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Abstract: The partial transmit sequence (PTS) technique is a fairly suitable scheme to mitigate the
high peak-to-average power ratio (PAPR) problem inherent in 5G multicarrier systems, especially
considering a high-order QAM modulation design. However, the high computational complexity
level and the speed of the convergence for optimizing the phases of the transmitting signal restrict this
technique in practical applications. In this paper, a low-complexity frequency-domain-evaluated PTS
(F-PTS) based on a spacing multiobjective (SMO) processing algorithm is proposed to reduce the PAPR
values. The PAPR performance are accurately predicted in terms of modifying relative dispersion in
the frequency domain. As a result, the complexity of searching the optimal phase factors and IFFT
computing is simplified. Moreover, a frequency-domain- and time-domain-evaluating PTS (FTD-PTS)
is employed to search the optimal solution with a reasonable complexity. Simulation results verify
that the operation rate of F-PTS is significantly improved after transferring the exhaustive search
strategy of PTS into the SMO algorithm, and the F-PTS PAPR reduction performance is just 0.3 dB
away from theoretical optimal performance. The FTD-PTS spends an acceptable operation rate to
obtain optimal PAPR reduction performance, which subtracts 0.5 and 0.6 dB more than PSO-PTS and
conventional PTS at CCDF = 10−3, respectively.

Keywords: multicarrier system; 5G communication; partial transmission sequence; OFDM; power
amplifier efficiency; PAPR

1. Introduction

Recently introduced 5G communication systems can be applied in enhanced mo-
bile broadband (eMBB), ultrareliable and low-latency communication (URLLC), massive
machine type communication (mMTC) scenarios [1]. The multicarrier system is one of
the critical technologies of 5G, which improves the spectral efficiency of 5G. Orthogonal
frequency division multiplexing (OFDM) is one of the most representative multicarrier
modulation (MCM) techniques due to its capability to efficiently cope with frequency-
selective channels for 5G broadband wireless communication [2]. In addition, OFDM is
applied in various communication systems [3]. Japan has developed the Integrated Service
Digital Broadcasting-Terrestrial (ISDBT) [4] standard; China has developed the Digital Tele-
vision Multimedia Broadcasting (DTMBH) [5] standard. Due to the anti-multipath fading
characteristic of OFDM, OFDM is applied in various IEEE physical layer [6] name protocols
in WLAN . However, OFDM is restricted by obstacles such as the high peak-to-average-
power ratio (PAPR) [7], which drives the OFDM signals to work in the nonlinear region
of high-power amplifiers (HPA) [8] and this leads to the appearance of an undesirable
degradation in the bit error rate (BER) [9] performance. An increase in the back-off of HPA
will lead to a loss in power efficiency; therefore, PAPR reduction is necessary and more
efficient for energy optimization.
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Various PAPR reduction schemes have been proposed to solve this issue, including
signal distortion, coding and probability schemes. As a distortion technology, the clipping
scheme [10] reduces PAPR by clipping the peak signal, but it produces additional noise and
distortion to the system. Coding technology [11] encodes the signal without distortion and
transmits signals with the lowest PAPR, increasing signal redundancy and reducing spectral
efficiency. Probability technologies include particle sequence selection (PTS) [12], selective
mapping (SLM) [13], tone reservation (TR) [14] and tone injection (TI) [15] technologies,
which reduce PAPR by changing phase factors without distortion. A comparison of PAPR
reduction schemes is given in Table 1. Among all existing techniques, PTS is very promising
for a 5G waveform because of its efficient PAPR reduction performance without any signal
distortion. The major drawback of PTS technologies is high computational complexity. To
search for the optimal phase combination, large numbers of sub-blocks are inevitable, which
increases the searching complexity exponentially [16]. In low-complexity PTS methods,
one of the most attractive methods is using dominant time-domain samples. Unfortunately,
a set of multipoint IFFT operations using entire points is required to calculate PAPR values,
which significantly increases computational complexity, especially for the PTS algorithm.

Table 1. List of PAPR reduction schemes comparisons.

