of a bit (both at
a theoretical level and at a hardware level) has been used to develop and test the current
understanding of modern computing.

Quantum computing is a new paradigm in which quantum mechanics phenomena
are leveraged to perform computation. At its core, quantum computing proposes to replace
the concept of bit with a more flexible quantum substitution called a quantum bit or qubit.
While the traditional bit is limited to deterministically represent one of two possible states,
the qubit is a two-state quantum system and therefore can be placed into superposition,
encoding a probability distribution between the two possible states. Mathematically,
the qubit is a vector in a 2D complex space and therefore can be represented as a complex
linear combination of two basis vectors |0〉 = [1 0]T and |1〉 = [0 1]T in the form shown in
Equation (1) [58]:

|ψ〉 = c0|0〉+ c1|1〉, c0, c1 ∈ C, (1)

where the ket notation (|·〉) is used to represent the basis vectors, following the nomenclature
adopted by quantum mechanics. As c0 and c1 represent quantum state’s probability
amplitudes, then |c0|2 + |c1|2 = 1 must be satisfied. This normalization condition results
from the fact that, when a physical quantum system is measured, it can only collapse into
one of its possible states with a probability proportional to its amplitude. Multiple qubits
can be operated together to form more complex quantum states. Consequently, multi-qubit
systems can be represented mathematically using the outer tensor product, as shown in
Equation (2) [58]:

Ψ = |ψ1〉⊗ |ψ2〉 ⊗ . . .⊗ |ψN〉, (2)

where Ψ represents the quantum state formed by qubits denoted as {ψi}N
1 . The output of

this operation is a quantum system of 2N possible states, each with a complex probability
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amplitude ci. As in the case of individual qubits, the normalization condition still holds for
multi-qubit systems as well, indicated by Equation (3) [58]:

N

∑
i=0
|ci|2 = 1. (3)

While traditional systems composed of N bits can still represent a total of 2N possible
states, due to the deterministic nature of bits, only one of those states can be expressed by
the system at a given time. In quantum computing, and in particular for an N qubits system,
a superposition of all those states can be represented simultaneously. This alternative form
of state representation is what fundamentally motivates the interest in quantum computing
and its potential applications in lowering the algorithmic complexity of certain tasks.

As in the case of traditional bit systems, qubits systems can also be operated using
quantum gates, which are represented by unitary matrices and represent the fundamental
ways in which the qubits’ states can be modified to perform a certain computational task.
The gates applied to a multi-qubit system and the order in which they are applied is
commonly known as a quantum circuit. In what follows, the relevant quantum gates are
described [58].

3.1.1. Hadamard Gate

The Hadamard gate is a single qubit gate used to induce superposition into a system.
Mathematically, the matrix form for the Hadamard gate is depicted in Equation (4):

H =
1√
2

[
1 1
1 −1

]
. (4)

When H is applied over a qubit in the basal state |0〉, the resulting system has equal
probability of collapsing to either state (i.e., |0〉 or |1〉) when measured, as it is demonstrated
in Equation (5) by left multiplying the gate and the basal state qubit:

H|0 =
1√
2

[
1 1
1 −1

]
[1 0]T =

1√
2
[1 1]T =

1√
2
[1 0]T +

1√
2
[0 1]T , (5)

where c0 = c1 = 1√
2

; therefore, the condition |c0|2 + |c1|2 = 1 is fulfilled.

3.1.2. Controlled Not Gate

Entanglement is another important quantum mechanics property that is leveraged
in quantum computing for constructing dependencies between qubits. The controlled not
gate (C-NOT gate) induces entanglement into a two-qubit system, which is a two-qubit
gate defined as shown in Equation (6):

C NOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

. (6)

When applied over a two-qubit system, the C-NOT gate generates the following
control scheme: assuming that both qubits are in absolute basal states (i.e., either |0〉 or |1〉),
the first qubit acts as the control qubit, while the second is the one under control; if the first
qubit is |0〉, then the system is not affected by the C-NOT gate; if the first qubit is |1〉, then
the second qubit is inverted to the opposite state. More generally, if the qubits are not in
their basal states, the C-NOT gate inverts the probability of the third and fourth states of
the combined system.
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3.1.3. Rotation Gates

The Hadamard and C-NOT gates can be classified as non-parametric gates, since they
operate directly on qubits without the need for the specification of external parameters.
On the other hand, rotation gates are single qubit parametric gates, as their effect on a
qubit can be fine-tuned externally. To visualize their effect, it is necessary to introduce the
spherical representation of qubits. As shown before, qubits are vectors in a 2D complex
space. If both complex coefficients are represented in their polar form, the expression
depicted in Equation (7) is obtained:

|ψ〉 = r0eiφ0 |0〉+ r1eiφ1 |1〉. (7)

Equation (7) shows that four parameters are needed to represent a qubit: two am-
plitudes (r0 and r1) and two phases (φ0 and φ1) to form the original complex probability
amplitudes. Nevertheless, using the normalization condition and the fact that a qubit will
not physically change when amplified by a complex factor of unitary norm (regardless
of the phase, so it is admissible to apply a complex factor of phase −φ0 without loss of
generality) [58], it is possible to reduce the required number of coefficients to represent the
qubit to two, as shown in Equation (8):

|ψ〉 = e−iφ0
(

r0eiφ0 |0〉+ r1eiφ1 |1〉
)
= r0|0〉+ r1ei(φ1−φ0)|1〉= cos θ|0〉+ sin θ eiϕ|1〉, (8)

where the normalization condition is used to reduce the amplitudes r0 and r1 to a single
parameter θ by defining r0 = cos θ and r1 = sin θ. Additionally, only one phase term
survives after multiplying by the unitary complex factor with phase −φ0; therefore, φ1− φ0
can be replaced by a second independent parameter ϕ. Hence, Equation (8) shows that a
qubit can be represented by two parameters, θ and ψ. These parameters can be interpreted
as angles in a unitary sphere, also called a Bloch Sphere. Consequently, a qubit can be
understood as a point on the surface of such a sphere. This qubit representation is depicted
in Figure 2.
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Figure 2. A qubit |ψ〉 represented as a point in the unitary Bloch Sphere. Note from Equation (8) that,
for θ = 0 or θ = π, the qubit is located at the north and south poles, which coincides with the |0〉 or
|1〉 states, respectively. Another important case is θ = π

2 , where the qubit is located exactly in the
equatorial surface of the sphere, representing a perfect superposition of both basal states. (Adapted
from [59]).

The Bloch Sphere representation allows a straightforward interpretation of the effect
of the rotational gate operation. Each operation rotates the qubit about a main axis by a
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certain number of radians specified by the external parameter ξ. The matrices for these
gates are presented in Equations (9)–(11):

Rx(ξ) =

[
cos ξ

2 −i sin ξ
2

−i sin ξ
2 cos ξ

2

]
, (9)

Ry(ξ) =

[
cos ξ

2 −sin ξ
2

sin ξ
2 cos ξ

2

]
, (10)

Rz(ξ) =

[
e−i ξ

2 0

0 ei ξ
2

]
. (11)

3.1.4. Encoding Schemas

One of the first challenges to overcome when applying quantum computing techniques
to real valued data is the encoding process. This refers to how real value data should be
encoded into a multi-qubit system to perform computations. While at first glance this may
not seem different from any other type of encoding, in the quantum computing setting
an important limitation is the hardware feasibility. Every encoding schema needs to be
conducted on real quantum hardware; therefore, the encoding operations need to adhere to
the restrictions imposed by quantum mechanics. For this reason, encoding schemas are an
active area of research that lies in the line between quantum software and hardware. In the
following section, two of the most common encoding schemas are presented.

