
����������
�������

Citation: Kim, J.-W.; Ahn, H.; Seo,

H.C.; Lee, S.C. Optimization of

Solar/Fuel Cell Hybrid Energy

System Using the Combinatorial

Dynamic Encoding Algorithm for

Searches (cDEAS). Energies 2022, 15,

2779. https://doi.org/10.3390/

en15082779

Academic Editor: Jesús Polo

Received: 22 February 2022

Accepted: 8 April 2022

Published: 10 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Optimization of Solar/Fuel Cell Hybrid Energy System Using
the Combinatorial Dynamic Encoding Algorithm for
Searches (cDEAS)
Jong-Wook Kim 1 , Heungju Ahn 2 , Hyeon Cheol Seo 3 and Sang Cheol Lee 3,*

1 Department of Electronic Engineering, Dong-A University, Busan 60471, Korea; kjwook@dau.ac.kr
2 School of Undergraduate Studies, Daegu Gyeongbuk Institute of Science and Technology,

Daegu 42988, Korea; heungju@dgist.ac.kr
3 Division of Intelligent Robot, Convergence Research Institute, Daegu Gyeongbuk Institute of Science and

Technology, Daegu 42988, Korea; hcseo@dgist.ac.kr
* Correspondence: sclee@dgist.ac.kr

Abstract: This study proposes a computational design method for determining a hybrid power
system’s sizing and ratio values that combines the national electric, solar cell, and fuel cell power
sources. The inequality constraints associated with the ranges of power storage exchange and the
stored energy are reflected as penalty functions in the overall cost function to be minimized. Using the
energy hub model and the actual data for the solar cell power and the load of the residential sector in
one Korean city for one hundred days, we optimize the ratio of fuel cell energy and solar cell energy
to 0.46:0.54 through our proposed approach. We achieve an average cost-reduction effect of 19.35%
compared to the cases in which the fuel-cell energy ratio is set from 0.1 to 0.9 in 0.1 steps. To optimize
the sizing and the ratio of fuel-cell energy in the hybrid power system, we propose the modified
version of the univariate dynamic encoding algorithm for searches (uDEAS) as a novel optimization
method. The proposed novel approaches can be applied directly to any place to optimize an energy
hub system model comprising three power sources, i.e., solar power, fuel cell, and power utility.

Keywords: hybrid energy system; combinatorial dynamic encoding algorithm for searches; power;
optimization

1. Introduction

Recently, energy sources are being replaced by renewable energy sources, for instance,
solar energy, wind energy, hydro-energy, and bioenergy. Because renewable energy sources
have exhibited problems, such as low energy efficiency and reliability or high cost, the re-
search on hybrid energy storage systems that connect to and use multiple energy storage
devices is an active field worldwide.

During the design and installation of hybrid energy storage systems, the optimization
of each component is significant for ensuring the reduction in the overall investment cost
and ensuring the excellent performance of such components. To ensure the optimized
design of a hybrid energy system, we must consider several inequality constraints and
requirements regarding the minimal investment cost and the exact matching of the power
supply and demand. To satisfy all these conditions, including nonlinearity, we should
adopt an appropriate numerical optimization method. Because most optimization variables,
such as the capacity of solar energy systems, are integers or discrete values, the methods
for optimizing the performance of hybrid energy storage systems must have the ability
to deal with integer optimization variables. In this study, we consider integer-based
nonlinear programming problems, and there are a few known methods for addressing such
problems, such as the generalized penalty function method and sequential linear discrete
programming [1].
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The aim of the paper is twofold. Firstly, we propose a computational design method
for determining a hybrid power system’s sizing and ratio values that combines the national
electric, solar-cell, and fuel-cell power sources. The inequality constraints associated
with the ranges of power storage exchange and the stored energy are reflected as penalty
functions in the overall cost function to be minimized. Secondly, to optimize the ratio of
fuel-cell energy and solar energy in the hybrid power system, we propose the modified
version of the univariate dynamic encoding algorithm for searches (uDEAS), which will
be called a combinatorial dynamic encoding algorithm for searches (cDEAS), as a novel
optimization approach.

