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Abstract: Electricity theft is one of the challenging problems in smart grids. The power utilities
around the globe face huge economic loss due to ET. The traditional electricity theft detection (ETD)
models confront several challenges, such as highly imbalance distribution of electricity consumption
data, curse of dimensionality and inevitable effects of non-malicious factors. To cope with the
aforementioned concerns, this paper presents a novel ETD strategy for smart grids based on theft
attacks, long short-term memory (LSTM) and gated recurrent unit (GRU) called TLGRU. It includes
three subunits: (1) synthetic theft attacks based data balancing, (2) LSTM based feature extraction,
and (3) GRU based theft classification. GRU is used for drift identification. It stores and extracts
the long-term dependency in the power consumption data. It is beneficial for drift identification. In
this way, a minimum false positive rate (FPR) is obtained. Moreover, dropout regularization and
Adam optimizer are added in GRU for tackling overfitting and trapping model in the local minima,
respectively. The proposed TLGRU model uses the realistic EC profiles of the Chinese power utility
state grid corporation of China for analysis and to solve the ETD problem. From the simulation
results, it is exhibited that 1% FPR, 97.96% precision, 91.56% accuracy, and 91.68% area under curve
for ETD are obtained by the proposed model. The proposed model outperforms the existing models
in terms of ETD.

Keywords: theft attacks; long short term memory; gated recurrent unit; deep learning techniques;
machine learning techniques; electricity theft detection; smart grids

1. Introduction

From global perspective, the traditional metering system is still a commonly applied
system, especially in the residential sector [1]. However, the electrical meters used in the
traditional metering system, i.e., electromechanical meters, do not perform as accurately
as expected and their measurement ability is mostly affected by the waveform distortion,
operating temperature, and other factors. Moreover, this category of meters allows uni-
directional communication [2]. In addition, the consumed electricity measurement needs
manual reading by the electric utility personnel, in which there are many chances of mea-
surement errors. Furthermore, it should also be considered that manual meter readings
lead the utilities to incur high operational cost, which is in fact charged from the energy
users. Therefore, the advanced metering infrastructure [3] is introduced to overcome the
issues caused by the conventional metering systems.
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The electricity theft detection (ETD) is one of the major issues and a trending research
area in the current era. It lies in the category of non technical losses (NTLs). Generally,
NTLs along with technical losses (TLs) are the categories in which losses of electricity
are grouped [4]. Majorly, TLs occur in power system’s equipment owing their resistance
against the power flow. While NTLs arise because of the electricity theft in terms of meter
hacking, bypassing, or tampering. The theft of electricity leads to many dangerous issues
like huge economic loss, operational inefficiency in electric grids, public safety hazards,
etc. The economic loss arises due to the electricity theft that amounts around 100 million
Canadian dollars per year according to the British Columbia power and hydro authority [5].
In addition, the revenue loss incurred due to the NTL throughout the world is around
96 billion USD yearly [6]. Hence, it is very crucial to have an efficient and effective ETD
approach in the smart grids (SGs).

The detection approaches of the electricity theft used in the literature are grouped into
three main categories: the hardware based approaches, the classification based approaches,
and the game-theory based approaches. The ETD approaches based on the hardware
devices [7,8] employ different hardware equipment to obtain higher theft detection accuracy.
However, these techniques require high monetary cost for the installation and maintenance
of the hardware equipment. ETD is referred as a game, in game-theory based approaches,
between two players [9,10] where both players try to optimize their utility functions.
Furthermore, a zero-sum game is introduced among the power entities for achieving the
equilibrium state. These methods do not require extra payment. However, they are still not
a suitable and optimal remedy to minimize electricity theft because the formulation of a
suitable utility function in a real environment is a tiresome job in hand.

Several deep learning (DL) and machine learning (ML) based classification models are
developed in [5,6,11–16] for ETD and they use energy consumption data stored in smart
meters (SMs). Therefore, their costs are reasonable. However, there are some issues with
the existing DL and ML based classification models, which negatively affect the classifiers
in terms of false positive rate (FPR) and true positive rate (TPR). One crucial problem that
causes the DL and ML based classifiers to perform poorly in detecting the electricity theft
is imbalanced class problem. The imbalanced class or data imbalanced issue denotes that
the count of the data points related to the abnormal consumers is not equal to the count
of the normal consumers’ present in a dataset. The data related to the normal electricity
consumers is easily available in comparison with abnormal class data because the abnormal
data are gathered in a limited amount from the real environment. Hence, the problem of
data imbalance leads the DL and ML classifiers to be biased towards the majority class
(normal users) when performing classification, which results in high FPR. In addition,
another crucial issue that negatively affects the classification algorithms in terms of TPR,
FPR, and overfitting is the curse of dimensionality. It occurs while dealing with the data
of high dimensionality. In other words, the curse of dimensionality refers to a principle
in which the increment in number of features (dimensions) is directly proportional to the
increment in the classification error. Furthermore, another crucial issue that affects the ML
and DL classification algorithms negatively is ignoring the drift. It refers to the irregular
consumption of the electricity that occurs from non theft factors like changes in the number
of family members, seasonal changes, changes in electric appliances in terms of their type
or number, etc.

This paper presents the extended version of the work already published in [17]. This
work uses six theft attacks (TAs) to produce theft data samples for balancing the data. The
combined model having TAs, long short-term memory (LSTM) [18], and gated recurrent
unit (GRU) [19], termed as TLGRU, is proposed for efficient ETD. Moreover, the proposed
approach learns and pinpoints the real abnormal consumers instead of pinpointing the
drift as theft. In this way, it reduces the FPR. The research article comprises the following
major contributions.

• A TLGRU model is proposed for effective and reliable ETD in SGs. In the proposed
model, the synthetic TAs are implemented to generate theft samples in the dataset
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acquired from state grid corporation of China (SGCC) for tackling imbalance problem.
Moreover, LSTM is employed to efficiently extract and maintain the vital characteristics
from the huge time series data, which handle curse of dimensionality problem.

• A powerful recurrent memory network, termed as GRU, is utilized to initially in-
vestigate the electricity consumption (EC) profiles of consumers and then tackle the
problem of drift accordingly.

• An efficient regularization technique, known as dropout, is integrated in the proposed
TLGRU model to avoid overfitting and increase the convergence speed.

The remaining sections of the article are arranged as discussed. Section 2 comprises the
study of the existing literature. While, the subject matter of Section 3 is the proposed system
model. The outcomes obtained after performing extensive simulations are elaborated in
Section 4. Finally, the concluding remarks are given in Section 5 .

2. Literature Review

Tuning the hyperparameters, data imbalance, ensuring privacy, and the dimensional-
ity curse problems are the four broad categories in which the existing literature is divided
and studied into four groups in this section. The research articles that deal with the hy-
perparameters’ tuning of the ML techniques are given in initial category. In [4–6,11–14],
those ML and DL techniques are under consideration that deal with efficient tuning of
hyperparameters. In [4], a stacked sparse denoising autoencoder (SSDAE) is proposed to
extract the most effective features to deal with the FPR and generalization issues. The low
value for FPR, high detection rate, high robustness, and important feature extraction are
achieved by introducing the noise and sparsity parameters into SSDAE. The hyperparame-
ters of SSDAE are tuned using particle swarm optimization algorithm. Moreover, the SGCC
hourly data are used for analysis in this work. Furthermore, in [5], to detect electricity
theft, a wide and deep convolutional neural network (WDCNN) is proposed. The theft
detection is performed by using both one dimensional and two dimensional data for model
training and model testing. The wide component is used to process the global features and
the deep component is utilized to find whether the periodicity exists between EC patterns
or not. Moreover, the behavior of the data are checked using a statistical technique, i.e.,
pearson correlation coefficient. The proposed classifier is validated using area under the
curve (AUC) and mean average precision (MAP).