Angular Encoding

In angular encoding, a parametric circuit is applied prior to the circuit that will
manipulate the data to produce the desired output. This parametric circuit uses one
rotational gate per qubit to encode real numbers in the phase angle of every qubit. By
performing this operation, angular encoding needs N qubits to represent an N-dimensional
real valued vector. Mathematically, the operation is depicted in Equation (12) [60]:

→
x → |Ψ〉 = Rx(x0)⊗ Rx(x1) . . . Rx(xN−1)⊗ Rx(xN), (12)

where Rx is the rotation gate with respect to the X axis in the Bloch Sphere (as depicted by
Equation (9)), applied independently to every qubit, accepting the real values {xi}N

1 as its
parameters, corresponding to each original dimension. While angular encoding is not as
efficient in terms of encoding capacity as other encoding schemes, it is one of the simpler
ones to configure and therefore is one of the most used.

Amplitude Encoding

In this type of encoding, the classical information is encoded into the amplitudes of
each of the possible states, requiring log2(N) qubits to encode an N-dimensional real value
vector, which makes it more efficient than angle encoding. The mathematical operation for
angular encoding is presented in Equation (13) [60]:

→
x → |Ψ〉 =

2N

∑
i=0

xi|i〉, (13)

where |i〉 represent the possible basal states for an N-qubit system. It is important to note
that the real values xi need to be normalized prior to the encoding application to ensure
that the resulting quantum state is valid.

3.2. Quantum Machine Learning

Quantum machine learning is a new field of research that lies in the juxtaposition
between traditional ML and quantum computing. The general objective is to leverage the
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theoretical advantages of quantum computing to either create new data-driven algorithms
or to enhance existing ones. Two approaches have been treated with interest by the
research community. The first one is a parametric approach, in which a quantum circuit
composed by parametric gates is treated as a trainable model, updating the parameters
to minimize a given objective function. The advantage of this approach is that it allows
researchers to draw clear similarities and parallels with traditional NNs, as both models
perform prediction tasks based on observational data undergoing an iterative learning
phase. Parameterized quantum circuits (PQC) [61] have already been used in the PHM
context to classify health states in rotatory machinery with similar results as traditional
approaches [62]. Nevertheless, while useful and simpler to understand, PQC methods fall
short in their flexibility, as they can only be used for classification or regression tasks. On the
other hand, quantum kernel approaches can also be used for prediction tasks; additionally,
they can be extended to other tasks such as clustering or dimensionality reduction.

Quantum Kernels

In this section, a particular quantum circuit used to generate a quantum kernel-like
function will be introduced. Quantum kernels [63] are specialized quantum circuits that
effectively perform the same operation as traditional kernels. That is, they perform an
internal dot product between the image of two vectors as shown in Equation (14):

κ
(
φ(xi), φ

(
xj
))

= |〈φ(xi)|φ
(
xj
)
〉|2, (14)

where xi and xj are two N-dimensional vectors and φ(x) : RN → RM is a feature map that
transforms the vectors from RN space to RM space. In the quantum context, a kernel is a
circuit that performs a similar operation, with the notable difference that φ(x) : RN → CM

is now a feature map that encodes the data into a quantum state; therefore, the dot product
is performed according to the complex space rules. In terms of implementation, the circuit
is composed of two parametric encoding blocks that can receive as inputs the input classical
data. For example, these encoding blocks could be angular or amplitude encoding circuits.
These two blocks are applied successively to the same multi-qubits system prepared in a
basal state. Then, a measurement operation is applied. The final state of the circuit can be
computed as shown in Equation (15) [63]:

〈0..0|S(x′)S(x)† MS(x′)†S(x)|0..0〉
= 〈0..0|S(x′)S(x)†|0..0〉〈0..0|S(x′)†S(x)|0..0〉,

(15)

where S(·) is an encoding operation applied over the real data, and M is a measurement
operation. The right-hand side of Equation (15) represents a squared norm, and it can be
rewritten as depicted in Equation (16):

〈0..0|S
(
x′
)
S(x)† MS

(
x′
)†S(x)|0..0〉 = |〈0..0|S

(
x′
)
S(x)|0..0〉|2, (16)

where the feature map function is identified as φ(x) = S(x)|0..0〉; therefore the expression
shown in Equation (17) can be identified as a kernel function between two datapoints x
and x′:

〈0..0|S
(

x′
)
S(x)† MS

(
x′
)†S(x)|0..0〉 = |〈φ

(
x′
)
|φ(x)〉|2 = κ

(
x, x′

)
. (17)

Figure 3 portrays a diagram of this quantum circuit.
The quantum kernel portrayed in Figure 3 can, in principle, be used to replace any

traditional kernel. This requires the close interaction of a quantum computer and a tra-
ditional computer, making this algorithm a hybrid approach. The quantum kernel for
the entire dataset would be computed in the quantum computer and then utilize those
results in a traditional algorithm, usually executed in a classical computer. The fact that
quantum kernels can be seen as replacements to traditional kernels, maintaining the same
basic properties, gives this approach immense flexibility in its range of applications. In this
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paper, the attention is centered on the application of quantum kernels to SVM classification
algorithms, which is presented in Section 5.
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4. Wind Turbine Data Analysis

As in multiple complex engineering systems, one of the main challenges when ana-
lyzing data collected through SCADA is related to the lack of formal data preprocessing
methodologies. Improper data manipulation can cause a significant performance drop in
the diagnostics and prognostics models. Further, as SCADA data entries are recorded every
10min, this low temporal resolution is poorly complemented by the SCADA rule-based
alarm systems. In this data collection regime, multiple alarms communicating the deviation
of nominal operational conditions may be logged automatically in the same 10min window.
Additionally, after an alarm has been triggered and the WT controller has initiated the corre-
sponding corrective action (e.g., yaw control and grid disengagement), the same alarm may
be triggered again once the alarm reset time has been surpassed, independently of whether
the event or condition which caused it has not been corrected or avoided by the control
system. Additionally, it has been noted that individual alarms do not necessarily indicate
that a fault has occurred [18]. These issues lead to noisy, overlapping, and intractable alarm
logs. Hence, data-driven implementations for diagnostics and prognostics have focused
on directly analyzing the SCADA data entries or localized sensors with higher acquisition
frequency rather than extracting useful information from the alarm log system. For this
case study, both data sources are considered to develop diagnostic models.

4.1. Case Study

The WTS data collected correspond to a period between 2015–2019 from an onshore
wind farm. In this paper, the analysis focuses on a single turbine, utilizing both the available
SCADA sensor measurements data and recorded alarms. Considering a sampling time of
10 min, this period amounts to 251,164 temporal entries of sensor measurements. In this
period, 337,448 alarms were registered in the analyzed turbine. The details of this dataset
are discussed below.