In this study, the sizing optimization of the hybrid energy system is conducted in
two conditions in the case of a sufficient power supply. First, eight sizing values of the
system and the ratio of a fuel cell are optimized together using the collected actual data
for the solar cell power and the load of the residential sector in one Korean city for one
hundred days. Second, setting the ratio from 0.1 to 0.9 in 0.1 steps, the eight sizing values
are only optimized to validate the optimization result attained with the proposed approach.
The optimization result, including sizing values and the fuel cell ratio in a hybrid system,
minimizes the cost function, which reduces the cost for the power plants’ construction.

Several papers have considered the optimization problem for the size of the hybrid
energy scheme. In [2], a metaheuristic algorithm (Cuckoo Search) was presented to solve the
hybrid energy system optimization problem of photovoltaic and wind batteries. Artificial
intelligence methods [3] and computational intelligence algorithms [4] were proposed for
the hybrid energy system of renewable energies such as wind and solar energy. Another
optimization method of renewable energy resources is the stochastic technique [5]. An
alternative hybrid-system model was proposed to meet any energy needs of a single-family
house, including utility and transportation [6]. Mahmoudi, Maleki, and Ochbelagh gave
the optimal ratio size of the solar and wind energy under the load demand based on
integrating a fuzzy logic controller and harmony search algorithm [7]. We refer to [8] for a
comprehensive review of the fuel cell stack, for example, the polymer electrolyte membrane
and the proton exchange membrane-based fuel cell, and assess its potential in the fuel
cell [9]. Several recent studies for diverse electric fuel cell vehicles using hybrid energy
storage have been presented. The electric motor requires a dynamic power demand, which
optimally combines the fuel cell system with hybrid energy storage systems, batteries,
and ultracapacitors [10]. Recent works have focused on achieving stable battery charge
sustenance for the energy management of a fuel cell hybrid vehicle [11].

The univariate dynamic encoding algorithm for searches (uDEAS), which the au-
thors developed, executes optimization on binary matrix-like structures and produces
precise optimization results for only real-value problems with the shortest optimization
runtime [1,12–14]. The decoding function of this approach is modified to ensure its effective
application in solving integer or mixed-integer problems. The ability of the uDEAS was ver-
ified using well-known benchmark functions and various engineering applications, and the
authors also proved the global convergence of the uDEAS [12]. Therefore, the performance
comparison and convergence proof of the cDEAS is redundant, so it is omitted in this study.

In Section 2, we employ the energy hub concept to present the formulated mathe-
matical approaches used to optimize the hybrid energy system associated with this study.
In Section 3, we explain the search principle of the proposed optimization method, cDEAS.
In Section 4, we apply the cDEAS to the optimal design of the solar/fuel cell hybrid system,
after which we discuss the optimization results. In Section 5, we present the summaries,
conclusions, and directions for future research associated with this study.

2. Hybrid System Modeling

The hybrid energy storage system used in this study comprises grid-powered, solar-
cell-powered, and fuel-cell-powered energy sources, as depicted in Figure 1. An energy
hub is defined as an interface among energy producers, consumers, and the transportation
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infrastructure comprising three essential elements: direct connections, converters, and stor-
age [15]. Figure 1 is converted into Figure 2 as a block diagram through these concepts.

Figure 1. Structure of the hybrid energy storage system of solar, fuel power battery, and power utility
under the load.

Figure 2. Schematic diagram of solar, fuel power battery, and power utility energy hub system.

As shown in Figure 2, PU , PS, and PF denote the hub elements of national electricity
power, solar cell power, and fuel cell power, respectively. Considering the energy hub
inputs P, the converter coupling matrix C, and the outputs L, we can derive the complete
hub energy model as follows [16]:

L = CP− SĖT

P =
[
PU PS PF

]
C =

[
1 ηDCηAC ηDCηAC

]
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Here ηDC and ηAC represent the efficiencies of the DC and AC converters, respectively.
Next, we define the storage coupling matrix S and the storage energy derivative Ė to
describe how changes in the storage energy derivatives affect the hub output flows:

S =

[
1

eBS

1
eBF

]
Ė =

[
ĖBS ĖBF

] (1)

Here

eBS =

{
ηBS ,ch if QBS ≥ 0 (charging)
1/ηBS ,dis else (discharging)

eBF =

{
ηBF ,ch if QBF ≥ 0 (charging)
1/ηBF ,dis else (discharging)

where QBS and QBF represent the power exchange between the solar cell and the fuel cell,
which varies within the following boundaries of charging (ch) and discharging (dis):[

−QBS ,dis
−QBF ,dis

]
≤
[

QBS
QBF

]
≤
[

QBS ,ch
QBF ,ch

]
,

where QBS ,ch and QBF ,ch represent the limit charging rates, and QBS ,dis and QBF ,dis are limit
discharging rates of solar cell and fuel cell, respectively.