Distortionless Power Increase Implementation
Complexity

High-Order-QAM
Fitness

Clipping No No Low Low

Coding Yes No Low Low

PTS/SLM Yes No High High

TR/TI Yes Yes High High

Various schemes have been proposed to improve PTS techniques. The pseudo-random
and interleaving segmentation PTS method (PR-IL-PTS) [17] applied adjacent and random
joint segmentation to improve PAPR reduction performance with a lower computational
complexity, but the effect of the PAPR reduction was not satisfactory. The real and imag-
inary parts PTS method (RI-PTS) [18] dispersed the signal’s real and imaginary phase
factors, respectively, which improves the PAPR reduction performance but increases the
computational complexity. The particle swarm optimization algorithm (PSO) PTS method
refers to the phase factor as particles, employs the iterative function to update the par-
ticle position iteratively and acquires the best combination of phase factors by particle
mutual learning. However, the computational complexity of PSO-PTS rises sharply with
the number of iterations. Ref. [19] applied discrete Fourier transform to improve the PAPR
reduction performance with considerable computational complexity.

In this work, a new metric which can select dominant frequency-domain samples
accurately is proposed. Specifically, we propose a novel method based on a spacing
multiobjective (SMO) processing algorithm to search for a suboptimal PTS scrambling
signal [20]. The PAPR performance is accurately predicted in terms of modifying the relative
dispersion before the IFFT operations. Then, the dominant complexity of computing the
IFFT is evaded. The proposed low-complexity F-PTS methods can achieve much lower
computational complexity without degrading the PAPR reduction performance. We also
show that SMO processing has a unique structure that can be exploited to implement the
PTS efficiently. Thus, the second proposed scheme, FTD-PTS, may achieve an optimal
solution within a faster convergence speed. An evaluation of SMO is conducted to favor
a PTS subset before the IFFT operations, instead of randomly selecting a subset. Then,
time-domain metrics are used to estimate the PAPR of each candidate signal after finding
the preferred PTS subset. Then, time-domain metrics are used to estimate and designate the
achievable optimal solution accurately and remove parts of the samples from the procedure
of the preferred PTS subset. Compared with the conventional PTS method, the improved
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PTS method has a reasonable computational complexity and PAPR reduction can reach
achievable lower bounds accurately.

To sum up, PTS and its improved versions have issues with high computational
complexity or relatively poor PAPR reduction performance. This research proposes two
advanced PTS algorithms (F-PTS and FTD-PTS) to reduce the computational complexity
and achieve an optimal PAPR reduction performance with reasonable computational
complexity.

This paper is arranged as follows. Section 2 explains the OFDM system and its
inherent PAPR issue. Section 3 introduces the conventional PTS scheme and analyzes its
computational complexity. Section 4, exploring the relationship between the PTS signals
correlation and PAPR, proposes a low-computational-complexity F-PTS scheme based
on a multiobjective optimization algorithm. Section 5 improves the F-PTS algorithm and
proposes a FTD-PTS algorithm based on the time- and frequency-domain joint evaluation
algorithm, which achieves the best PAPR reduction performance within an acceptable
computational complexity. Section 6 presents the simulation results of F-PTS and FTD-PTS.

2. OFDM System

In this section, the OFDM structure and PAPR definition are presented. The continuous-
time baseband OFDM sequence can be expressed as:

x(t) =
N−1

∑
k=0

Xk(t)ej2πk∆ f t, 0 ≤ t ≤ T (1)

where N data symbols X = {Xk, k = 0, 1, . . . , N − 1} generate the OFDM signals, which
are chosen from phase-shift-keying (PSK) or quadrature amplitude modulation (QAM)
constellation mapping, T represents the OFDM signal duration and ∆ f = 1/T is the
frequency interval between subcarriers [21].

Likewise, the discrete-time baseband OFDM sequence with L-time oversampling can
be represented as:

xn =
1√
LN

N−1

∑
k=0

Xk(t)ej2πnk/LN , n=0, 1, . . . , LN − 1 (2)

According to the central limit theorem, OFDM signals with massive subcarriers follow
a Gaussian distribution, whose amplitude follows a Rayleigh distribution. The peak-
to-average power ratio (PAPR) is usually used to describe the characteristics of signal
amplitude fluctuations, which occur when different phase subcarriers achieve the maxi-
mum amplitude simultaneously [22]. A high PAPR will lead to HPA exceeding the dynamic
range, causing nonlinear distortion. The PAPR of an L-time-oversampled OFDM signal can
be defined as:

PAPR = 10log10


max[|xn|2]
0≤n≤NL−1

E
[
|xn|2

]
Pavx(n)

 (3)

The complementary cumulative distribution function (CCDF) is the major measure
instrument to clarify the performance of PAPR in OFDM systems, which is defined as the
probability that the PAPR exceeds a certain threshold Z0 [23].