However, manual hyperparameter tuning is done in the work, which reduces the
accuracy and efficiency of the classifier.

To ensure correct identification and detection of the theft patterns, a hybrid model of
two deep neural networks is proposed in [6]. The hybrid model comprises of multi layer
perceptron (MLP) and LSTM. LSTM is responsible for analyzing EC data while MLP deals
with the exogenous variables. Clearly, it is proved that the hybrid model outperforms the
benchmark models. However, the proposed hybrid model is prone to overfitting issue due
to the full connectivity of neurons. Furthermore, the class imbalance problem is not tackled,
which reduces the model’s generalization ability.

The adjustment of the hyperparameters’ values and the imbalanced data problem
are tackled by the studies conducted in [11–13]. The authors in [11] propose a consump-
tion pattern based ETD (CPBETD) model. The data imbalance problem is resolved by
generating a synthetic attacks’ dataset. In the model, low sampling rate of EC values is
considered to preserve customers’ privacy. Furthermore, a sustainable energy authority of
Ireland (SEAI) dataset is employed to check the performance of the model. The proposed
model is validated using FPR, DR, and bayesian detection rate (BDR) performance metrics.
However, the feature extraction step is not considered, which increases the computational
complexity. One of the main performance indicators, i.e., accuracy is ignored in this paper.
The authors in [12] utilize ensemble learning models for ETD. The ensemble ML mod-
els employed in the study are extreme gradient boosting (XGBoost), random forest (RF),
adaptive boosting (AdaBoost), light gradient boosting (LGB), extra trees, and categorical
boosting (CatBoost). The commission for energy regulation (CER) data are used for models’
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evaluation. The data preprocessing step is also performed for the TPR improvement. The
class imbalance problem is tackled using SMOTE. However, it requires high computational
cost for training and testing processes. Another issue with synthetic minority oversampling
technique (SMOTE) is that it lacks in capturing probability distribution curve from the
complex EC data, which degrades the generalization ability of the classifiers. Similarly,
the authors in [13] employ a variant of generative adversarial network (GAN) [20], named
as wasserstein GAN (WGAN), and K-nearest neighbor for balancing imbalanced data
and classifying data points that are near to support vector machine (SVM’s) hyperplane,
respectively. Moreover, a combined technique of supervised and unsupervised methods
is proposed, i.e., decision tree combined with the K-nearest neighbor SVM (DT-KSVM)
and WGAN techniques. In [14], the authors propose an XGBoost technique for detecting
anomalies present in the dataset of SMs. The hyperparameters’ values are adjusted using
a grid search method in this paper. However, the grid search method is computationally
expensive. Moreover, feature extraction is not efficiently performed in this work.

The second group of literature review focuses on imbalanced problem in SM data.
In [15,21–25], the data imbalance problem is resolved by the authors using several sampling
techniques. In [15], the authors tackle the data imbalance problem using a hybrid of k-
means SMOTE (K-SMOTE) technique while RF is used for theft classification. The proposed
model is evaluated and validated using the EC data obtained from Hebei province of China.
The authors in [21] propose a framework that consists of maximal overlap discrete wavelet
packet transform (MODWPT) and random undersampling boosting (RUSBoost) for feature
extraction and theft classification, respectively. The data imbalance problem is tackled
using a random undersampling (RUS) technique. The EC data of commercial and industrial
users from Honduras is employed for the evaluation of the framework. Further, the
proposed framework is validated using AUC, Matthews correlation coefficient (MCC),
accuracy, precision, recall, Fβ score, and specificity. However, some important information
is lost because of random removal of observations from the majority class using RUS.
This information loss results in a high FPR. In addition, the authors in [22] propose a
combined model of CNN and LSTM for detecting energy theft in SGs. Furthermore, the
class imbalance problem in the EC data is resolved using an oversampling technique,
known as SMOTE. Eventually, validation of the proposed model is performed using MCC,
recall, F1-score, accuracy, and precision. In addition, the EC data of Multan electric power
company (MEPCO) is considered for conducting simulations. However, SMOTE based
synthetic data generation leads to a class overlapping problem. Furthermore, in [23], the
authors propose a methodology based on ensemble bagged tree (EBT) for detecting the
fraudulent electricity consumers.

The research articles in the third group consider the electricity users’ privacy preser-
vation problem. The authors in [16,26–28] focus on dealing with the maintenance of the
consumers’ privacy. The study in [16] proposes a semi supervised auto encoder (SSAE) for
extracting significant features from the SM data of the industrial consumers. The proposed
SSAE model, for addressing the overfitting issue, makes use of the data that is unlabeled.
Along with that, an adversarial module is also used. The proposed model’s exceptional
performance with a small set of samples and preservation of consumers’ privacy are exhib-
ited through simulations. In addition, the research conducted in [26] proposes an efficient
ETD model. Privacy preservation is ensured using a functional encryption (FE) method
used by the SMs of the users to encrypt their readings. The issue of imbalance between
classes is tackled through adaptive synthetic (ADASYN) and by creating a malicious attack
dataset. Similarly, in [27], the authors propose a privacy preserving based ETD (PPETD) al-
gorithm. The generalized CNN (GCNN) classifier is employed for ETD using the encrypted
small-sized consumption slots data. However, it has high computational complexity due
to training of the excessive parameters of GCNN. Furthermore, in [28], a multiple linear
regression model (MLRM) is proposed for NTL detection in SGs. A significant benefit of
this method is that it detects electricity theft after performing comparison between the
data recorded by an SM and the collector (a sensing device attached with the SM) without
violating the customers’ privacy.
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The research articles in the final category deal with the curse of dimensionality issue
using different feature generation, feature selection, and feature extraction strategies. The
authors in [29] employ feature generation using mean, standard deviation, and minimum
and maximum values of features. They develop a gradient boosting theft detector (GBTD)
for electricity theft identification in SGs. A framework of practical feature engineering is
proposed in [30]. The framework is the combination of the finite mixture model (FMM)
based clustering for segmentation of the customers and genetic algorithm (GA) based
feature generation from one or more already available features to improve prediction
accuracy. A gradient boosting machine is used for classification. The model’s validation
is done using various performance measures. Furthermore, the authors in [31] focus
on the important features’ selection for pinpointing the anomalous consumers. They
practice binary black hole algorithm (BBHA), which is a metaheuristic technique, for
feature selection. The proposed algorithm is validated using accuracy and execution time
metrics, which are not sufficient for a fair evaluation. Moreover, many novel optimization
algorithms are developed that can be used for selecting the most suitable features in order
to achieve better performance as compared to BBHA in terms of accuracy and execution
time. In [32], a probabilistic technique is put forward for classifying patterns along with the
mathematical formulation on the levenberg-marquardt technique’s basis. Feature extraction
is performed using the encoding algorithm. However, the model input parameters’ tuning
is ignored, which becomes the reason for overfitting.

The summarized form of the available literature review is given in Table 1. Moreover,
the problems addressed from the aforementioned literature and motivation of this work
are finalized as follows.

Table 1. Literature review summary.