The storage energy derivatives in Equation (1) are defined as follows:

ĖBS = eBS QBS , ĖBF = eBF QBF ,

whose values have the following limits:[
0.2EBS
0.2EBF

]
≤
[

EBS
EBF

]
≤
[

0.9EBS
0.9EBF

]
where EBS and EBF represent the sizes of solar cell and fuel cell batteries, respectively.

3. cDEAS

In this section, we explain the cDEAS, a novel global optimization method that com-
prises local and global search schemes and can be applied to solve mixed-integer problems.
Each optimization variable of the cDEAS is expressed as a binary string, and they are
stacked to create a matrix. If the number of the optimization variables is n, then a binary
pseudo-matrix M is generated, and it is expressed as follows:

M =



r1
...
ri
...

rn

 =



a11 · · · a1`1
...

. . .
...

ai1 · · · ai(`i−1) ai`i
...

. . .
...

an1 · · · an`n

 (2)

where the row vector ri represents the i-th binary string, aij denotes the (i, j) element of
the matrix, and `i represents the bit length of the ri string. As the cDEAS progressively
conducts the optimization process, some binary string lengths become different from others.
Because of this, we call M a pseudo-matrix.
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3.1. Local Search

The cDEAS involves a session comprising a single bisectional search (BSS) and multiple
unidirectional searches (UDS). In BSS, 0 or 1 is inserted in the right of each binary string as
a new least-significant bit (LSB). On the other hand, only BSS remains on one side, and the
search cannot escape from one branch. We use UDS to overcome this, which compares the
branches’ values (see Figures 3 and 4).

Figure 3. Tree structures of binary strings and their integer values decoded between 0 and 15.

Figure 4. Example of two successive cDEAS sessions from string 0 to string 101.

The BSS is implemented by the attachment of 0 or 1 to a binary string to generate a
new LSB of a binary string, thereby decreasing or increasing its decoded real value from
that of the original binary string [1]. To decode an m-bit-long binary string to a real value
between λ and µ, we use the following function with an unbiased property [12]:

fR
([

xm xm−1 · · · x1
]
, λ, µ

)
= λ +

µ− λ

2m+1

(
m

∑
j=1

xj2j + 1

)
(3)

For the cDEAS to decode an integer variable, only the decoding function presented in
Equation (3) must be modified, as follows:

fB
([

xm xm−1 · · · x1
]
, λ, µ

)
=


λ +

2m0

2m+1

(
m

∑
j=1

xj2j + 1

)
if m < m0

λ +
m0

∑
j=1

xj2j−1 if m = m0

(4)
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where m0 represents the minimum row length, whose maximum base-2 decoded value is
more significant than the search range of an integer optimization variable. For example,
if the search range of an integer variable is set as [−2, 13], then λ is −2, and the integral
search range is 15. Therefore, m0 is set at four because 24 − 1 = 15 means four bits are
enough to cover the search range. The exponent of four can be calculated by logarithmic
function, such as dlog2(13− (−2))e. The first equation in Equation (4) is used until the
current row length is smaller than m0, and the second one, the general base-2 decoding
function, is used for the case in which the current row length becomes identical to m0.
Figure 3 shows a tree structure of binary strings and their integer values decoded between
0 and 15 through Equation (4) for the reader’s comprehension. The increase and decrease in
the relationships between the decoded integers of the parent and child strings are therefore
maintained.

Figure 4 illustrates two successive sessions beginning from the string 0 for the problem
whose local minimum is located at 101, which is presented to explain BSS and UDS. In the
figure, BSS begins with the string 0 and generates its child strings 00 and 01. It then
decodes them into real or integer values and calculates their cost values using decoded
values. After comparing the two cost values, BSS decides that adding 1 (increase) results in
an improved solution, after which it hands it over to UDS. Therefore, BSS demonstrates
dual effects on the exploitation by increasing search variable resolution and determining
promising search directions.