CCDFPAPR(PAPR0) = Pr(PAPR > PAPR0)

= 1− F(Z) (4)

= 1− (1− e−Z0)
N
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3. PTS Technique

A high PAPR is a major obstacle to the high energy efficiency of MCM systems in
5G communications [24]. Via continuous signal sub-blocks and computational power
consumption, PTS is a nondistortion method and one of the few PAPR reduction techniques
that applies in 5G high-order QAM communication scenarios [25].

3.1. PTS Scheme

The principle of PTS is to reduce PAPR by scrambling partitioned sub-blocks into
different phases. Figure 1 depicts the scheme of PTS, where the input frequency-domain
signal was divided into several subcarriers, each of them was conducted with an IFFT and
scrambled with phase factors, then the signals in the time-domain with the minimum PAPR
were chosen [26].

Figure 1. The structure of PTS system.

The main algorithm of the PTS scheme is shown in Figure 2. A frequency-domain signal
X is divided into V disjoint sub-blocks as Xv = [Xv,0, Xv,1, . . . , Xv,N−1] , and v = {1, 2, . . . , V},
where only N/V signals are available while others are padded with 0. A random OFDM
signal can be shown as follows:

Xv(k) =
{

X(k), i f X(k) ⊆ Xv
0, i f X(k) 6⊂ Xv

(5)

where X(k) denotes a signal appearing in the vth sub-block. The phase weighting factors
b = [b1, b2, . . . , bV ] are achieved by Φ =

{
ejφ1 , . . . , ejφv , . . . , ejφV

}
, where

ϕω ∈ [0, 2π), which can be represented as:

b =
{

bv = ej2πv/V |v = 0, 1, . . . . . . , V − 1
}

(6)

Thus, the scrambled serial time-domain signal can be written as:

x = IFFT

{
V

∑
v=1

bvXv

}
=

V

∑
v=1

bvxv (7)

where xv = F−1
v Xv is the candidate signal in the time domain and F−1

v is the IFFT calcu-
lation padded with 0. Basically, PTS utilizes random phase factors to disperse the phase
distribution, so that a high PAPR can be avoided.

Finally, the optimum phase factors combination with minimum PAPR are chosen
as follows:

bopt = argmin
bk

(
max

0≤n≤NL−1

∣∣∣∣∣ V

∑
v=1

bv · xv

∣∣∣∣∣
)

s .t. bk = [b1, b2, . . . , bv], k = 1, . . . , M (8)
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where bopt is the best combination. V! groups of none-repeating candidate signals can be
generated and M groups of candidate signals are randomly selected from V!. The closer M
is to V!, the closer the probability is to the theoretical best phase factors combinations.

To demodulate the signals at the receiver, side information (SI) about the phase rotation
factors must be sent as well; the quantity of SI can be represented as: SIC-PTS = log2V! BS,
where BS is bits per sample.

Figure 2. The algorithm of PTS system.

3.2. Computational Complexity and Optimization of PTS

It is well-known that conventional PTS scheme has an extremely high computational
complexity when exhaustively searched. Particularly, the massive IFFT calculation is an
insupportable burden [27].

The complexity of random partitioning PTS when applying the LN-FFT calculation
can be represented as:

Cadd = V(LNlog2LN) (9)

and
Cmult = V(

LN
2

log2LN), (10)

respectively, where Cadd represents the additive computational complexity and Cmult repre-
sents the multiplicative computational complexity.

The complexity of PTS when applying M searching spaces in (8) can be represented as:

CSadd = MLN(V − 1) (11)

and,
CSmult = MLN(V + 1) (12)

It can be concluded from (11) and (12) that the complexity increases exponentially
with the increase in the searching time M.

4. Low-Computational-Complexity F-PTS

Simply put, PAPR is due to the superposition of the peak amplitudes in the adjacent
subcarriers, which produces a resonance like effect; it can be inferred that a frequency-
domain phase-discretization technique would exist to reduce the probability of PAPR
generation.