Methodology Objectives Dataset Performance Metrics Limitations

SSDAE [4] To tackle NTLs SGCC hourly data FPR, TPR and AUC Inadequate evaluation metrics

WDCNN [5]
To secure SGs by

detecting electricity
theft

SGCC daily data AUC and MAP Data imbalance issue

LSTM-MLP [6] To overcome NTLs Endesa
AUC, precision, recall

and
precision-recall-AUC

Data imbalance issue

CPBETD [11] To improve ETD
performance SEAI TPR, FPR and BDR

No feature extraction is
performed

RF, AdaBoost, XGBoost,
LGB, ensemble tree and

CatBoost [12]

To detect energy theft
in power grids CER Precision, AUC and

accuracy
Ensemble techniques are
computationally complex

DT-KSVM [13] To decrease power
losses SEAI AUC and accuracy Inadequate performance metrics

XGBoost [14] To enhance ETD
performance Endesa AUC, precision-recall

and execution time High computational time

RF [15] To detect NTL
behavior Hebei province AUC and accuracy No feature extraction is done
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Table 1. Cont.

Methodology Objectives Dataset Performance Metrics Limitations

SSAE [16]
To reduce NTLs by

employing
semi-supervised data

SGCC daily data
Accuracy, TPR, FPR,
precision, recall and

F1-score

Inappropriate hyperparameter
tuning

MODWPT, RUSBoost
[21] To reduce NTLs Honduras

F1-score, MCC,
precision, recall, AUC

and accuracy

Important information is lost
due to RUS

CNN-LSTM [22]
To detect abnormal

EC profiles of
consumers

SGCC daily data
F1-score., MCC,

precision, recall and
accuracy

Classes overlap due to SMOTE

EBT [23] To minimize NTLs MEPCO
Accuracy, sensitivity,
specificity, F1-score

and FPR

Curse of dimensionality problem
is not tackled

ETDFE [26]
To detect ET by

preserving
consumers’ privacy

CER
Highest difference
(HD), FPR, DR and

Accuracy

High computational complexity
due to improper hyperparameter

optimization

PPETD [27]
To perform ETD

while maintaining
consumers’ privacy

CER HD, DR and FPR Improper hyperparameter
tuning

MLRM [28] To overcome NTLs
Neighborhood
area network

dataset

Accuracy, sensitivity
and specificity

Curse of dimensionality problem
is not handled

The authors of [4] introduce SSDAE for ETD in SGs. The principal challenge they con-
sidered is high value of FPR because of the low generalization of classification techniques.
The CPBETD technique is presented in [11]. CPBETD uses the data of the electric users as
well as the transformer meters for ETD. The imbalanced data issue is handled by creating a
synthetic TA dataset. Finally, motivated from [4,11], we focused on anomalies’ prevention
and detection due to nonmalicious intermediaries (drift), curse of dimensionality, and
dealing with the data imbalance problem. The authors in [5,6] introduce new WDCNN [33]
and LSTM-MLP based techniques for electricity theft classification, respectively. However,
the unavoidable issue of data imbalance is not considered that leads to classifier’s biasness
with respect to the normal class that causes high FPR. In addition, the high value of the
FPR is neglected by these research articles. In addition, in the wide module of the WDCNN
model, only one layer, i.e., fully connected layer, is employed, which causes the model to
be trapped into the local optima. Furthermore, the authors in [11] present CPBETD for
efficient detection of NTL as previously metioned. Moreover, CPBETD obtained better
performance even with a low granularity of EC data, which assists to maintain consumers’
privacy. However, the curse of dimensionality issue is ignored, which leads to high FPR
and overfitting issues.

3. Proposed System Model

The model designed for the underlying work is made of two main units and some
subunits. The main units are (1) preprocessing unit and (2) theft classification unit. The
details of the units and their relevant subunits are given in the subsequent sections. Figure 1
exhibits the graphical view of the system model.



Energies 2022, 15, 2778 7 of 20

SGCC dataset

SI to fill the missing values

TSR for mitigating outliers

Min-max normalization to scale 

the data

Initial preprocessing of the raw data 

Balancing the data

TAs

Feature extraction

LSTM

Classification

GRU

Preprocessing 

Normal consumer

Abnormal consumer

Figure 1. Overview of the proposed ETD model.

3.1. Dataset Description

The data of energy consumption acquired from SGCC (which is both realistic and
easily accessible) is employed for the proposed model’s validation via different performance
metrics [5]. The SGCC possesses imbalanced EC data.

The total number of consumers’ data records is 42,372 of which 38,752 are the normal
users’ records and 3615 are theft consumers’ records. The sampling frequency of the dataset
is set to daily. In the dataset, the overall EC values are represented in terms of rows while
the EC value on a specific day is given in terms of a column. Furthermore, the data are
collected after conducting onsite inspections. So, it contains NaN values, outliers, and data
being dispersed on a huge scale. These abnormalities should be treated before proceeding
to the development of the ETD model. In this regard, to recover the missing values, mitigate
the outliers, and scale the data in a specific range, the preprocessing step is required, which
is discussed in detail in the next subsection. Before preprocessing, the total number of
consumers’ data is 42,372, whereas, after the preprocessing, 5 rows are dropped by the
simple imputer (SI) method because all the values in these rows are NaN values. In such
cases, the SI does not know what value is to be imputed. The imputer will impute some
values instead of deleting a record if it finds atleast one non-NaN value in the targeted
record. It is also important to note that SI method works column-wise, so you need to take
the transpose of your data before applying the imputer method. After imputation, again
take the transpose of the data to revert it to the original shape. Table 2 presents details of
the used dataset.
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Table 2. Dataset detail.

Dataset Description Values

Dataset acquisition intervals 2014–2016

Total abnormal users count before the data balancing 3615

Total benign users count before the data balancing 38,752

Total abnormal users count after the data balancing 21,183

Total benign users count after the data balancing 21,184

Total users count before the initial preprocessing of raw data 42,372

Total users count after the initial preprocessing of raw data 42,367

3.2. Preprocessing Unit

The data balancing, initial preprocessing and the feature extraction are the subunits of
the preprocessing unit. These subunits are elaborated below.

3.2.1. Initial Preprocessing of the Raw Data

The preprocessing of the raw data is very important as the performance of any model
is not only limited to the classification of electricity theft using ML models, but related
to the data quality as well. Generally, the consumption data stored by the electric meters
mostly has the missing values or the outliers. In our case, we considered the real EC data
from a Chinese dataset, i.e., SGCC [5], that also contains the outliers and the missing values.
The values exist because of various causes like the unreliable dispatch of the consumption
data, the faulty meters, the storage related problems, etc., [5]. We utilized an SI technique
for computing the mean of the consumption data present in the previous and the next cells
to deal with the missing data by. The SI working mechanism is taken from [34] and is given
in Equation (1).

f (xi,s) =



xi,s−1+xi,s+1
2 , xi,s ∈ NaN, xi,s−1,

xi,s+1 /∈ NaN

0, xi,s ∈ NaN, xi,s−1 or
xi,s+1 ∈ NaN,

xi,s, Otherwise,

(1)

where, i and s show a specific electricity customer and a time slot (day), respectively.
xi,s−1 and xi,s+1 denote the EC data of a consumer for the previous day and the next day,
respectively. Not a number (NaN) represents the missing values.