As shown in Figure 4, UDS is used for exploration between sub-branches, such as
01→ 10→ 11, until it finds a better point that has a lower cost value. Because the decoded
value of string 11 has a a worse cost value than that of 10, UDS stops, and the current session
finishes. Then, the next session starts with the best string chosen in the previous session,
10, and iterates the same procedure of single BSS and multiple UDS. After verifying the
first UDS result, cDEAS concludes that the best point obtained after the two local sessions
is string 101. Because the local search conducted using only BSS keeps going down from
where the search begins, UDS jumps between adjacent sub-trees to resolve this search-scope
limitation problem.

For a multi-dimensional problem, the cDEAS adds up the n strings to build a matrix
of n rows with binary entries, whereas the genetic algorithm (GA) puts the strings together
into a long-connected series such as a single chromosome [17]. Matrices with binary entries
are more accessible to be dealt with and more intuitive than the connected string made
by GA. The complete steps of the cDEAS for an n-variables problem can be described as
follows:

(1) cDEAS starts with a randomly chosen initial matrix A1 with 0 or 1 entries and puts
i = 1.

(2) Step BSS. For given natural numbers n and i, we set the row index j (j = 1, 2, . . . , n)
so that i = kn + j for some integer k. With this j, and from the current matrix Ai, we
choose the jth row

rowj(Ai) =
[

aj
m aj

m−1 · · · aj
1

]
.

(3) cDEAS inserts 1 or 0 into the right of the selected row, which gives two types of row
vectors:

row+
j (Ai) =

[
aj

m aj
m−1 · · · aj

1 1
]
,

row−j (Ai) =
[

aj
m aj

m−1 · · · aj
1 0

]
(4) cDEAS decodes row+

j (Ai) and row−j (Ai) using the function fR(row±j (Ai), λj, µj) de-
fined in Euqation (3) (λj and µj are the lower and upper bound of the jth variable,
respectively) or the function fB(row±j (Ai), λj) defined in Equation (4) depending on
the variable type, and substitute them with the corresponding jth entry of the current
best vector v∗i , which gives two types vectors, v+

i and v−i . Next, cDEAS computes
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cost values cost(v+
i ) and cost(v−i ). If cost(v+

i ) < cost(v−i ), then the direction is set
δ(j) = +1, and otherwise, δ(j) = −1. We then load the improved new vector v∗i .

(5) Step UDS. Depending on the direction δ(j) = ±1, sDEAS repeats the following
addition or subtraction to the binary string and check whether the cost value has been
decreased. This operation is iterated until there is no more cost reduction.

row∗j (Ai) =

{
row+

j (Ai) = row+
j (Ai) + 1, if δ(j) = 1

row−j (Ai) = row+
j (Ai)− 1, else δ(j) = −1

(6) Plug the resulting best binary string into a pseudo-matrix:

rowj(Ai+1) = UDS(BSS(rowj(Ai)).

(7) As a result, cDEAS obtains the following change in the corresponding decoded vector:

v∗i+1(k) =

{
fR,B(rowj(Ai+1), λj, µj) for k = j
v∗i (k) otherwise

, k = 1, 2, . . . , n.

(8) Let i = i + 1, and go back to Step 2. Repeat these steps until the row length size attains
the maximum size.

To see how cDEAS works in reality, we include a three-dimensional optimization
example. Figure 5 shows a session of the cDEAS for a three-dimension case, and the
starting matrix is

Figure 5. A 3-dimensional example of the cDEAS in a search space.
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1 0
0 1
0 0

.

Conducting the first step of BSS and UDS operations in the x-axis direction gives1 1 0
0 1
0 0


as the current best pseudo-matrix. Next, the BSS and UDS operations are conducted in the
y-axis direction to yield 1 1 0

0 1 0
0 0


Finally, after the session conducted in the z-axis, cDEAS produces the regular optimal
matrix whose column number is increased by one as in the following:1 1 0

0 1 1
0 1 0


Consequently, an optimal solution is obtained after complete steps.

3.2. Global Search

For global search, the cDEAS adopts an escaping scheme called RESTART CHECK as
a simple multi-start strategy, which is exactly stated as follows:

If the row length of a current best matrix equals rowIndRestart and its cost is higher
than costIndRestart, stop searching and start from a new random initial matrix
whose row length is optInitRowLen. Otherwise, continue the current search.