For evaluating dispersion, the difference in correlation Rab between rotation factors
is analyzed in this section. Assuming that xv,n from xv = [xv,0, xv,1, . . . , xv,n, . . . , xv,N−1]

T

is a sequence of independent complex numbers following N
(
0, σ2/2V

)
. The correlation

among two random signals can be represented as:
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Rab

(
x
′
a(m), x

′
b(n)

)
=

1
N

(
N−1

∑
k=0

N−1

∑
y=0

bk
i by*

l X′(k)X′(y)* exp
(

j
2π(km− yn)

N

))
, 1 ≤ i, l ≤ U; 0 ≤ m, n < N (13)

where x
′
a(m) and x

′
b(n) [28] represent two random signals and X′(k), X′(y) represent

corresponding frequency-domain signals. Defining τ = m− n, after simplification, (13) can
be written as:

Rab

(
x
′
a(m), x

′
b(n)

)
=

1
N

V

∑
v=1

bv
i bv*

l ∑
k∈ϑv

exp
(

j
2πkτ

N

)
,−N < τ < N (14)

Substituting a random partitioned standard Φv = {P random independent subcarriers}
and defining the correlation of two random signals as RR,ab(τ), (14) can be transformed
into : ∣∣RR,ab(τ)

∣∣ ≈


0 , τ 6= 0

1
V ·
∣∣∣∣ V

∑
v=1

bv
i bv∗

l

∣∣∣∣ , τ = 0.
(15)

When τ = 0, the correlation of two random points in an identical signal can be
evaluated applying (15) and the relationship of PAPR and

∣∣RR,ab(τ)
∣∣ is shown in Figure 3.

In general, a scrambled signal with the highest PAPR is provided for reference when the
correlation is one; the PAPR increases with the rise of

∣∣RR,ab(τ)
∣∣. Since the positions of the

high
∣∣RR,ab(τ)

∣∣ signal’s high-amplitude are centralized, a high PAPR is inevitable. Low∣∣RR,ab(τ)
∣∣ can be obtained by increasing the dispersion of phase factors. We assumed that

the highest PAPR signal was chosen, whose uncorrelation signal has a minimum PAPR,
with a large

∣∣RR,ab(τ)
∣∣.

Figure 3. Amplitudes distribution of identical signal.

The above-mentioned analytical result can represent the correlation characteristic in
the time domain only, to simplify the complexity of the PTS scheme, and the relationship
of the PAPR and frequency domain signals are discussed in following contents. The
correlation among two random signals x

′
a and x

′
b according to (16) can be represented

as [28]:

ρa,b =
cov(x

′
a, x

′
b)√

D(x′a)D(x′b)
=

(
V −Q +

Q−1

∑
q=0

Sq

)
1
V

(16)
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where vq(q = 1, 2, . . . , Q) represent two random signals. x
′
a and x

′
b occupy different phase

factors which can be represented as:{
ba

vq 6= bb
vq i f vq = v1, v2, . . . , vq

ba
vq = bb

vq others
(17)

ρa,b is described as the correlation between two random signals; therefore, the range
of ρa,b can be expressed as:

ρa,b ≥
V − 2Q

V
, for V ≥ 2Q (18)

where the correlation of two candidate signals ρa,b mainly depends on the variety Q. Thus,
the maximum ρa,b is obtained when Q = 1, which leads to the approximate PAPR.

In conclusion, the uncorrelation characteristic of the original signal x
′
a and the scram-

bled signal x
′
b is desirable, because the probability of a peak amplitude appearing in the

same position in x
′
a and in the scrambled signal x

′
b can be minimized in this way.

In the F-PTS technique, dispersion in the frequency domain was evaluated by spacing
multiobjective (SMO) optimization was adopted, and the candidate signal with the most
dispersion phase factors was chosen.

MO optimization is widely used in various industries and has achieved remarkable
success; it is aimed at finding the optimum solution among multiple objectives. Spacing
multiobjective (SMO) optimization can tackle engineering problems and has been applied
in F-PTS for evaluating phase factors dispersion [29].

Figure 4 illustrates the system model of the F-PTS scheme: signals were scrambled in
the frequency domain, and the signal with the best phase factors dispersion was chosen
by SMO and sent to the transmitter after the IFFT transmit. The operation of sub-blocks
scrambling and partition can be described as:

X̃ =
V

∑
v=1

bv · Xv (19)

where X̃ are the frequency signals after scrambling. To achieve the maximum difference
in the signal’s correlation, SMO optimization is introduced, which can be represented as
follows:

N := e, X := d̄, Xi := di

S =

√
1

N − 1

N

∑
i=1

∣∣X− Xi
∣∣ (20)

where di is the plural form of significant points, X̄ is the mean value of all points and Xi is
the ith frequency signal from X̃. When S = 0, the scrambled signals reach the most discrete
state, the dispersion of the constellation gets worse with the increase of S. Therefore, the V!
combinations’ dispersion can be examined as follows:

b̃opt = argmin
bk

(√
1

N − 1

N

∑
i=1

∣∣X− Xi
∣∣)

s .t.bk = [b1, b2, . . . , bv]

s .t.k = 1, . . . , V! (21)

where b̃opt is the scrambled signal combination with the best dispersion.
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After applying the above method to evaluate the dispersion of the phase factors
combination in the frequency domain, the signal with the most discrete phase factors can
been transmitted, which can be expressed as:

x = IFFT
{

Xopt
}

Xopt =
V

∑
v=1

bv · Xv

s.t. b = bopt (22)

where Xs is the most scrambled signal.
The F-PTS technique applied with a spacing algorithm can be described as Algorithm 1.

Algorithm 1 F-PTS with low computational complexity

Input: OFDM signal in the frequency domain
Output: OFDM signal in the time domain with the compromise optimal PAPR reduction

performance
1: Begin
2: Initialize the data of the OFDM system
3: Generate V! groups of phase factors combinations as bv!
4: for n = 1 : 1 : N do

5: Partition the OFDM signal as: X =
V
∑

v=1
bvXv

6: for v = 1 : 1 : V do
7: Apply the adjacent partition method
8: end for;
9: end for;

10:

11: function MERGER(V!, x)
12: for i = 1 : 1 : V! do

13: Scramble the signals as: X =
V
∑

v=1
bvXv

14: Evaluate the frequency-domain signal dispersion as:

Spacing(Xi) =
√

1
N−1

N
∑

i=1
|X̄− Xi|

15: end for

16: Select the signal with the best dispersion:xopt =
V
∑

v=1
bv · xv =

V
∑

v=1
bv · IFFT{Xv}

17: Compute the per se signal PAPR as result
18: return result

19: end functionb̃opt = argmin
bk

(√
1

N−1

N
∑

i=1

∣∣X− Xi
∣∣) s .t.bk = [b1, b2, . . . , bv] s .t.

k = 1, . . . , V!
20: F-PTS achieves suboptimal PAPR reduction performance and outputs an OFDM signal

with low PAPR.
21: End

The algorithm and structure of the F-PTS system are shown in Figures 4 and 5, where
F-T indicates frequency domain.
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Figure 4. Structure of the F-PTS system.

Figure 5. Algorithm of the F-PTS system.

The complexity of the F-PTS technique with the SMO algorithm can be represented as:

C f−add = LN · log2LN + (V − 1)V!
N
V

+ V![2O(N)] (23)

and,
C f−mult = V!O(N2) + (LN/2)log2LN (24)

where go = V!
[
2O(N)+O

(
N2)] is the complexity of the SMO algorithm, the addition and

subtraction operations are both O(N) and the quadratic operation is O
(

N2).
Signals with higher frequency-domain dispersion performance have a lower probabil-

ity to produce high PAPR, which is considered as a suboptimal algorithm.
The proposed F-PTS scheme first chooses the scrambled signal with the highest fre-

quency dispersion, then avoids massive IFFT calculation complexity. Since the peak ampli-
tude superimposition can be avoided by evaluating dispersion, only one IFFT is required
and a compromise performance can be obtained by the F-PTS technique. As a result, the
complexity is dramatically reduced.

5. Frequency-Domain and Time-Domain Evaluation of the PTS (FTD-PTS) Method

The proposed FTD-PTS scheme aims to find the optimal solution with a reasonable
computational complexity.

To further explore whether PAPR is only affected by b = [b1, b2, . . . , bV ], the mth
candidate signal can be expressed as:
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xm =
V

∑
v=1

bvxv,m, m=0,1, . . . ,M-1 (25)

so that the power of signal xm can be described as:

|xc
m|

2 =

∣∣∣∣∣ V

∑
v=1

bc
vxv,m

∣∣∣∣∣
2

=

(
V

∑
v=1

bc
vxv,m

)(
V

∑
v=1

bc
vxv,m

)∗

=
V

∑
v=1
|xv,m|︸ ︷︷ ︸
Qm

2

+
V

∑
v1=1

V

∑
v2=1
v1 6=v2

(
bc

v1
xv1,m

)(
bc

v2
xv2,m

)
∗

︸ ︷︷ ︸
Vc

m

(26)

where Qm = ∑V
v=1 |xv,m|

2
and Vc

m =
V
∑

v1=1

V
∑

v2=1
v1 6=v2

(
bc

v1
xv1,m

)(
bc

v2
xv2,m

)
∗. |xc

m|
2can be converted

into the sum of Qm and Vc
m, so that (2) can be transformed as follows:

PAPR = 10log10

max[Qn + Vc
m]

E
[
|xn|2

]
 (27)

Equation (27) shows that the rotation factors and amplitude affect the PAPR performance
jointly.