The availability of the outliers in the dataset negatively affects the classifier’s perfor-
mance and maximizes the FPR value. Hence, the outliers need to be removed from the
dataset. Therefore, we use the three-sigma rule (TSR) of thumb method to remove the
outliers from the dataset. The mathematical representation of TSR is taken from [5] and is
given in Equation (2).

f (xi,s) =


avg(X) + 2.σ(X), xi,s > avg(X) + 2.σ(X),

xi,s, Otherwise,
(2)

where, X shows a vector that is made of multiple xi,s values. The term avg(X) and σ(X)
represent the average and standard deviation of X, respectively.

As up to now, the NaN and outlier values are successfully dealt with, so now, the
dataset normalization is required because DL techniques are sensitive to the sparsed,
diversed, and unscaled data. Therefore, we use min-max data scaling method in order to
scale or normalize the data. The data scaling is performed using the Equation (3) [5].
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f (xi,s) =
xi,s −min(X)

max(X)−min(X)
(3)

where, min(X) and max(X) functions return the minimum and the maximum values of
vector X, respectively.

3.2.2. Data Balancing by TAs’ Implementation

The synthetic TAs are employed for balancing the data in the SGCC dataset. All the
six TAs are introduced in [11] while the updated and revised version of the attacks are
introduced in [29]. We select the updated TAs to create more practical and real abnormal
consumption patterns to balance the dataset. The real consumption of a user is denoted by
et, where, (t ∈ [0, 1034]). In this study, the employed dataset contains the total of 1035 days’
consumption data. The mathematical representations of all TAs are taken from [29] and are
presented in Equations (4)–(9).

t1(xt) = xt ∗ random(0.1, 0.9), (4)

t2(xt) = xt ∗ rt, rt = random(0.1, 1), (5)

t3(xt) = xt ∗ random[0, 1], (6)

t4(xt) = mean(X) ∗ random(0.1, 1), (7)

t5(xt) = mean(X), (8)

t6(xt) = x1034−t, (9)

where, X = {x1, x2, ..., x1034}. In theft attack 1, t1(.) multiplies the complete row (actual
reading) by the same randomly generated value between 0.1 and 0.9. It is argued in [29]
that it is not necessary that a theft might occur continuously in the real world but some
discontinuous values may also be reported by the theft. Therefore, in theft attack 2,
t2(.) multiples each timestamp in a row with a different random value ranges from (and
including) 0.1 to 1. Here, when the upper limit (1) of the random number is generated,
the actual reading of that particular timestamp will be reported as theft. In theft attack 3,
the theft consumer sometimes reports the real EC value and sometimes reports a 0 value.
In theft attacks 4 and 5, the mean value of the actual readings is involved. Where, in
attack 4, the mean value is multiplied with the same randomly generated value. Finally,
theft attack 6 mimics the behaviour of a theft consumer when it sends the actual readings
in a reverse order.

We applied the TAs on benign users’ consumption data to establish an appropriate
balance between the theft and honest data points. The SGCC dataset has 3615 abnormal
and 38,757 normal consumers’ data instances out of total of 42,372 records. The ratio of
the normal and abnormal consumers in the dataset is 1:9. There are large number of data
points in the dataset and it is difficult to use all of them for analysis due to the higher
computational complexity problem. So, as a sample, 9999 records out of the 42,372 are
employed for analysis. In this way, the last 900 real theft records out of 3615 (2714–3615)
are selected and the other real theft records (0–2713) are ignored. Moreover, the remaining
deficient abnormal records (4098) are synthetically created using the TAs, generation over
the benign consumers’ data starting from 901th and ending at 4998th record. Attacks 1–6
are implemented on the benign consumers’ data ranges 901–1583, 1584–2266, 2267–2949,
2950–3632, 3633–4315, and 4316–4998, respectively. The TAs’ pattern and the normal user’s
consumption pattern are shown in Figures 2 and 3, respectively. Furthermore, the data
from 4999–9998 is the benign consumers’ data. So now, the data are balanced (where 0–4998
is theft consumers’ data and 4999–9998 is normal consumers’ data) and is forwarded to
LSTM for extracting the necessary features from them, which improves the classification
performance. Finally, the GRU classifier is trained using the extracted data received for
efficient and effective electricity theft classification. The dataset contains 1035 days’ energy
consumption data and the attacks are implemented on the entire data. However, in the
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figures referred above, only 30 days’ synthetic TAs and normal patterns are given as
an example.
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Figure 2. Synthetic theft attack patterns.

0 5 10 15 20 25 30
Time (day)

0.014

0.016

0.018

0.020

0.022

0.024

0.026

0.028

0.030

El
ec
tri
cit

y 
co
ns
um

pt
io
n 
(k
W
h)

Honest
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3.2.3. Long Short Term Memory Based Feature Extraction

Once the initial preprocessing and balancing of the data are performed, LSTM [35] is
used for extracting important features. SGCC dataset contains huge and high dimensional
(features) data and we need to perform dimensionality reduction. In such situations,
the conventional recurrent neural network (RNN) [36] can not be employed as it faces
the problems of the vanishing gradient and exploding gradient while dealing with the
huge amount of data for dimensionality reduction. LSTM, an advanced RNN variant, is
employed widely for successfully dealing with exploding and vanishing gradients issue.
In training process, the temporal correlation between the current input and the previous
state is found via using the previous data by RNN, and the output is finalized. However,
because of its short and temporary memory, it fails to re-achieve and re-gain the previous
information for the huge time series data and therefore, it fails to capture the temporal
correlation between the current and the previous states. On the other hand, LSTM is able
to easily and smoothly capture the temporal correlation. It also helps in dimensionality
reduction of the huge time series data. The reason is that it has special and unique memory
cells, which make use of the historical information. Furthermore, the significant features
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from the huge time series data are retained and memorized using the cells. This information
is kept and maintained by the cell state (long term memory) in the LSTM. The significant
features enfold the necessary information of the whole dataset.

The LSTM comprises the forget gate ( ft), the input gate (it), and the output gate (ot).
The determination and decision that whether the information taken from the current input
(xt) and the previous hidden state (ht−1) should be retained or discarded from the cell
state is made by the forget gate. In this way, the information from ht−1 and xt are passed
through the sigmoid (σ) activation function and it will decide either to keep or discard
the previous output from the cell state by generating 1 or 0, respectively. The input gate
determines that which values or data are employed for updating memory state or cell state,
denoted by (Ct). Again the details from ht−1 and xt are passed from the second sigmoid
and decision will be made that what to do with the information; either discard it or save it.
Similarly, in the cell state (Ct), the tanh activation function is applied on ht−1 and xt, and
the output is stored into the cell state. The results from the cell state and the input gate are
multiplied and added with the multiplication result of the forget gate and cell state. It is
finally stored into the current cell state C′t, which is now an updated cell state. Similarly, the
final output gate (ot) takes the xt and ht−1 as the inputs, applies the sigmoid operation on
them and the final result is stored in ot. In order to calculate the next hidden state (ht), the
multiplication of tanh(C′t) and ot is performed, sigmoid is applied on their multiplication
result and the final output is stored into ht. Moreover, the mathematical formulations of
the forget, input, and output gates are given in Equations (10)–(15) [37].

ft = σ(W f (xt, ht−1) + b f ), (10)

it = σ(Wi(xt, ht−1) + bi), (11)

Ct = tanh(Wc(xt, ht−1)), (12)

C′t = ( ft ∗ (Ct)) + (it ∗ (Ct)), (13)

ot = σ(Wo(xt, ht−1) + bo), (14)

ht = σ(ot ∗ tanh(C′t)). (15)

where, bo, bi, and b f are the biases for the output, input, and forget gates, respectively. The
Wo, Wi, and W f denote the weights of the output, input, and forget gates, respectively.
Moving ahead, for denoting previous hidden state information along with the updated cell
state information, Ct and C′t are used, respectively.