The recorded SCADA data consist of various sensor measurements and event logs
recorded with a sampling time of 10 min. Each sensor variable is described by its mean,
maximum, minimum, and variance of its values in the 10min time window. For conve-
nience, the recorded variables can be categorized in electrical, mechanical, temperature,
and environmental types, as shown in Table 1. Monitored components include turbine
blades, rotor, nacelle, gearbox, bearings, and cooling system, as well as multiple controllers
and indicators of the generator, grid, and WTS states [7,49].

Table 1. Internal categorization of WTS sensors.

Variable Type Sensor Measurements

Component status Engagements, system checks
Electrical Power, current, voltage, frequency

Mechanical Blade position, RPM, yaw brake
Temperature Mechanical/electrical components

Environmental Pressure, humidity, wind speed, wind direction
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Internal SCADA alarm codes are triggered under a variety of circumstances, including
operational and communication logs, detected faults, start-ups, and cool-downs. Of a total
of 369 alarm codes, these can be categorized internally as: mechanical issues and tempera-
ture anomalies (93), electrical anomalies (82), control actions (82), sensor malfunctions (77),
operational signals (20), test codes (11), and environmental conditions (4). In the period
2015–2019, the number of alarm logs categorized by their severity level is shown in Table 2.

Table 2. Breakdown of SCADA alarm logs per severity.

Event Severity Number of Alarm Logs

Alarm 242,401
Miscellaneous 51,208

Warning 43,839
Total 337,448

The breakdown of the most relevant alarm logs, excluding warnings and miscellaneous
codes, is shown in Figure 4. As it can be observed, a high number of alarm logs corresponds
to pitch faults (identified as pitch fault 1 and 2), followed by operational control actions
(e.g., powering up the central controller, receiving a remote command to stop, or to stop
based on safety concerns) and external faults related to grid stability, sensor faults, or control
system communication faults. The pitch fault alarms are triggered when the angle between
the blades surpasses a certain threshold. If this threshold is infringed for more than 60 s,
an alarm is triggered. This activates the corresponding sections of the WT central control
system and thus initiates corrective actions. For the studied pitch faults, these alarms result
in an automatic shutdown. If the monitoring sensors detect that after the alarm reset time
the conditions are still anomalous, the SCADA alarm system registers a new log. Given the
number of WTS stops induced by the pitch fault alarms, it is of interest to develop DDMs
to detect them. Further details on the importance of the pitch fault alarm and its relatively
high failure rate when compared to other failure modes can be found in [4,8,57,64–66].
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4.2. Data Preprocessing

The data preprocessing stage is focused on mapping the alarm logs to the sensor
data and obtaining a representative dataset of the WTS’s pitch faults. The analysis is
performed via the classification of the WTS health state, since obtaining robust and reliable
RUL labels from the SCADA system for regression approaches is currently a difficult task.
Hence, the data are preprocessed for the diagnosis (i.e., classification) of an unbalanced
pitch faults failure mode. The preprocessing stage also includes feature reduction analysis
through PCA and AE. This stage yields the selected principal components and latent space
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representation of the sensor data that will be used as the input features to train and test the
diagnostic models.

4.2.1. Alarm Logs and Label Generation

Regarding the WTS’s SCADA alarm logs, the analysis focuses on the detection of
unbalanced pitch faults. This alarm is triggered when the angle between two blades of
the wind turbine differs more than the specified setpoint. These faults are recorded under
three different alarm codes depending on the operational stage of the WTS (i.e., normal
operation, shutdown, stationary). Each alarm log entry delivers the alarm code, the time at
which the anomaly was detected, and the time at which the alarm is reset (i.e., fixed time).
For instance, Figure 5 shows the distribution of alarm duration for different alarm codes.
Here, it is shown that the majority of the continuously occurring pitch fault alarms have a
duration of 1 h. Hence, a naive approach is selected to simplify the pitch fault detection
task, such that faults are detected in the WTS 1 h prior to their occurrence. Consequently,
the SCADA sensor data are averaged in time windows of an hour. Each sensor data entry is
labeled as “healthy” or “faulty” according to whether any pitch fault alarm was triggered
at any point during the previous hour.
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4.2.2. Feature Reduction Analysis

An important step in the data preprocessing stage for ML diagnostic and prognostic
models is feature selection and reduction. A WTS is instrumented with hundreds of
different sensors, monitoring a wide variety of variables. Although all these sensors could
potentially contain valuable information on the system’s state of health, ML models are
known to struggle when trained on large input dimensionalities. Therefore, manual variable
selection and statistical dimensionality reduction methods are commonly used to create
diagnostic datasets from multi-sensor systems. These methods are also useful for analyzing
systems with multiple sensors to identify representative features extracted from the original
sensor data and thus disregarding uninformative sensor variables. Furthermore, unrelated
variables can be identified and discarded based on expert knowledge [37].

The original SCADA dataset for this case study consists of 385 sensors. The information
quality provided by these variables is measured based on the percentage of useful data
they can provide and whether they provide numerical values or not. For instance, sensors
with missing information are discarded based on the number of NaN (not-a-number)
values they present, where columns and rows with more than 5% void entries are excluded.
Figure 6a shows the original distribution of void entries, where almost 100 columns contain
no information, while over 200,000 rows contain at least 36% of void entries. Figure 6b
shows the resulting distribution after filtering under 5% void entries per column and rows,
respectively [37]. Further, non-informative variables reporting event counts are excluded
from the analysis, as well as variables that only indicate the current state of a sensor
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(e.g., connected, online, and failed communication). This results in a selection of 168 of
variables related to physical sensors in the system, covering temperature, vibration, and
electrical measurements. This reduces the dataset size from around 96.7 M to 42.2 M of
useful data entries. Table 3 compares the resulting dataset sizes when a 5% and a 0% void
entry threshold is used on the original dataset.
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Table 3. Dataset reduction by void entry threshold.

Void Entries Number of Features Dataset Size

Original 24,141,390 385 96,698,140
Processed (5% NaN threshold) 29,646 168 42,195,552
Processed (0% NaN threshold) 0 142 35,665,228

Further dimensionality reduction can be achieved mainly through two methods.
On the one hand, statistical tests can be performed to assess the correlation between the
input features and the output labels (e.g., ANOVA test). To this end, Python libraries such
as scikit-learn have implemented packages that automatically select a specified number of
features based on scores obtained from a determined statistical test [67]. One example is the
SelectKBest, which has proven to be an effective tool for diagnostic models [68]. However,
using these tools requires manually selecting an appropriate test as well as a score threshold
to determine what is considered to be an informative feature. Furthermore, the obtained
scores are individual for each feature and do not have a cumulative information metric
from which to construct this threshold. On the other hand, feature reduction techniques
that map the original input data to a reduced dimensionality space, such as PCA and AE,
allow one to make an informed decision for all features simultaneously. Although these
techniques do not retain the original features of the data, they reduce the dimensionality
without losing as much information as by manually discarding features from the original
data. Additionally, both PCA and AE have been shown to exhibit denoising properties,
which can be beneficial when training diagnostic and prognostics models [23].