We thereby obtain the multi-start indices rowIndRestart, costIndRestart, and optIni-
tRowLen through a figure plotting after executing several local searches by varying initial
row lengths, which is called a preparatory search. Here, rowIndRestart is the minimal row
length, costIndRestart is an approximately intermediate value between the best and the
second-best group of local minima, and optInitRowLen is an optimal initial row length.

The preparatory search using the cDEAS helps to determine the appropriate values of
the three indices through a single experiment and informs the shape of the cost function of
the problem. Figure 6 shows how the three indices are selected intuitively through several
restarts for the well-known Goldstein–Price function [17]. During the operation of the
cDEAS, the user can skip the preparatory search and execute the main search directly. Here,
the optInitRowLen is fixed to a single length, and costIndRestart is automatically updated
using the best-so-far cost value recorded when the row length of the current best matrix is
rowIndRestart.

cDEAS repeats the local search routine numMaxRestart times for multi-start and regards
the local minimum discovered so far as a global minimum (numMaxRestart is a pre-assigned
number). We can describe the entire procedure of the searches in the execution of the cDEAS
in Algorithm 1 (see also [1]).

In Algorithm 1, the initial row length is denoted by irl, and inside the multi-start loop,
the final row length is denoted by frl. In particular, irl moves from 1 to 3 in the preparatory
search, whereas iLen1 =iLen2 =optInitRowLen in the main search.
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Figure 6. Preparatory search result and the three escaping indices for the Goldstein–Price function.

Algorithm 1 cDEAS

1: Initialize the history table
2: for irl=iLen1 : iLen2 do . irl varies from (iLen1) to (iLen2)
3: Choose a randomly generated initial matrix with binary entries
4: Run HISTORY CHECK for
5: for m = 1: numMaxRestart do
6: for k =irl:frl do . frl is assigned by the user
7: Tn×(k+1) = Session(Tn×k)
8: Run RESTART CHECK for Tn×(k+1)
9: end for

10: end for
11: end for

4. Optimization Result

In this section, the sizing of the solar cell and fuel cell hybrid system is optimized
using the proposed cDEAS. Therefore, nine optimization variables are selected, and their
search ranges are listed in Table 1.

Table 1. List of optimization variables.

Symbol Description Data Type Range (W)

PU Power utility integer [1, 1000]

PF Size of fuel cell energy integer [1, 1000]

EBS Size of solar cell battery integer [1, 100,000]

EBF Size of fuel cell battery integer [1, 100,000]

QBS,ch
Maximum charging rate of solar cell battery integer [1, 1000]

QBS,dis
Maximum discharging rate of solar cell battery integer [1, 1000]

QBF,ch
Maximum charging rate of fuel cell battery integer [1, 10,000]

QBF,dis
Maximum discharging rate of fuel cell battery integer [1, 1000]

rF
Ratio of charging and discharging rates of fuel

cell battery
floating-point

number
[0.0, 1.0] real

numbers
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The current hybrid energy system employs an adjustment strategy involving the
charging/discharging ratio between fuel cell energy and solar cell energy explained in
pseudocode (see Algorithm 2).

Algorithm 2 Optimization of the current hybrid energy system

1: Initialize optimization variables and cost values
2: Jdis = 0, Jbnd = 0
3: for i = 1 : n sample do
4: PU(i) = PU , PF(i) = PF, PS(i) = Psolar
5: Pd(i) = PU(i) + ηDCηACPS(i) + ηDCηACPF(i)− Lr(i) . Lr: daily load
6: if Pd(i) ≥ 0 then . in case of excessive hybrid power supply to load
7: eBS(i) = ηBS ,ch, eBF (i) = ηBF ,ch
8: QBF (i) = rF min{QBF ,ch, Pd(i) }
9: else . in case of insufficient hybrid power supply

10: eBS(i) = 1/ηBS ,dis, eBF (i) = 1/ηBF ,dis
11: QBF (i) = rF max{−QBF ,dis, Pd(i) }
12: end if
13: QBS(i) = Pd(i)−QBF (i)