The probability of F-PTS to choose the preferred PTS subject from the full space is
much better than that of the conventional PTS. In other words, xopt must have a good
dispersion characteristic.

When only frequency-domain dispersion was considered in SMO, there was reduction
of probability that high PAPR appears. A novel scheme applied in this section combined
dispersion evaluation with affordable complexity, hope to obtain the optimal phase factors
combination .

The FTD-PTS scheme is shown in Figure 6, where T-T indicates time domain; the
frequency-domain dispersion evaluation is conducted before the time-domain one and
Q groups included the preferred PTS subject are chosen more likely, instead of randomly
selecting M groups. The optimal solution xopt is exhaustively searched after finding the
preferred PTS subject and is transformed into the time domain. By iteration, the minimum
Q is obtained to ensure that xopt could be chosen, and to minimize the computational
complexity as much as possible.

The main steps of the FTD-PTS technique are described in Algorithm 2.
FTD-PTS method is illustrated in Figure 4. Initially, the input signals are partitioned

and scrambled as follows:

X̂ =
V

∑
v=1

bv · Xv (28)

where X̂ is the generated candidate signals in the frequency domain. Then, the signals’
dispersion is evaluated, and the preoptimization Q groups of high-dispersion candidate
signals are as follows:

Spacing(X i) =

√
1

N − 1

N

∑
i=1

∣∣∣X̂− X̂i

∣∣∣ (29)

[b1, . . . , bQ] = min
Q

find
k=1

(Spacing (X̂k)) (30)

where X̂ i is the ith frequency-domain signal from X̂. As the discrete center,
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X̂ is the mean value of all constellations. The dispersion performance gets worse with
the increase of SMO.

Algorithm 2 FTD-PTS obtains optimum PAPR reduction performance with regular
computational complexity

Input: OFDM signal in the frequency domain
Output: Minimize PAPR(b), subject to b ∈ {b1, b2, . . . , bv}

1: Begin
2: Initialize the data of the OFDM system
3: for n = 1 : 1 : N do

4: Partition the OFDM signal as: X̂ =
V−1
∑

n=1
XV

5: for v = 1 : 1 : V do
6: Apply the adjacent partition method
7: end for;
8: end for;
9:

10: function MERGER(V!, x)
11: for i = 1 : 1 : V! do

12: Scramble signals as: X =
V
∑

v=1
bv · Xv

13: Evaluate the frequency-domain signal dispersion as:

Spacing(Xi) =
√

1
N−1

N
∑

i=1

∣∣∣X̂− X̂i

∣∣∣
14: end for
15: for n = 1 : 1 : Q do
16: Scramble the OFDM signal in the time domain as:

x̂ =
V
∑

v=1
bv IFFT

{
X̂v

}
=

V
∑

v=1
bvx̂v, s.t. [b1, b2, . . . , bV ] ∈

[
b1, . . . , bQ

]
17: end for
18: Select Q groups of preferred FTD-PTS subsets from the full space based on the SMO

algorithm
19: for n = 1 : 1 : Q do Search the optimal factor as:

b̂opt = argmin
b

(
max

0≤q≤Q

∣∣∣∣ V
∑

v=1
bv · x̂v

∣∣∣∣), s.t. bv ∈ [b1, b2, . . . , bV ], s.t. [b1, b2, . . . , bV ] ∈[
b1, . . . , bQ

]
20: end for
21: Select Q groups of signals with the best dispersion Q = 1
22: Select the best combinations from Q candidate signals as FTD’s PAPR
23: while FTD− PAPR > C− PAPR do
24: Q = Q + 1
25: Select the best combinations from Q candidate signals as FTD’s PAPR
26: end while
27: Output the minimum preselected space Q
28: Compute the per se signal PAPR as result
29: return result
30: end function
31: FTD-PTS achieves optimal PAPR reduction performance and outputs the OFDM signal

with the lowest PAPR.
32: End
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Figure 6. Structure of the FTD-PTS system.