In this work, both AE and PCA are employed to obtain nonlinear and linear rep-
resentations of the original dataset in a lower dimensionality space. On the one hand,
the cumulative explained variance (CEV) is used to evaluate the PCA’s performance and
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determine the adequate number of principal components that make the reduced dimension-
ality representative [69]. The CEV is shown in Figure 7 for the first 32 principal components
extracted from the sensor dataset. It is expected that, at a higher CEV, the dataset is more
representative while reducing the number of correlated variables. Although there is no
general rule of thumb to what minimum CEV is required to faithfully represent a dataset, a
90% CEV is considered an acceptable threshold to select the number of principal compo-
nents. For instance, in [50], PCA was used as a feature reduction tool to obtain a smaller
and representative dataset, which accounted for 90% of the CEV.
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Table 4 shows that 19 principal components correspond to a 90% CEV for this case
study, which is also illustrated in Figure 7.

Table 4. Cumulative explained variance per number of principal components.

Number of PCs CEV Number of PCs CEV

1 0.321 17 0.884
2 0.477 18 0.893
3 0.549 19 0.901
4 0.609 20 0.909
5 0.651 21 0.917
6 0.688 22 0.924
7 0.719 23 0.930
8 0.746 24 0.937
9 0.768 25 0.942
10 0.788 26 0.947
11 0.808 27 0.952
12 0.824 28 0.957
13 0.838 29 0.961
14 0.850 30 0.964
15 0.862 31 0.968
16 0.873 32 0.971

On the other hand, AEs are deep NNs that are trained to replicate their input values.
That is, the network input corresponds to a vector X, and its output corresponds to the

estimation of that same input
ˆ
X. The network consists of two phases: an encoder and a

decoder. For dimensionality reduction purposes, the encoder maps the input value into a
smaller latent space, and then the decoder reconstructs the latent space into the original
dimension. Both the encoder and the decoder consist of NNs with nonlinear activation
functions. In theory, an AE with linear activation functions should be equivalent to a PCA.
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However, an NN-based AE with nonlinear activation functions is expected to obtain a
smaller and more accurate latent space representation of the data when compared to a PCA.
It should be noted that these feature reduction tools do not allow one to trace what specific
features have been selected to represent the data at a lower dimensionality.

To select the most representative latent space dimensionality, a sensibility analysis
on the AE’s reconstruction error must be performed. Figure 8 presents the AE recon-
struction mean squared error (MSE) for different latent space dimensions. The vertical
green line is used as a reference corresponding to the 19 principal components, and it can
be observed that the reconstruction MSE starts to converge around 15–16 features latent
space dimensionality. Note that each training of the AE will yield different results, even if
the architecture and data remain untouched. As such, Figure 8 would present a smooth
behavior (as the PCA in Figure 7) if multiple models were trained for each architecture
(i.e., latent space dimensionality).
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Given the results presented in Figures 7 and 8, it is expected that both dimensionality
reduction techniques will present similar performance when used to train diagnostic
models. It should be noted that, although a better representation is expected from the
AEs, they tend to be more computationally demanding than the PCA due to the deep
NN architecture. Indeed, the training processes for the AE take an average of 60 s, while
training the PCA takes an average of 1 s on the same hardware. Furthermore, unlike the
CEV metric, a low reconstruction MSE value does not provide an interpretable metric on
the latent space’s contained information. Other AEs’ drawbacks include inflexibility to
manage void entries (i.e., NaN values), limiting the available data that can be used to train
the model, and the new unseen data that can be evaluated once the model is online. In
this case, the void entry reduction technique is applied with a 0% threshold, reducing the
useful dataset to 142 features and 35.6 M entries (Table 3), potentially affecting the system’s
representability of the obtained data. This is of great importance in WTSs, since void
entries are commonly encountered in real datasets. Hence, both PCA and AE techniques for
feature reduction should be explored and compared simultaneously when used to process
the input data to train diagnostic models.

5. Quantum-Based Wind Turbines’ Pitch Fault Prognostics

This section describes the computational experimental setup and results for the
quantum-enabled and classical diagnostic approaches. The data are split into healthy
and degraded state classes. Based on the previously discussed PCA and AE feature re-
duction process, the ML model training and testing process are described. The results of
the classification models and the effect of the feature reduction techniques employed are
also discussed.
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5.1. Computational Experimental Setup

In this work, the performance of all the ML models is compared based on datasets of
reduced dimensionalities. This dimensionality reduction is performed with both the PCA
and AE techniques, as described in Section 4.2. A sensibility analysis to assess the impact of
the feature reduction on the models’ performance is presented. The tested dimensionalities
are 4, 8, 16, 19, and 32 features. These dimensions are chosen based on two criteria. First,
the dimensions 4, 8, 16, and 32 are chosen based on the encoding techniques available for
quantum algorithms. Secondly, experiments with 19 features are included to represent the
threshold of the PCA’s 90% explained variance and where the AE’s reconstruction MSE
starts to converge. The resulting dataset sizes are reported in Table 5.

Table 5. Dataset size by number of features used in the reduction process.

Number of Features Dataset Size

4 1,004,656
8 2,009,312
16 4,018,624
19 4,772,116
32 8,037,248

With respect to the quantum classification approach, both angular and amplitude
encoding were utilized as the feature map function for the quantum kernel for the datasets
including four and eight principal components. For the cases where 16 and 32 principal
components were utilized, only amplitude encoding was tested due to limitations in quan-
tum circuit simulation. Given the exponential increase of possible states that a quantum
model can represent as the number of qubits increases, simulating a system with over
12 qubits is generally not possible on modern classical computers running quantum simu-
lators. For the special dataset including 19 principal components, zero-padding was used
to augment the dimension of each datapoint to 32 features, which is the closest number to a
power of two (i.e., 25). As this operation is performed on each datapoint after the initial
preprocessing and division intro training and testing sets of the data, it does not affect the
balance or fairness of the experiments nor leak training data into the testing set.

The reduced datasets are separated into balanced training and test sets [15,70]. That is,
the training datasets present the same number of entries labeled as “healthy” and “faulty”
states, with the purpose of reducing the model’s bias toward the most observed state
(i.e., the healthy state). As shown in Table 6, out of the original 251,164 temporal entries,
only 779 of these correspond to faulty states. Hence, to create the balanced training and
test sets, 779 entries labeled as healthy are randomly selected. The resulting 1558 entries
are then divided into training and test sets, considering a 20% split to test the models’
performance after these have been trained.

Table 6. Resulting size of balanced classes for healthy and faulty states.

Healthy Degraded Balanced Training Set Size Balanced Test Set Size

250,384 779 1244 308

The quantum kernels are compared to traditional ML techniques, namely: SVM with
both linear and RBF kernels, RF, and k-NN. The models’ performances are compared based
on the same dataset. A stratified k-fold (10) is used for the hyperparameter selection.
The ML models are trained on Python 3.8 and the Pycaret library. Ten different models
are independently trained for each classical algorithm, whereas five different models are
independently trained for each quantum-based algorithm. Reported classification metrics
include the average and standard deviation of accuracy, precision, recall, and F1 score.
The utilized hardware consists of an NVIDIA RTX 3060 GPU, an 8-core AMD Ryzen
7 5800X CPU, and 32 GB of RAM memory.
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5.2. Results and Discussion

This section is structured as follows. First, results regarding the classification task
using a feature reduction strategy based on PCA and AE are presented in Table 7. This table
reports the models’ average accuracy and F1 score achieved for the training and test sets of
five different reduced dimensionalities. Additional metrics, including averages of precision
and recall, as well as the standard deviation for all metrics, are presented in Appendix A
(Tables A1–A5). Then, the performance of the PCA and AE as feature extractors is discussed,
followed by a comparison of the classical ML models. The performance of the Q-SVM
model is discussed for the two types of encoding presented. Finally, the performance
between classical ML and Q-SVM is discussed.