14: ĖBS(i) = eBS(i)QBS(i), ĖBF (i) = eBF (i)QBF (i)
15: Integrate EBS(i) and EBF (i)
16: Set Jout_bnd = 1000 . for adding the penalty score to the cost function when the

power exchange values and stored energy values are out of boundaries
17: if QBS(i) > QBS ,ch or QBS(i) < −QBS ,dis then
18: Jbnd = Jbnd + Jout_bnd
19: end if
20: if QBF (i) > QBF ,ch or QBF (i) < −QBF ,dis then
21: Jbnd = Jbnd + Jout_bnd
22: end if
23: if EBS(i) > 0.9EBS or EBS(i) < 0.2EBS then
24: Jbnd = Jbnd + Jout_bnd
25: end if
26: if EBF (i) > 0.9EBF or EBF (i) < 0.2EBF then
27: Jbnd = Jbnd + Jout_bnd
28: end if
29: P =

[
PU(i) PS(i) PF(i)

]
, C =

[
1 ηDCηAC ηDCηAC

]
30: S =

[
1/eBS(i) 1eBF (i)

]
, Ė =

[
ĖBS(i) ĖBF (i)

]
31: Lsup(i) = CPT − SĖT . calculate supply voltage at load
32: Jdis = Jdis + |Lsup(i)− Lr(i)| . calculate discrepancy cost
33: end for
34: Jinvest = cPU PU + (cPF + cPDCF

)PF + cEBS
EBS + cBF EBF

35: Jtotal = 100Jdis + Jbnd + Jinvest

Psolar in Line (4) of Algorithm 2 represents the solar-cell power measured in Yechen-
gun, a Korean city, for one hundred days. Figure 7 shows the solar-power data used to
optimize the current hybrid energy system.

Pd in line (5) of Algorithm 2 denotes the discrepancy between load power and total
input power transmitted without charge or discharge, which is used for power system
management. For excessive and insufficient power supplies, QBF is charged or discharged
to take the rF fraction of Pd, as shown in Equations (8) and (11) of Algorithm 2. Next,
the remainder of Pd is assigned to QBS , and Lr in the line (5) of Algorithm 2 represents the
one-hundred-day load for the residential sector in Incheon, a Korean city (see Figure 8).
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Figure 7. Solar power datasets for one hundred days.
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Figure 8. Load in the residential sector for one hundred days.

The aim of the current element-sizing optimization approach is three-fold. First,
the discrepancy between the power supply and the load should be zero during the entire
simulation time, as expressed in Equation (32) of Algorithm 2. Second, the manufacturing
cost should be as small as possible, as shown in Equation (34) of Algorithm 2, and third,
the power exchange values and stored energy values should vary within their limits,
as described in Equation (18) of Algorithm 2. Because the third one corresponds to a
constraint condition, a significant penalty value of 1000 is added to Jbnd whenever the values
are out of bounds during each sample time. As shown in Equation (34) of Algorithm 2,
the five coefficients are related to the storage element costs, and their values are listed in
Table 2 [16]. As shown in Equation (35) of Algorithm 2, all three cost values are added,
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and the optimization variables that minimize Jtotal the most represent the global minimum
variable. Depending on the importance of the cost, the weight factor, e.g., 100, is multiplied
by each cost, , e.g., Jdis, as shown in Equation (35) of Algorithm 2.

Table 2. List of element cost coefficients.

Symbol Description Cost Coefficients

cPU Cost coefficient of power utility 0.01

cPF Cost coefficient of fuel cell power 0.25

cPDCF
Cost coefficient of DC converter of fuel cell battery 0.1

cEBS
Cost coefficient of solar cell battery 0.02

cEBF
Cost coefficient of fuel cell battery 0.02

The search parameters for the cDEAS main search are configured after the initial trials
as follows:

1. rowIndRestart := 10
2. optInitRowLen := 3
3. maxRowLen := 16
4. numMaxRestart := 100

Figure 9 shows the cost function profiles obtained through the cDEAS after 100 restarts
using the configurations mentioned above. As shown in the figure, there are at least fifteen
local minima, meaning that the cost landscape of the current problem has a significantly
rough surface. Additionally, the minimization progress seems to mature after 10 bits in
terms of the row length of the binary matrix. This is why the value of rowIndexRestart is set
to 10.

Figure 9. Cost function profiles during cDEAS optimization.

Figure 9 shows the cost function profiles obtained through the cDEAS after 100 restarts
using the configurations mentioned above for both distribution rules. As shown in the
figure, there are at least fifteen local minima, meaning that the cost landscape of the current
problem has a significantly rough surface. Additionally, the minimization progress seems
to mature after 10 bits in terms of the row length of the binary matrix. This is why the value
of rowIndexRestart is set to 10.