Thirdly, Q groups of candidate signals are converted into disjoint sub-blocks and
scrambled with phase factors after passing the IFFT blocks as follows:

X̂ =
V

∑
v=1

X̂v (31)

x̂ =
V

∑
v=1

bv IFFT
{

X̂v

}
=

V

∑
v=1

bvx̂v

s.t. [b1, b2, . . . , bV ] ∈
[
b1, . . . , bQ

]
(32)

Finally, we search for the best combinations b̂opt from Q candidate signals. The
experiment result shows that the statistical probability approaches stability when the
sample space is large enough, which satisfies the principle of probability.

b̂opt = argmin
b

(
max

0≤q≤Q

∣∣∣∣∣ V

∑
v=1

bv · x̂v

∣∣∣∣∣
)

s.t. bv ∈ [b1, b2, . . . , bV ]

s.t. [b1, b2, . . . , bV ] ∈
[
b1, . . . , bQ

]
(33)

The flow chart of FTD-PTS can be seen in Figure 7; the minimum preiteration space Q
can be obtained by feedback.

F-PTS only conducts one IFFT calculation, and utilizing the low-complexity frequency-
domain dispersion evaluation instead of exhaustively searching in PTS achieves an ex-
tremely low complexity.
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Figure 7. Flow chart of the FTD-PTS system.

FTD-PTS maintains an affordable system complexity, combining a frequency-domain
evaluation and a search for Q best phase factors combinations to achieve a reasonable
complexity.

The complexity of FTD-PTS can be described as:

CFTD−add = VLNlog2LN + (V − 1)QLN + V![2O(N)] (34)

and,

CFTD−mult = V(LN/2) · log2LN + (V − 1)V!
N
2
+ V!O(N2) (35)

where CFTD−add and CFTD−mult represent the additive and multiplicative complexities,
respectively. FTD-PTS has the same approximate complexity as PTS.

Overall, the three techniques’ computational complexity is mainly concentrated on
the multiplier; F-PTS has the least complexity and FTD-PTS and PTS have a similar one as
expressed in Table 2.

Table 2. The computational complexity of multiple PTS techniques.

PTS Additive Complexity Multiplicative Complexity

C-PTS V(LN/2) · log2LN VLNlog2LN + (V − 1)MLN

F-PTS V!O(N2) + (LN/2)log2LN LN · log2LN + (V − 1)V! N
V + V![2O(N)]

FTD-PTS V(LN/2) · log2LN + (V − 1)V! N
2 + V!O(N2) VLNlog2LN + (V − 1)QLN + V![2O(N)]

To provide a general understanding of all functions in this paper, this section separates
all functions into three parts: conventional PTS, F-PTS and FTD-PTS. The overview of all
functions is shown in Figure 8.
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Figure 8. Overview of all functions introduced in this paper.

6. Simulation Results and Discussion

In this chapter, the PAPR reduction performance is shown for the proposed F-PTS
and FTD-PTS schemes. Each OFDM signal was modulated by 64 QAM and 105 OFDM
data blocks are generated. In F-PTS, the phase factors numbers were selected as v = 6,
the phase partition numbers W = V were the same as above, and we adopted a random
partitioning method. The parameter setting of the FTD-PTS scheme was identical as that of
the F-PTS scheme. All the simulations were completed in MATLAB. The parameters of the
simulations are shown in Table 3.

Table 3. Simulations parameters.

Modulation System OFDM

Total number of subcarriers (N) 1024

Number of oversampled (L) 4

Modulation method 64 QAM

Number of partitions (V) 6

Number of phase factors (W) 6

Partition method Random

To demonstrate the relationship between complexity and PAPR reduction performance,
Figure 9 compares the PTS performance with different candidate signals numbers. The
exhaustive searching from PTS generates an extremely high computational complexity. For
this issue, search was only performed M times. The comparison of the PTS performance
with different M is shown as Figure 9; the PAPR reduction performance ascends when the
number of sub-blocks is growing, because the probability of choosing the best combinations
is growing.
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Figure 9. Comparison of PTS with different M.

6.1. F-PTS Simulation

F-PTS avoids the extensive IFFT and PAPR calculation workload and employs the SMO
dispersion evaluation criterion to select the best dispersion scrambled frequency-domain
signals. When CCDF = 10−3, compared with the OFDM system, the conventional PTS,
F-PTS and optimal PTS techniques reduce PAPR by 3 dB, 3.3 dB and 3.5 dB, respectively.
Since the computational complexity of the SMO dispersion evaluation criterion is much
lower than that of the IFFT and PAPR, F-PTS is a computational-complexity-friendly
algorithm. The suboptimal performance can be obtained by applying dispersion as the
evaluation criterion.