Table 7. Diagnostic model metrics using data preprocessed through PCA and AE.

Model Dimension

PCA AE

Train Test Train Test

Acc F1 Acc F1 Acc F1 Acc F1

RF

4 0.868 0.870 0.871 0.877 0.907 0.910 0.877 0.879
8 0.898 0.905 0.887 0.889 0.897 0.902 0.885 0.887
16 0.910 0.914 0.909 0.911 0.895 0.896 0.899 0.901
19 0.926 0.928 0.916 0.919 0.920 0.921 0.902 0.905
32 0.923 0.925 0.906 0.908 0.906 0.912 0.894 0.898

k-NN

4 0.871 0.876 0.869 0.875 0.915 0.920 0.888 0.891
8 0.901 0.909 0.882 0.884 0.921 0.922 0.904 0.906
16 0.914 0.916 0.904 0.906 0.912 0.912 0.912 0.913
19 0.924 0.928 0.910 0.912 0.924 0.925 0.905 0.908
32 0.920 0.923 0.906 0.909 0.915 0.921 0.904 0.907

SVM-Linear

4 0.824 0.832 0.819 0.827 0.771 0.765 0.747 0.742
8 0.878 0.884 0.854 0.862 0.907 0.911 0.894 0.898
16 0.912 0.915 0.890 0.894 0.903 0.907 0.883 0.888
19 0.897 0.900 0.898 0.900 0.925 0.929 0.919 0.923
32 0.914 0.916 0.902 0.903 0.923 0.927 0.927 0.931

SVM-RBF

4 0.858 0.864 0.846 0.852 0.887 0.891 0.865 0.870
8 0.897 0.902 0.887 0.892 0.931 0.933 0.917 0.920
16 0.925 0.928 0.920 0.923 0.927 0.930 0.909 0.917
19 0.932 0.934 0.897 0.900 0.954 0.955 0.945 0.947
32 0.938 0.939 0.921 0.923 0.939 0.942 0.912 0.919

Q-SVM

4 [Angle Enc.] 0.854 0.859 0.811 0.817 0.846 0.851 0.827 0.832
4 [Amplitude Enc.] 0.824 0.830 0.819 0.824 0.810 0.812 0.784 0.779

8 [Angle Enc.] 0.890 0.895 0.888 0.893 0.930 0.933 0.894 0.898
8 [Amplitude Enc.] 0.866 0.872 0.856 0.862 0.868 0.876 0.860 0.867

16 [Amplitude Enc.] 0.896 0.899 0.897 0.900 0.875 0.887 0.874 0.885
19 [Amplitude Enc.] 0.895 0.898 0.898 0.901 0.931 0.935 0.924 0.928
32 [Amplitude Enc.] 0.910 0.912 0.886 0.889 0.911 0.918 0.910 0.915

In Section 4, a sensibility analysis regarding the optimal reduced feature dimension-
ality of the data was presented based on the CEV and MSE metrics. However, when
implementing data-driven prognostics models, it is also desired to obtain the lowest
possible dimensionality that does not hinder the model’s performance to minimize the
computational burden. In practice, this allows for simpler model selection and maintenance
for effective online deployment given their on-site hardware requirements. As such, a sen-
sibility analysis on the model’s performance is required to assess the optimal feature space
dimensionality, which might not necessarily coincide with the number of features indicated
by the CEV and MSE thresholds. In general, Table 7 suggests that the prognostics models
perform better when analyzing the data preprocessed with AE than with PCA. Additionally,
model accuracies tend to increase with a higher dimensionality space, converging to values
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above 0.90. F1 scores follow a similar trend as accuracy, indicating an adequate balance be-
tween false negatives and false positives. It should be noted that most ML models achieve
a peak test accuracy over 0.90 for a reduced dimensionality of 19 features. This is the case
for most models trained on the AE’s latent space, although this behavior is only exhibited
by the RF and k-NN models when trained on the PCA data. While it may be intuitive
that more training features should increase the performance of the tested models, from an
information point of view, this is not always the case. In this study, 19 features represent a
threshold for which most of the information from the original dataset is encoded into the
PCA or AE features, as shown in Figures 7 and 8. Adding extra information in the form of
additional features may become detrimental to the learning process, as they are likely to
add more noise than useful information; nonetheless, the algorithms are forced to interpret
them. Moreover, it is known that ML models, such as SVM, are often affected by what is
known as the “the curse of dimensionality”, where datasets containing a large number of
features are not suitable for efficient training and thus require further feature extraction
procedures to increase their prediction performance. In general, the performance of all
trained models suffers the most when a lower number of features are used as input data,
as expected by the loss of information for both the PCA and AE preprocessing approaches
at lower dimensionalities. This behavior can be observed in Figure 9, where the test accura-
cies for the models are compared based on the corresponding number of features used for
the data reduction process. This is consistent with the dimensionality reduction analysis
performed for both the PCA and AE (see Figures 7 and 8). However, it should be noted
that unless the AE’s performance is compared to that of an interpretable metric, such as the
CEV obtained through PCA, there is no guarantee that a representative dataset is efficiently
obtained. Results indicate that the latent space representation obtained from the PCA and
AE are not directly comparable, which confirms the value of simultaneously analyzing
these two feature reduction techniques.
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The presented results indicate that the overall highest test accuracy is achieved by
the SVM-RBF model at 0.945 and 0.921 through AE and PCA reduction, respectively. It
should be noted that, although both RF and k-NN present a comparable performance,
these show noticeable differences between the accuracy reported for the training and
test sets, which is an indication of overfitting. Still, k-NN generally performs better than
the RF using the same number of input features. It can also be observed that, for low
dimensionality, the RF and k-NN models with AE feature reduction outperform the rest,
while for higher dimensionalities the models trained on PCA features show better results.
This is an important result to choose which dimensionality reduction technique should be
used. Regardless of the input dimensionality, the standard deviation for the accuracy does
not surpass 5% for all models, except for the SVM with linear kernel (see Tables A1–A5).
These low standard deviations values are expected, given that the tested ML algorithms
present a stable behavior during the training process. A small standard deviation also
shows a consistent performance of the models, which can be related to the preprocessing
methodology employed. Indeed, the average accuracy standard deviation obtained for
data preprocessed with both PCA and AE does not surpass 1.87% and 2.39%, respectively.
This behavior can also be observed for the Q-SVM model, for which the average accuracy
standard deviation obtained is 2.26% and 2.56% for datasets preprocessed with PCA and AE,
respectively. Unfortunately, none of these algorithms allow one to quantify the prediction
uncertainty, which is an ongoing challenge in the PHM community.