Table 3 lists the optimal variables attained by the cDEAS whose cost value is 1785.2.
Figure 10 shows that the exchange charge and storage energy profiles simulated with the
optimal variables where all the four quantities, QBS , EBS , QBF , and EBF , remain inside their
boundaries during the 100-day period. Figure 11 validates that the energy supplied by the
optimized hybrid system and load of the residential sector match precisely without error.
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Table 3. List of element cost coefficients.

Symbol rF PU PF EBS EBF QBS,ch
QBS,dis

QBF,ch
QBF,dis

Jtotal
(Cost)

value 0.46 47 67 47,361 40,705 771 159 5000 643 1785.2
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Figure 10. Profiles of exchange charge and storage energy profiles in a solar cell and a fuel cell.
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Figure 11. Comparison between supplied energy and load.

To check the accuracy and effectiveness of the proposed design approach for the
hybrid energy system, we carry out additional optimal design experiments by optimization
with fixed and various fuel cell ratios rF from 0.1 to 0.9 in 0.1 steps. In this case, the number
of optimization variables is reduced to eight cases, excluding rF from the variables in
Table 1. Table 4 lists the optimization results, and it is apparent that in the case of 0.5 for
rF, the global minimum value has the lowest cost function value. This result supports the
notion that the rF of 0.46 is optimal, as shown in Table 3.

For comparison of design efficiency of the proposed approach, cost improvement for
each rF is calculated concerning the cost value when rF is 0.46, i.e., 1785.2. The average cost
improvement is 19.35%, and its maximum and minimum percentages are when r′Fs are 0.1
and 0.5, respectively (see Table 5). This drastic decrease in construction cost validates the
superiority of the proposed optimization method, cDEAS, and the strategy of employing
a concept of an optimal charging/discharging ratio between fuel cell power and solar
cell power.
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Table 4. List of the elements for optimization with the fuel-cell ratio fixed.

Symbol Optimal Values

rF 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

cost 25,337 2009 2020 1939 1875 2020 2011 2009 2020

PU 82 88 16 17 16 16 17 88 16

PF 22 18 98 98 100 98 97 18 98

EBS 100,000 80,071 69,497 60,025 49,417 41,120 33,269 20,018 9939

EBF 16,425 20,018 29,785 35,221 42,582 58,162 65,619 80,071 89,342

QBS,ch
999 1000 897 833 769 897 897 769 385

QBS,dis
769 641 513 197 257 513 385 513 257

QBF,ch
6145 8193 10,000 1167 1132 4097 6145 4097 2049

QBF,dis
897 385 513 248 248 264 254 769 293

Table 5. Comparison of improvement in each cost compared with the one when rF is 0.46.

rF 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 B avg.

Cost improvement (%) 92.95 11.14 11.63 7.95 4.79 11.63 11.27 11.14 11.63 19.35

5. Conclusions

In this study, we use a newly developed optimization algorithm called cDEAS to
optimize an energy hub system model comprising three power sources, i.e., solar power,
fuel cell, and power utility. We achieved optimization through the idea of the distribution
of the total surplus/shortage of two fuel cell and solar cell batteries, and we successfully
derived an optimal solution set that satisfies all conditions in both cases. As a result,
because the ratio of fuel-cell power and solar power was optimized to 0.46:0.54, there was
an average cost-reduction effect of 19.35% compared to the cases in which rF varies from
0.1 to 0.9 in 0.1 steps.

For practical applications, we used the actual data for the solar cell power and the
load of the residential sector in one Korean city for 100 days, and hence this optimization
method can be applied directly to any place. As mentioned in [18], the power-sharing of
hybridization from diverse sources is connected to the properties of power sources and the
demanding load. Hence, we can decide the size of each power plant by determining the
exact distribution of renewable powers (for example, solar and fuel cell powers) according
to the load characteristics. The resulting optimal cost of such hybrid power plant is
compared with the equivalent solar and fuel cell systems, showing improvements in
investment costs of 19.35% on average.

In our future studies, we shall add realistic factors to the cost function, and we shall
elaborate a strategy for ensuring the effective distribution of the charge/discharge amounts
of solar/fuel cell batteries. We shall also ensure the improved optimization of such energy
sources using the cDEAS. We expect to apply our proposed approach to the improved
design of cost-effective hybrid energy systems.
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