The optimal adjustments of the hyperparameters’ values are very important to attain
better results for feature extraction using LSTM. In order to perform better feature extraction,
we perform manual parameter tuning. We set 200 and 100 neurons for each LSTM’s layer.
Whereas, the dense or fully connected layer has only one neuron. The dropout layer
value is set to be 0.2 in order to protect the proposed TLGRU model from overfitting.
The more detailed picture of the hyperparameters’ values are given in Table 3. In our
proposed LSTM feature extractor, we employ six layers, i.e., two LSTM, two LeakyReLU,
one BatchNormalization, and one Dropout layer. We use 200 neurons in the first LSTM
layer, the learning rate (Alpha) for both LeakyReLU layers is chosen to be 0.001, 100 neurons
are used for the second LSTM layer, and finally, 0.2 is selected as the dropout probability
for Dropout layer.

Table 3. Optimal settings of the hyperparameters’ values.

Hyperparameters Values

Units 200 and 100

Alpha 0.001

Dropout 0.2
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3.3. Theft Classification Unit

TLGRU based classification is put forward for detecting the thefts in in electricity
usage in SG. Furthermore, the popular benchmark models, LR, DT, SVM and GRU, are used
for performance comparison with the proposed classifier. The details of these classifiers are
given in the following subsections.

3.3.1. GRU

It was developed in 2014 [38]. GRU is a sub module of our proposed TLGRU model.
GRU is used in two ways: (1) as a sub module of our proposed TLGRU model to tackle
drift, ovefitting, high FPR, and local minima trap problems, (2) benchmark method for
comparison purpose. GRU is faster in comparison with RNN and LSTM with respect
to training time. It is employed widely in other research areas [39–42]; but, it is rarely
employed for efficient ETD.

GRU is mainly developed to deal with the vanishing gradient problem with which
the RNN fails to deal. The GRU merges the forget gates and the input gate of the LSTM
into one gate known as the update gate. Moreover, the combination of both cell state and
hidden state is made in GRU. The GRU’s basic architecture is illustrated in Figure 4 [39,40].

Hidden state, 
ht-1

Input, xt Reset gate

Output, yt

New hidden state, 

ht

Wr

Wr

rt

W

W

tanh
h't

Wv Wv

bv

vt

Update gate

1-
1-vt

br

Figure 4. Gated recurrent unit architecture.

GRU consists of two gates: update gate (long term memory) and reset gate (short term
memory), which are used to solve the gradient vanishing issue of RNN. These gates are
two different vectors that finalize and determine that which information must be passed
and proceeded to the output. One special and unique property about them is that the gates
have the capability to be trained in order to retain information for a long duration, without
discarding it with time or discarding information that is irrelevant and insignificant for
prediction. By this feature GRU can clearly differentiate between the irregularity because
of nonmalicious intermediaries (drift) and the irregularity due to the real theft factors,
which consequently minimizes the FPR value. Therefore, we select the GRU classifier as
the theft detection module of our proposed TLGRU classifier. The complete mathematical
formulation of reset gate (rt) and update gate (vt) is given in Equations (16) and (17),
respectively [38].

rt = σ(Wrxt + Wrht−1 + br), (16)

vt = σ(Wvxt + Wvht−1 + bv), (17)

where, Wr, br, Wv, bv, and xt denote the weight related to reset gate, the bias value related
to the reset gate, the weight related to update gate, bias related to the update gate, and the
input vector, respectively. The reset gate is used in GRU to decide the amount of historical
information to forget. Whereas, the update gate assists GRU to decide about previous
information to be copied or passed to future. To compute the current or new hidden state
(ht), two steps are need to be performed. The first step is to calculate the candidate hidden
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state (h′t) while the second step is to compute the ht. The mathematical forms for h′t, and ht
are depicted in Equations (18) and (19), respectively [38].

h′t = tanh(Wxt + Wrt � ht−1), (18)

ht = vt � ht−1 + (1− vt)� h′t. (19)

where, W and ht−1 denote the weights’ values and the hidden state at the previous time-
step, respectively. In addition, the symbol � denotes the Hadamard product. The tanh
and σ show the hyperbolic and sigmoid activation functions, respectively. In addition,
the value of rt is used to know about the role or influence of ht−1 on h′t. If rt value is 0, it
means that the information from ht−1 is totally ignored or discarded. Likewise, if its value
is 1, it means that all the information from ht−1 is considered. Furthermore, in the final ht
equation, unlike LSTM, instead of employing an independent or separate gate, in GRU
only one update gate is employed to control both the previous information from ht−1 as
well as the new information from the h′t. Now, assume that the value of vt is 0 or near to 0
in ht’s equation, the first term of ht equation is going to vanish. It means that ht will not
contain a good amount of information from ht−1 and the ht will have information from h′t
only. Similarly, if the value of vt is 1 or close to 1 in ht’s equation, the second part of the
equation will be 0; it means ht will totally be dependent on the first part of the equation,
i.e., ht−1. Hence, it is proved that the value of vt has a great importance and it ranges from
0 to 1.

In the GRU module of TLGRU, four layers are employed: GRU layer, Flatten layer,
Dropout layer, and Dense layer. In the first layer, 50 neurons are used, 20% of dropout
probability is selected, and only one neuron for dense layer is employed. In the second
layer, the conversion of data from multi dimensional to single dimensional is performed.
Furthermore, the 20% of the dropout probability value is used to randomly deactivate the
20% of neurons, so that the overfitting issue can be avoided.

3.3.2. Support Vector Machine

SVM is one of the most popular and widely used classification techniques that is
employed by many researchers as their basic proposed or benchmark model in the existing
literature [43]. In [11], SVM based CPBETD is proposed and in [35], SVM is employed as an
existing or benchmark classifier for ETD. In our case, we also select SVM as the benchmark
classifier for performance evaluation of our proposed TLGRU classifier. The SVM can be
employed for classification as well as regression. The support vector regression (SVR) and
the support vector classification (SVC) are the two classes of SVM that are used for regres-
sion and classification, respectively. However, as our task is theft detection (a classification
task), so we use the SVC class of the SVM for classification. For classification purpose, the
SVM finds a hyperplane that maximizes the margin of the hyperplane to support vectors.
This is done in order to separate the benign data and the abnormal data from each other
so that the data of both the classes can be more clearly classified. Furthermore, as the EC
data in SGCC dataset is not linearly-separable, therefore, we need to use the kernel SVM.
In this way, the radial basis function (RBF) kernel is utilized for the classification of the non
linearly-separable data (SGCC). The C and γ are the hyperparameters of SVM and their
values are selected by default. The curliness of the decision boundary in SVM is decided by
γ. Whereas, C is used to control the misclassification error.

3.3.3. Logistic Regression

LR is the simplest supervised ML binary classification algorithm [44]. It is an exten-
sively utilized classifier for ETD in SGs (binary classification problem) [35,45,46]. LR follows
the same principles as neural network. Therefore, we can surely say that LR used for binary
classification problems (binary LR) is analogous and similar to the neural network with
only one hidden layer and a sigmoid activation function (spans from 0 to 1). Where, the
value close to 0 is regarded the normal consumer and vice versa. During the coding stage of
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LR, we have considered the optimal values for the hyperparameters, i.e., random_state = 5
and solver = liblinear, where random_state is employed to control the random number
generator and solver specifies that which algorithm to employ for optimization. The values
for other hyperparameters are chosen as default.