One of the main limitations of this work lies in the simplified approach taken towards
label generation. The detection time window of one hour prior to a pitch fault alarm is a
naïve approach based on the distribution of alarm duration shown in Figure 5. The main
drawback of using a fixed time window is that it does not consider that overlapping alarms
may be recorded. Hence, further work is required to produce more robust datasets from
alarm logs, considering various alarms of interest. Other label generation methodologies
defined from maintenance and operational logs for prognostics purposes based on time
windows have been proposed by Cofre-Martel et al. [37,70]. The approaches outlined in
these articles would enable the use of longer time windows, expanding the prediction hori-
zons to more than 1 h in the future. Additionally, a sensibility analysis is further required to
obtain the optimal prediction horizon based on expert knowledge and model performance.

It can be seen from Table 7 that angle encoding results in a better model performance
than angular encoding for both PCA and AE (refer to Q-SVM results for four and eight fea-
tures). While both encoding techniques are lossless operations to translate information
from a classical to a quantum setting, using more qubits results in more expressive kernels,
as it is the case for angle encoding. This expressiveness allows the algorithm to perform
better in downstream tasks, such as classification. For the rest of the cases, quantum-based
fault prognostics results are comparable between preprocessing approaches (PCA and AE),
and no significant differences are observed between them in terms of final accuracy, indi-
cating the stability of the quantum kernel-based approach against widely different feature
extraction techniques. Note that the performance of Q-SVM models is more sensitive to the
number of features for the AE than the PCA preprocessing. Figure 9 shows that, for most
cases, more features in the original dataset effectively result in better fault prognostics
performance, as it is expected from an information point of view. Nevertheless, for the
PCA feature reduction approach, a decay in performance is observed when the algorithm is
trained using 32 principal components, indicating that the extra components contain a low
amount of explained variance and therefore are detrimental to the classification task. On the
other hand, for the AE feature reduction approach, no loss in performance is observed when
using 19 or 32 features. This may be explained by the fundamental differences between the
PCA and the AE feature reduction process, the latter being a nonlinear function optimized
based on a reconstruction metric that allows the AE to encode useful information even past
the threshold of 19 features. Note that no significant decay in performance is observed
when the zero-padding technique is used to allow the application of amplitude encoding
to the case of 19 features. This is important since it motivates further exploration in quan-
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tum kernel-based fault detection models without the limitation of having to synchronize
the number of features to the closest power of two. With respect to the implementation
itself, while software libraries allow for a relatively straightforward interface to program
simulations of quantum circuits, the execution time vastly surpasses the time necessary to
train and evaluate the classical approaches tested in this paper. For example, the Q-SVM
training time is in the order of four hours, while the training of traditional SVM approaches
takes seconds in modern hardware. The increased amount of training time for Q-SVM
models is likely to be due to the simulation process being performed in a classical computer,
which is not specialized for quantum operations. The real-time requirements for quantum
algorithms will need to be further assessed by the research community once quantum
hardware becomes readily accessible. In this regard, this situation is comparable to the
origins of other data-driven techniques such as DL before the general availability of GPUs
and custom-made software to accelerate the execution of such models (e.g., CUDA).

Comparing the performance of Q-SVM with traditional approaches, it is evident that
while the results are within close range with the current available quantum processors and
quantum simulators, slightly better performance is obtained using some of the classical
techniques for most cases, notably RF models. An outlier in this trend is the case in
which the dataset with 32 features generated with an AE was used, where the Q-SVM
performance surpasses the RF classifier. Nevertheless, the Q-SVM technique can achieve
satisfactory pitch fault imbalance prognostics results. This indicates that the quantum
kernel is effectively transforming the original data into a higher dimensional space that is
rich enough to allow for the identification of pitch imbalance faults. In addition, the lower
performance of the Q-SVM technique could be at least partially attributed to the current
state of the art of quantum hardware and quantum simulators, which does not allow for the
generation of large encoding circuits capable of leveraging on the whole range of available
feature information. Given the state of current quantum technology and algorithms, the
fact that the Q-SVM presents a comparable performance with classical counterparts is
an important indication of the potential benefits achievable in the near future. This is
a key motivation to explore these algorithms as quantum hardware and software are
further developed.

To formally assess the statistical difference between the models’ performance and
compare the ML models with the quantum kernels, a difference of means hypothesis test
is performed for the best-performing data reduction configuration. For each model using
19 features processed with AEs, 10 different instances are trained and then tested to obtain
a mean and a standard deviation of the models’ accuracy. The hypothesis is that the test
accuracy distributions are not statistically significant. Thus, the null hypothesis is that the
mean test accuracy is the same for each pair of models. The null hypothesis H0 and the
alternative hypothesis H1 are presented in Equations (18) and (19):

H0 : x1 = x2, (18)

H1 : x1 6= x2 (19)

where x1 and x2 are the sample mean for the first and second population samples, respec-
tively. Equation (20) shows the standard error (SE):

SE =

√
s2

1
n1

+
s2

2
n2

, (20)
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where s1, s2 are the sample standard deviations corresponding to x1 and x2, respectively.
The degrees of freedom (DOF) are then computed as shown in Equation (21):

DOF =

(
s1

2

n1
+ s2

2

n2

)2

(
s1

2
n1

)2

n1−1 +

(
s2

2
n2

)2

n2−1

. (21)

Then, the test statistic is given by Equation (22):

t =
x1 − x2

SE
. (22)

The null hypothesis H0 is rejected if p < α, where α is the significance level, which is
normally set to a value between 0.05 and 0.10, and p is the corresponding p-value.

Table 8 shows the mean and standard deviation values for each model. Table 9 shows
the obtained p-value for each pair of models.

Table 8. Test accuracy sample mean and standard deviation for 10 models using 19 latent space AE.

Sample Mean Sample Std

RF 0.902 0.013
k-NN 0.905 0.010

SVM-L 0.919 0.015
SVM-RBF 0.945 0.007

Q-SVM 0.925 0.017

Table 9. p-value for each pair of models using 19 latent space AE.

k-NN SVM-L SVM-RBF Q-SVM

RF 0.286 0.008 0.000 0.002
k-NN - 0.013 0.000 0.003

SVM-L - 0.000 0.207
SVM-RBF - 0.003

Considering a significance level of α = 0.05, the obtained p-values indicate that the
Q-SVM outperforms both the k-NN and RF models with a statistically significant ad-
vantage. Although further testing is required to confirm the robustness of the Q-SVM
approach, this is an interesting result considering the widespread use of k-NN and RF
for data-driven fault diagnostics and prognostics tasks. Furthermore, the null hypothesis
cannot be rejected when comparing the Q-SVM and SVM-L models. Thus, the performance
difference between these two models is inconclusive, and they can be considered as com-
parable. The SVM-RBF is the only approach that presents a statistically significant higher
performance than the Q-SVM. This result, in conjunction with the fact that quantum kernel
approaches have just begun to be expanded and tailored by the machine learning research
community, encourages further exploration of the technique itself and ways to improve it.
Indeed, the presented Q-SVM approach uses a reduced number of qubits, limited by the
current maturity of the quantum hardware and simulators available. Yet, Q-SVM obtained
comparable and competitive results in terms of performance, even outperforming popular
algorithms such as RF and k-NN, particularly when tested with a reduced space of 19 fea-
tures (See Figure 9 and Table 7). However, the computational complexity of the calculations
performed to encode and process the data in Q-SVM results in prohibitive model training
and evaluation times when compared to traditional ML models. Nevertheless, the results
obtained for Q-SVMs are encouraging, considering QML implementations are expected to
improve and become more advantageous from a practical point of view as the quantum
hardware evolves, enabling the use of more qubits and therefore enabling the exploration
and construction of more complex and representative quantum states.
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6. Conclusions

This paper presented a methodology to include the SCADA alarm information into
data-driven diagnostic tasks in WTSs focused on detecting pitch fault failures. The number
of features in the SCADA sensor data was reduced through two methods: PCA and AE.
Following this, several data-driven diagnostics approaches were explored: traditional
ML algorithms and quantum kernel ML algorithms. A sensibility analysis on the models’
performance was presented regarding the reduced dimensionality of the dataset and feature
reduction method.

Overall, the highest performance was achieved with the SVM-RBF model (mean test
accuracy of 0.945), while most models present over 0.9 accuracy when 19 features are used.
It was also observed that when more than 19 features are used, the overall accuracy of the
classification does not improve further, and in some cases it decreases. This is consistent
with the CEV and MSE analysis presented for the PCA and AE methods, respectively, where
it was shown that, around 19 features, almost all the statistically significant information
was extracted from the original dataset. Hence, these results suggest that the optimal
feature dimensionality obtained from the feature reduction analysis coincides with the
optimal performance of the prognostic models. In this regard, while the fault prognostics
models tend to exhibit a slightly higher performance when using AE-based data reduction
methods, PCA provides an explainable metric (CEV); therefore, it is an interesting point of
comparison. These results highlight the importance of considering alternative metrics other
than model performance when selecting the appropriate feature reduction procedures.
Ultimately, the chosen method would depend on the application at hand and the user’s
interpretability requirements.

In general, the results obtained for the quantum kernel show comparable performance
levels when compared with classical approaches. Indeed, when comparing the classical
and quantum-based diagnostic methods using 19 features preprocessed with the AE,
the Q-SVM presents a statistically significant advantage over the k-NN and RF models
(α = 0.05). Further, while the performance of the SVM-RBF models surpasses the Q-SVM,
the results of the latter were comparable with those obtained with the SVM-L model.
Regarding the practical implications of these results, comparable results were achieved
between the proposed Q-SVM method and established approaches. As quantum hardware
evolves and becomes readily available, it is expected for QML algorithms to increase
in complexity and representational capacity, possibly surpassing traditional ML models.
QML has just recently begun to be explored outside the quantum computing research
community, so its early testing in practical applications, such as the case study presented in
this work, allows the PHM community to assess its potential and identify future research
paths within the field. The authors believe that, based on the results obtained for this case
study, quantum kernel-based fault prognostics algorithms merit further research in the
advent of the further development and general availability of quantum computers and
quantum simulators, which is expected to occur during this decade.
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CES Complex Engineering System
CEV Cumulative Explained Variance
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RBF Radial Basis Function
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Appendix A

Table A1. Binary classification metrics for RF per number of PCs and AE latent space dimensionality.

Features Model
PCA AE

Accuracy Recall Prec. F1 Accuracy Recall Prec. F1

4

Mean Train 0.868 0.898 0.847 0.870 0.907 0.921 0.902 0.910
SD Train 0.036 0.046 0.047 0.035 0.032 0.045 0.048 0.031

Mean Test 0.871 0.903 0.853 0.877 0.877 0.911 0.849 0.879
SD Test 0.022 0.030 0.026 0.022 0.017 0.020 0.028 0.017

8

Mean Train 0.898 0.936 0.877 0.905 0.897 0.928 0.879 0.902
SD Train 0.022 0.034 0.026 0.021 0.041 0.045 0.045 0.039

Mean Test 0.887 0.934 0.849 0.889 0.885 0.912 0.864 0.887
SD Test 0.019 0.008 0.036 0.018 0.022 0.026 0.024 0.020

16

Mean Train 0.910 0.936 0.894 0.914 0.895 0.912 0.882 0.896
SD Train 0.033 0.038 0.043 0.032 0.035 0.040 0.034 0.035

Mean Test 0.909 0.937 0.886 0.911 0.899 0.924 0.879 0.901
SD Test 0.015 0.025 0.031 0.017 0.015 0.019 0.018 0.014

19

Mean Train 0.926 0.937 0.921 0.928 0.920 0.940 0.904 0.921
SD Train 0.031 0.049 0.033 0.031 0.019 0.045 0.019 0.021

Mean Test 0.916 0.941 0.897 0.919 0.902 0.931 0.881 0.905
SD Test 0.015 0.015 0.020 0.015 0.013 0.009 0.022 0.014

32

Mean Train 0.923 0.943 0.909 0.925 0.906 0.942 0.886 0.912
SD Train 0.015 0.029 0.030 0.014 0.040 0.034 0.057 0.038

Mean Test 0.906 0.923 0.894 0.908 0.894 0.936 0.863 0.898
SD Test 0.017 0.019 0.033 0.017 0.013 0.018 0.014 0.014
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Table A2. Binary classification metrics for k-NN per number of PCs and AE latent space dimensionality.

Features Model
PCA AE

Accuracy Recall Prec. F1 Accuracy Recall Prec. F1

4

Mean Train 0.871 0.916 0.842 0.876 0.915 0.946 0.897 0.920
SD Train 0.030 0.040 0.052 0.028 0.030 0.025 0.044 0.027

Mean Test 0.869 0.901 0.851 0.875 0.888 0.934 0.853 0.891
SD Test 0.018 0.027 0.022 0.017 0.013 0.020 0.025 0.012

8

Mean Train 0.901 0.951 0.872 0.909 0.921 0.919 0.926 0.922
SD Train 0.021 0.031 0.027 0.019 0.029 0.048 0.023 0.029

Mean Test 0.882 0.930 0.844 0.884 0.904 0.933 0.881 0.906
SD Test 0.019 0.022 0.034 0.020 0.017 0.019 0.024 0.014

16

Mean Train 0.914 0.936 0.897 0.916 0.912 0.917 0.909 0.912
SD Train 0.019 0.020 0.029 0.019 0.024 0.031 0.037 0.023

Mean Test 0.904 0.940 0.876 0.906 0.912 0.922 0.905 0.913
SD Test 0.016 0.025 0.031 0.018 0.012 0.021 0.020 0.011

19

Mean Train 0.924 0.948 0.911 0.928 0.924 0.940 0.912 0.925
SD Train 0.032 0.037 0.053 0.029 0.013 0.037 0.019 0.014

Mean Test 0.910 0.937 0.890 0.912 0.905 0.934 0.884 0.908
SD Test 0.016 0.015 0.026 0.016 0.010 0.025 0.031 0.013

32

Mean Train 0.920 0.952 0.896 0.923 0.915 0.960 0.887 0.921
SD Train 0.024 0.030 0.033 0.022 0.046 0.033 0.059 0.043

Mean Test 0.906 0.932 0.887 0.909 0.904 0.937 0.880 0.907
SD Test 0.020 0.023 0.035 0.020 0.010 0.022 0.028 0.011

Table A3. Binary classification metrics for SVM-linear kernel per number of PCs and AE latent
space dimensionality.