3.3.4. Decision Tree

DT is also a popular classification method that divides the attributes into classes on
the basis of their relevant features. DT is widely used by the researchers as the benchmark
[45] and base model [47]. DT prepares a road map for the state of the art and advanced
ensembled techniques like gradient boosting classifiers, random forest, and bagging tech-
niques [48].

4. Simulation Results

In this study, simulations are performed using Google Colaboratory. The details of
the selected SGCC dataset for validation of our proposed model are given in Section 3.1.
Section 4.1 comprises the results obtained after performing extensive simulations. Moreover,
the comparison between TLGRU’s performance and the performance of the existing models,
i.e., GRU, SVM, DT, and LR, is made and the validation is done in terms of ETD. Furthermore,
recall, area under the curve (AUC), precision, and F1-score metrics are considered the
appropriate measures in order to compute the classifiers’ performance using the imbalanced
data [35]. Based on the cases mentioned above, the accuracy metric is not an appropriate
performance measure [48,49].

4.1. Proposed TLGRU and Other Benchmark Techniques’ Results

The epoch variable is employed to control the training process of the proposed model.
We run our model for 10 iterations or epochs. The convergence of our proposed TLGRU
model with respect to accuracy and loss performance measures is exhibited in Figures 5 and 6,
respectively. It is visible in the figures that the training accuracy (accuracy on seen data) of
the TLGRU increases moderately at each iteration and finally it reaches to 91.77% at the final
iteration. Whereas, using the testing data (accuracy using unseen data), the TLGRU accuracy
gradually increases as well and it reaches 91.56% at the final iteration. The SGCC dataset
contains some zero values due to which the proposed classifier can not learn it properly at the
early iterations, therefore, during the first three epochs, the training accuracy is better than
testing accuracy, which means that the overfitting issue has occurred. After the 3rd iteration,
the proposed model efficiently learns the zero values and the overfitting issue is removed. The
loss of the TLGRU is also computed and noted at different iterations. As shown in Figure 6,
the training loss is minimizing at every iteration till it reaches to 0.2068 at the 10th iteration.
While, the testing loss also reduces till it reaches to 0.2084 at the final iteration. During the first
three iterations, the model overfits because of the zero values that exist in the dataset. After
the third iteration, the model learns the dataset as well as the zero values and therefore, the
overfitting issue is solved. Now, finally, from training and testing accuracy of the proposed
model, it is concluded that the model generalizes well and avoids overfitting. The overfitting
problem is tackled using the proper tuning of the dropout probability value and powerful
and significant features’ extraction ability of the LSTM in TLGRU model.
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Figure 5. The proposed TLGRU model’s training and testing accuracy.

2 4 6 8 10
Epoch

0.2

0.3

0.4

0.5

0.6

Lo
ss

Proposed TLGRU train
Proposed TLGRU test

Figure 6. The proposed TLGRU model’s training and testing losses.

The accuracy and loss convergence analysis results for the benchmark GRU model are
shown in Figures 7 and 8, respectively. It is shown that at the final iteration, the training
and testing accuracy value for GRU is 89.99% and 82.65%, respectively. Using the seen
data, the accuracy slowly increases, whereas, on testing data, the accuracy fluctuates till
the 7th iteration and after 7th iteration, it starts decreasing. Moreover, at the 3rd epoch,
the GRU model learns and trains using a batch having some zero values that causes
overfitting. However, after the 7th epoch, the overfitting again starts and continues till
the final iteration. Hence, it is proved that the existing GRU model overfits. The main
reasons for the occurrence of this issue are lack of important features’ extraction to reduce
the data dimensionality and no proper tuning of the dropout regularization probability
value. Furthermore, the training and testing loss values for GRU at the last iteration are
0.2852 and 0.5136, respectively. The same trend continues in the loss as well. The training
loss continuously decreases while the testing loss fluctuates till the 7th epoch and it starts
increasing after the 7th iteration. At the 3rd epoch, the overfitting issue occurs due to
the presence of zero values in the batch. Later on, after the 7th iteration, the overfitting
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issue occurs and it continues till the end, hence, the model overfits. Finally, from the
training and testing accuracy and loss plots, it is concluded that GRU model does not
have good generalization ability and overfitting issue occurs because of neglecting the
tuning of the dropout regularization probability value and features’ extraction. Whereas,
our proposed TLGRU model outperforms the benchmark GRU in terms of tackling the
overfitting problem.
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Figure 7. The GRU model’s training and testing accuracy.
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Figure 8. The GRU model’s training and testing losses.

For TLGRU’s comparison with DT, LR, SVM, and GRU models, the AUC, recall,
precision, F1-score, and accuracy are considered, which are the most effective performance
parameters. The comparison of the TLGRU’s performance with the existing benchmark
models is exhibited in Table 4 and Figure 9 with regard to various performance measures.
From the results, the superiority of TLGRU model over all the other conventional models
with regard to the already discussed indicators of performance due to the following reasons.
The first reason is that TLGRU effectively tackles the imbalanced data issue using different
TAs, the second reason is that the LSTM module is used to extract the necessary features
and solve the high dimensionality issue, and finally, the classification using the GRU
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module enhances TLGRU’s performance. Moreover, in the GRU module, dealing with
the drift, overfitting, and local optima trapping issues using the update gate (long term
memory), dropout regularization, and Adam optimizer further enhances the performance
of the model being put forward our proposed model with respect to the selected evaluators.
Contrarily, SVM and LR perform very bad. The reason is that they can not tackle the large
and huge time series data and that is why overfitting issue occurs. Whereas, the proposed
TLGRU classifier smoothly handles the large time series data due to the feature extraction
ability of the proposed model using LSTM algorithm and solves the issue of overfitting.

Table 4. Performance comparison of the proposed and existing schemes.

Classifier Accuracy AUC
Score Precision Recall F1-Score FPR

DT 0.6701 0.6702 0.7019 0.6585 0.6795 0.1485

LR 0.5379 0.5365 0.5207 0.7097 0.6736 0.4370

SVM 0.6433 0.6423 0.4678 0.7162 0.5660 0.2646

GRU 0.8265 0.7552 0.8355 0.7176 0.7721 0.0818

Proposed
TLGRU 0.9156 0.9168 0.9796 0.8659 0.9192 0.0100
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Figure 9. Performance comparison of different classifiers.

FPR is one of the significant performance metrics for ML techniques in which the
benign electricity users are classified and shown as theft. The value of FPR is directly
proportional to the on field inspection cost. There are many solutions or ways to minimize
the FPR value. However, we have only considered and worked on three different ways
to reduce the FPR value: data balancing, extraction of the important features from the
raw data, and correctly identifying the drift. This article uses the GRU for classification
purpose because it has a special quality of keeping the long historical sequence of data
using its update gate (long term memory), and the data are then used for analyzing the long
relationships among the consumption patterns. The GRU model identifies the anomalies or
irregularities in consumption data that arise due to the non-theft reasons. The FPR for DT is
0.1485, for SVM is 0.2646, for LR is 0.4370, for GRU is 0.0818, and for TLGRU is 0.01. Hence,
consequences are clear from the FPR numeric values that the TLGRU classifier exhibits the
least FPR in comparison with all the other benchmark classifiers. The FPR for our proposed
TLGRU and other benchmark models is shown in Figure 10.
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Figure 10. The proposed and benchmark models’ FPR analysis.