Features Model
PCA AE

Accuracy Recall Prec. F1 Accuracy Recall Prec. F1

4

Mean Train 0.824 0.869 0.798 0.832 0.771 0.746 0.786 0.765
SD Train 0.019 0.009 0.024 0.016 0.026 0.051 0.030 0.031

Mean Test 0.819 0.862 0.795 0.827 0.747 0.731 0.755 0.742
SD Test 0.042 0.048 0.040 0.040 0.072 0.087 0.068 0.076

8

Mean Train 0.878 0.927 0.844 0.884 0.907 0.953 0.872 0.911
SD Train 0.009 0.006 0.015 0.007 0.017 0.013 0.020 0.016

Mean Test 0.854 0.909 0.821 0.862 0.894 0.931 0.868 0.898
SD Test 0.034 0.030 0.041 0.030 0.025 0.022 0.027 0.023

16

Mean Train 0.912 0.943 0.889 0.915 0.903 0.949 0.869 0.907
SD Train 0.012 0.016 0.020 0.011 0.022 0.020 0.024 0.021

Mean Test 0.890 0.924 0.866 0.894 0.883 0.928 0.852 0.888
SD Test 0.003 0.022 0.018 0.003 0.036 0.051 0.033 0.035

19

Mean Train 0.897 0.927 0.874 0.900 0.925 0.976 0.886 0.929
SD Train 0.008 0.005 0.012 0.007 0.009 0.004 0.013 0.009

Mean Test 0.898 0.922 0.879 0.900 0.919 0.975 0.877 0.923
SD Test 0.016 0.020 0.014 0.016 0.015 0.011 0.025 0.013

32

Mean Train 0.914 0.942 0.893 0.916 0.923 0.981 0.879 0.927
SD Train 0.014 0.019 0.019 0.013 0.023 0.015 0.030 0.021

Mean Test 0.902 0.915 0.892 0.903 0.927 0.971 0.895 0.931
SD Test 0.014 0.020 0.024 0.013 0.031 0.019 0.050 0.027
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Table A4. Binary classification metrics for SVM-RBF kernel per number of PCs and AE latent
space dimensionality.

Features Model
PCA AE

Accuracy Recall Prec. F1 Accuracy Recall Prec. F1

4

Mean Train 0.858 0.902 0.829 0.864 0.887 0.930 0.856 0.891
SD Train 0.018 0.028 0.015 0.018 0.020 0.020 0.020 0.019

Mean Test 0.846 0.885 0.822 0.852 0.865 0.894 0.848 0.870
SD Test 0.023 0.021 0.036 0.018 0.042 0.027 0.060 0.038

8

Mean Train 0.897 0.939 0.867 0.902 0.931 0.959 0.908 0.933
SD Train 0.012 0.007 0.020 0.011 0.009 0.004 0.016 0.008

Mean Test 0.887 0.938 0.851 0.892 0.917 0.950 0.892 0.920
SD Test 0.022 0.021 0.025 0.020 0.028 0.029 0.031 0.026

16

Mean Train 0.925 0.961 0.897 0.928 0.927 0.975 0.889 0.930
SD Train 0.015 0.008 0.023 0.014 0.015 0.005 0.022 0.014

Mean Test 0.920 0.955 0.893 0.923 0.909 0.989 0.857 0.917
SD Test 0.009 0.017 0.009 0.009 0.039 0.017 0.057 0.033

19

Mean Train 0.932 0.955 0.914 0.934 0.954 0.985 0.927 0.955
SD Train 0.014 0.010 0.017 0.013 0.004 0.002 0.005 0.003

Mean Test 0.897 0.927 0.875 0.900 0.945 0.978 0.918 0.947
SD Test 0.027 0.033 0.030 0.025 0.007 0.006 0.013 0.006

32

Mean Train 0.938 0.957 0.922 0.939 0.939 0.988 0.901 0.942
SD Train 0.008 0.011 0.013 0.007 0.015 0.005 0.024 0.013

Mean Test 0.921 0.947 0.900 0.923 0.912 0.983 0.865 0.919
SD Test 0.006 0.022 0.015 0.007 0.040 0.009 0.062 0.034

Table A5. Binary classification metrics for SVM-quantum kernel per number of PCs and AE latent
space dimensionality.

Features Model
PCA AE

Accuracy Recall Prec. F1 Accuracy Recall Prec. F1

4
[Angle Encoding]

Mean Train 0.854 0.884 0.834 0.859 0.846 0.872 0.832 0.851
SD Train 0.015 0.017 0.014 0.015 0.045 0.038 0.060 0.040

Mean Test 0.811 0.842 0.794 0.817 0.827 0.861 0.806 0.832
SD Test 0.028 0.027 0.041 0.024 0.037 0.060 0.040 0.039

4
[Amplitude Encoding]

Mean Train 0.824 0.858 0.803 0.830 0.810 0.816 0.808 0.812
SD Train 0.015 0.019 0.013 0.015 0.036 0.022 0.050 0.032

Mean Test 0.819 0.847 0.803 0.824 0.784 0.763 0.802 0.779
SD Test 0.032 0.050 0.023 0.034 0.022 0.059 0.059 0.018

8
[Angle Encoding]

Mean Train 0.890 0.939 0.854 0.895 0.930 0.963 0.904 0.933
SD Train 0.019 0.019 0.019 0.018 0.025 0.020 0.033 0.024

Mean Test 0.888 0.938 0.853 0.893 0.894 0.931 0.868 0.898
SD Test 0.017 0.027 0.027 0.016 0.037 0.050 0.040 0.036

8
[Amplitude Encoding]

Mean Train 0.866 0.913 0.835 0.872 0.868 0.932 0.826 0.876
SD Train 0.014 0.014 0.016 0.013 0.015 0.025 0.015 0.014

Mean Test 0.856 0.899 0.828 0.862 0.860 0.915 0.825 0.867
SD Test 0.023 0.033 0.022 0.023 0.021 0.044 0.031 0.020

16

Mean Train 0.896 0.931 0.870 0.899 0.875 0.979 0.812 0.887
SD Train 0.008 0.011 0.010 0.008 0.018 0.018 0.025 0.014

Mean Test 0.897 0.929 0.873 0.900 0.874 0.974 0.812 0.885
SD Test 0.018 0.018 0.020 0.018 0.025 0.022 0.031 0.020
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Table A5. Cont.

Features Model
PCA AE

Accuracy Recall Prec. F1 Accuracy Recall Prec. F1

19

Mean Train 0.895 0.928 0.871 0.898 0.932 0.979 0.895 0.935
SD Train 0.011 0.010 0.012 0.010 0.005 0.007 0.009 0.005

Mean Test 0.898 0.929 0.876 0.901 0.925 0.976 0.886 0.928
SD Test 0.012 0.006 0.018 0.011 0.017 0.007 0.024 0.015

32

Mean Train 0.910 0.938 0.888 0.912 0.911 0.986 0.859 0.918
SD Train 0.014 0.019 0.014 0.014 0.021 0.016 0.029 0.018

Mean Test 0.886 0.913 0.867 0.889 0.910 0.967 0.870 0.915
SD Test 0.028 0.030 0.034 0.027 0.020 0.038 0.025 0.020
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