4.2. Strengths and Weaknesses of the Proposed Work

The fundamental advantage of this work is to provide an efficient ETD model for
power utilities, which helps them to reduce economic loss. Furthermore, the accurate and
timely detection of energy thieves reduces the line losses in transformers and other grids’
components. Besides, the proposed model has some shortcomings. The low-frequency
EC data are used to train the model, which limits its performance towards capturing the
most granular EC patterns. Consequently, the rate of misclassifying instances increases.
Further, it may incur high computational time due to the absence of a hyperparameter
tuning technique.

5. Conclusions and Future Work

In this research article, the TLGRU model is presented that consists of two main
components and three sub-components. The main components are preprocessing unit and
theft classification unit. The preprocessing component is further divided into three sub-
components: initial preprocessing of the raw data, data balancing, and feature extraction. In
the first sub-component, the NaN values, outliers, and unscaled data are dealt by employing
SI, TSR of thumb, and min-max scaler, respectively. In the second sub-component, TAs
are employed for creation of the synthetic abnormal data samples to solve the imbalanced
data problem. Finally, LSTM classifier is employed for feature extraction and dealing with
dimensionality curse problem. Furthermore, the classification component contains the GRU
model for theft classification. Moreover, the GRU provides solution for drift identification,
overfitting, and trapping in local optima problems. In addition, four popular benchmark
models, DT, LR, SVM, and GRU, are implemented for performance comparison with the
proposed TLGRU classifier. A realistic EC dataset (SGCC) is employed for simulations.
From the simulation results, the superiority of TLGRU over benchmark models in terms
of ETD is exhibited. The simulations provide us with 1% FPR, 97.96% precision, 91.92%
F1-score, 91.68% AUC, 91.56% accuracy, and 86.59% recall, which are better than the
benchmark schemes. Hence, we conclude that the newly developed TLGRU is an efficient
model for ETD with minimum FPR. In future works, we will investigate the novel DL
models for feature extraction and classification to more efficiently perform the ETD task.
Moreover, automated tuning of the hyperparameters’ of the models will also be performed
using meta-heuristic optimization algorithms. In addition, the aim of the underlying study
is the development of a novel deep learning based hybrid model, which helps electric
utilities to detect energy frauds in SGs around the globe. Furthermore, the proposed model
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is trained on a massive EC dataset. So, its real time practicability in terms of identifying the
presence of thieves in the SGs is ensured. Further, the model introduced in the underlying
work is a quite general solution to detect anomalies and frauds in any time series. It
needs only a dataset for its training. So, the EC data collected by the conventional meters
can be used to train the proposed model and then it will be applicable in SGs to detect
energy frauds.

Author Contributions: Conceptualization, P., N.J. and S.A.; methodology, P.; software, P. and S.J.;
validation, N.J., M.A. and M.U.J.; formal analysis, A.S.Y. and S.J.; investigation, N.J.; resources, S.J.;
data curation, P.; writing—original draft preparation, P. and N.J.; writing—review and editing, N.J.
and S.A.; visualization, N.J. and S.A.; supervision, N.J.; project administration, S.A. and N.J. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The dataset employed in this research is available online at https:
//github.com/henryRDlab/ElectricityTheftDetection (accessed on 30 December 2021).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Garcia Deluno, F.; Marafão, F.P.; de Souza, W.A.; da Silva, L.C.P. Power metering: History and future trends. In Proceedings of the

2017 Ninth Annual IEEE Green Technologies Conference (GreenTech), Denver, CO, USA, 29–31 March 2017; pp. 26–33.
2. Weranga, K.S.K.; Kumarawadu, K.; Chandima, D.P. Smart Metering Design and Applications; Springer: Singapore, 2014.
3. Foudeh Husam A.; Mokhtar, A.S. Automated meter reading and advanced metering infrastructure projects. In Proceedings of

the 2015 9th Jordanian International Electrical and Electronics Engineering Conference, Amman, Jordan, 12–14 November 2015;
pp. 1–6.

4. Huang, Y.; Qifeng, X. Electricity theft detection based on stacked sparse denoising autoencoder. Int. J. Elect. Power Energy Syst.
2021, 125, 106448.

5. Zheng, Z.; Yatao, Y.; Xiangdong, N.; Dai, H.; Zhou, Y. Wide and deep convolutional neural networks for electricity-theft detection
to secure smart grids. IEEE Transact. Ind. Inform. 2017, 14, 1606–1615.

6. Buzau, M.-M.; Tejedor-Aguilera, J.; Cruz-Romero, P.; Gómez-Expósito, A. Hybrid deep neural networks for detection of non-
technical losses in electricity smart meters. IEEE Trans. Power Syst. 2019, 35, 1254–1263.

7. Khoo, B.; Ye, C. Using RFID for anti-theft in a Chinese electrical supply company: A cost-benefit analysis. In Proceedings of the
2011 Wireless Telecommunications Symposium (WTS), New York City, NY, USA, 13–15 April 2011; pp. 1–6.

8. McLaughlin, S.; Brett, H.; Fawaz, A.; Berthier, R.; Zonouz, S. A multi-sensor energy theft detection framework for advanced
metering infrastructures. IEEE J. Select. Areas Commun. 2013, 31, 1319–1330.

9. Cárdenas; A.A.; Saurabh, A.; Schwartz, G.; Dong, R.; Sastry, S. A game theory model for electricity theft detection and privacy-
aware control in AMI systems. In Proceedings of the 2012 50th Annual Allerton Conference on Communication, Control, and
Computing (Allerton), Monticello, IL, USA, 1–5 October 2012; pp. 1830–1837.

10. Amin, S.; Schwartz, G.A.; Tembine, H. Incentives and security in electricity distribution networks. In Proceedings of the
International Conference on Decision and Game Theory for Security, Virtual Conference, 25–27 October 2012; pp. 264–280.

11. Jokar, P.; Arianpoo, N.; Leung, V.C.M. Electricity theft detection in AMI using customers’ consumption patterns. IEEE Trans.
Smart Grid 2015, 7, 216–226.

12. Gunturi Kumar, S.; Sarkar, D. Ensemble machine learning models for the detection of energy theft. Electric Power Syst. Res. 2021,
192, 106904.

13. Kong, X.; Zhao, X.; Liu, C.; Li, Q.; Dong, D.; Ye, L. Electricity theft detection in low-voltage stations based on similarity measure
and DT-KSVM. Int. J. Electr. Power Energy Syst. 2021, 125, 106544.

14. Buzau, M.M.; Tejedor-Aguilera, J.; Cruz-Romero, P.; Gómez-Expósito, A. Detection of non-technical losses using smart meter data
and supervised learning. IEEE Trans. Smart Grid 2018, 10, 2661–2670.

15. Qu, Z.; Li, H.; Wang, Y.; Zhang, J.; Abu-Siada, A.; Yao, Y. Detection of electricity theft behavior based on improved synthetic
minority oversampling technique and random forest classifier. Energies 2020, 13, 2039.

16. Lu, X.; Zhou, Y.; Wang, Z.; Yi, Y.; Feng, L.; Wang, F. Knowledge embedded semi-supervised deep learning for detecting
non-technical losses in the smart grid. Energies 2019, 12, 3452.

17. Ashraf Ullah, P.; Shoaib, M.; Muhammad, A.; Kabir, B.; Javaid, N. Synthetic Theft Attacks Implementation for Data Balancing
and a Gated Recurrent Unit Based Electricity Theft Detection in Smart Grids. In Proceedings of the Conference on Complex,
Intelligent, and Software Intensive Systems, Asan, Korea, 1–3 July 2021; Springer: Cham, Switzerland, 2021; pp. 395–405.

https://github.com/henryRDlab/ElectricityTheftDetection
https://github.com/henryRDlab/ElectricityTheftDetection


Energies 2022, 15, 2778 20 of 20

18. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780.
19. Cho, K.B.; Merrienboer, V.; Bahdanau, D.; Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches.

arXiv 2014, arXiv:1409.1259.
20. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial

nets. Adv. Neural Inform. Proces. Syst. 2014, 27.
21. Fabian, A.N.; Figueroa, G.; Chu, C. NTL detection in electric distribution systems using the maximal overlap discrete wavelet-

packet transform and random undersampling boosting. IEEE Trans. Power Syst. 2018, 33, 7171–7180.
22. Hasan, M.; Toma, R.N.; Abdullah-Al, N.; Islam, M.M.; Kim, J. Electricity theft detection in smart grid systems: A CNN-LSTM

based approach. Energies 2019, 12, 3310.
23. Saeed Salman, M.; Mustafa, M.W.; Sheikh, U.U.; Jumani, T.A.; Mirjat, N.H. Ensemble bagged tree based classification for reducing

non-technical losses in multan electric power company of Pakistan. Electronics 2019, 8, 860.
24. Wang, X.; Yang, I.; Ahn, Su. Sample efficient home power anomaly detection in real time using semi-supervised learning. IEEE

Access 2019, 7, 139712–139725.
25. Liu, H.; Li, Z.; Li, Y. Noise reduction power stealing detection model based on self-balanced data set. Energies 2020, 13, 1763.
26. Ibrahem, M.I.; Nabil, M.; Fouda, M.M.; Mahmoud, M.M.E.A.; Alasmary, W.; Alsolami, F. Efficient Privacy-Preserving Electricity

Theft Detection with Dynamic Billing and Load Monitoring for AMI Networks. IEEE Internet Thing. J. 2020, 8, 1243–1258.
27. Nabil, M.; Ismail, M.; Mahmoud, M.M.E.A.; Alasmary, W.; Serpedin, E. PPETD: Privacy-preserving electricity theft detection

scheme with load monitoring and billing for AMI networks. IEEE Access 2019, 7, 96334–96348.
28. Micheli, G.; Soda, E.; Vespucci, M.T.; Gobbi, M.; Bertani, A. Big data analytics: An aid to detection of non-technical losses in

power utilities. Comput. Manag. Sci. 2019, 16, 329–343.
29. Punmiya, R.; Choe, S. Energy theft detection using gradient boosting theft detector with feature engineering-based preprocessing.

IEEE Trans. Smart Grid 2019, 10, 2326–2329.
30. Razavi, R.; Gharipour, A.; Fleury, M.; Akpan, I.J. A practical feature-engineering framework for electricity theft detection in smart

grids. Appl. Energy 2019, 238, 481–494.
31. Ramos, C.; Rodrigues, D.; de Souza, A.N.; Papa, J.P. On the study of commercial losses in Brazil: A binary black hole algorithm

for theft characterization. IEEE Trans. Smart Grid 2016, 9, 676–683.
32. Ghasemi, A.A.; Gitizadeh, M. Detection of illegal consumers using pattern classification approach combined with Levenberg-

Marquardt method in smart grid. Int. J. Electr. Power Energy Syst. 2018, 99, 363–375.
33. LeCun, Y.; Bengio, Y. Convolutional networks for images, speech, and time series. In The Handbook of Brain Theory and Neural

Networks; MIT Press: Cambridge, MA, USA, 1995; Volume 3361.
34. Li, S.; Han, Y.; Yao, X.; Yingchen, S.; Wang, J.; Zhao, Q. Electricity theft detection in power grids with deep learning and random

forests. J. Electr. Comput. Eng. 2019, 2019, 4136874.
35. Adil, M.; Javaid, N.; Qasim, U.; Ullah, I.; Shafiq, M.; Choi, J. LSTM and bat-based RUSBoost approach for electricity theft detection.

Appl. Sci. 2020, 10, 4378.
36. Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536.
37. Javaid, N. A PLSTM, AlexNet and ESNN Based Ensemble Learning Model for Detecting Electricity Theft in Smart Grids. IEEE

Access 2021, 9, 162935–162950.
38. Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv

2014, arXiv:1412.3555.
39. Zhang, Y.G.; Tang, J.; He, Z.; Tan, J.; Li, C. A novel displacement prediction method using gated recurrent unit model with time

series analysis in the Erdaohe landslide. Nat. Hazards 2021, 105, 783–813.
40. Aniruddha, D.; Kumar, S.; Basu, M. A gated recurrent unit approach to bitcoin price prediction. J. Risk Financ. Manag. 2020, 13, 23.
41. Niu, Z.; Yu, Z.; Tang, W.; Wu, Q.; Reformat, M. Wind power forecasting using attention-based gated recurrent unit network.

Energy 2020, 196, 117081.
42. Luo, H.; Wang, M.; Wong, P.K.; Tang, J.; Cheng, J.C.P. Construction machine pose prediction considering historical motions and

activity attributes using gated recurrent unit (GRU). Automat. Construct. 2021, 121, 103444.
43. Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297.
44. Available online: www.tutorialspoint.com (accessed on 5 June 2021).
45. Gul, H.; Javaid, N.; Ullah, I.; Qamar, A.M.; Afzal, M.K.; Joshi, G.P. Detection of non-technical losses using SOSTLink and

bidirectional gated recurrent unit to secure smart meters. Appl. Sci. 2020, 10, 3151.
46. Aslam, Z.; Javaid, N.; Ahmad, A.; Ahmed, A.; Sardar Muhammad Gulfam. A Combined Deep Learning and Ensemble Learning

Methodology to Avoid Electricity Theft in Smart Grids. Energies 2020, 13, 5599.
47. Jindal, A.; Dua, A.; Kaur, K.; Singh, M.; Kumar, N.; Mishra, S. Decision tree and SVM-based data analytics for theft detection in

smart grid. IEEE Trans. Ind. Inform. 2016, 12, 5–1016.
48. Available online: www.machinelearningmastery.com (accessed on 17 April 2021).
49. Javaid, N.; Jan, N.; Javed, M.U. An adaptive synthesis to handle imbalanced big data with deep siamese network for electricity

theft detection in smart grids. J. Parallel Distrib. Comput. 2021, 153, 44–52.

www.tutorialspoint.com
www.machinelearningmastery.com

	Introduction
	Literature Review
	Proposed System Model
	Dataset Description
	Preprocessing Unit
	Initial Preprocessing of the Raw Data
	Data Balancing by TAs' Implementation
	Long Short Term Memory Based Feature Extraction

	Theft Classification Unit
	GRU
	Support Vector Machine
	Logistic Regression
	Decision Tree


	Simulation Results
	Proposed TLGRU and Other Benchmark Techniques' Results
	Strengths and Weaknesses of the Proposed Work

	Conclusions and Future Work
	References