In Figure 10 and Table 4, we applied W = V = six phase factors and generated 720 phase
combinations. The PAPR reduction from best to worst are the optimal PTS scheme, which
exhaustively searched the 720 phase combinations, F-PTS, which applied best dispersion
phase combinations, PTS, which searched 32 phase combinations, and the OFDM system
without PTS, with values of 7.9 dB, 8.1 dB, 8.3 dB and 11.2 dB, respectively, with CCDF =
10−3. As shown in Figure 10, similar performance was obtained by optimal PTS and F-PTS.
For example, optimal PTS and F-PTS had values of 8.0 dB and 8.2 dB for CCDF = 10−2,
respectively. In the meantime, F-PTS obtained an extremely low complexity. In conclusion,
the performance of F-PTS is better than that of PTS when m = 32, and slightly inferior to
that of PTS when m = 720, with extremely low complexity. The complexity of F-PTS was
almost 50% of PTS.

Table 4. PAPR reduction performance of PTS and F-PTS.

PAPR Techniques
PAPR at CCDF = e

e = 10−2 e = 10−3 e = 10−4

PTS with m = 32 8.2 8.3 8.4

F-PTS 8.0 8.1 -

PTS with m = 720 7.8 7.9 8.1
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Figure 10. The comparison between performance of PTS and F-PTS.

6.2. FTD-PTS Simulations

F-PTS reduced computational complexity but failed to reach the optimal PAPR re-
duction performance. FTD-PTS is an enhanced version of F-PTS. It adopts the time- and
frequency-domain joint evaluation algorithm to preselect the phase factors combinations
containing the optimal solution, obtaining the optimal PAPR reduction performance with
an acceptable calculation complexity.

In Figure 11 and Table 5, we applied W = V = six phase factors and generated 720 phase
combinations. The PAPR reduction performance comparison of FTD-PTS and conventional
PTS when CCDF = 10−3 is given in Table 6. When Q = 4, FTD-PTS and conventional
PTS decreased PAPR by 3.0 dB and 2.0 dB, respectively, and FTD-PTS decreased PAPR by
1 dB more than conventional PTS; when Q = 8, FTD-PTS and conventional PTS decreased
PAPR by 3.3 dB and 2.5 dB, respectively, and FTD-PTS decreased PAPR by 0.7 dB more than
conventional PTS; when Q = 32, FTD-PTS and conventional PTS decreased PAPR by 3.6 dB
and 3.1 dB, respectively, and FTD-PTS decreased PAPR by 0.5 dB more than conventional
PTS; when Q = 40, FTD-PTS and conventional PTS decreased PAPR by 3.8 dB and 3.0 dB,
respectively, and FTD-PTS decreased PAPR by 0.8 dB more than conventional PTS. Note
that FTD-PTS reaches the optimal PAPR reduction performance when Q = 40. It can be
concluded that FTD-PTS has a lower computational complexity than conventional PTS to
achieve a better PAPR reduction performance.

Figure 11. The performance comparison of FTD-PTS and PTS with different Q.
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Table 5. PAPR reduction performance of PTS with different Q and FTD-PTS.

PAPR Techniques
PAPR at CCDF = e

e = 10−2 e = 10−3 e = 10−4

PTS while Q = 4 8.5 8.6 8.9

PTS with Q = 8 8.25 8.5 8.8

PTS with Q = 32 8.1 8.2 8.3

PTS with Q = 40 7.9 8.0 8.25

FTD-PTS with Q = 4 8.05 8.2 8.25

FTD-PTS with Q = 8 8.0 8.1 -

FTD-PTS with Q = 32 7.85 7.95 8.17

FTD-PTS with Q = 40 7.8 7.9 8.1

Table 6. The PAPR reduction performance comparison of FTD-PTS and conventional PTS when
CCDF = 10−3.

PTS Schemes PAPR Value When CCDF = 10−3 PAPR Gain

Without PTS 11.5 0

FTD-PTS with Q = 4 8.5 3.0

FTD-PTS with Q = 8 8.2 3.3

FTD-PTS with Q = 32 7.9 3.6

FTD-PTS with Q = 40 7.7 3.8

PTS with Q = 4 9.5 2.0

PTS with Q = 8 9 2.5

PTS with Q = 32 8.4 3.1

PTS with Q = 40 8.3 3.2

Optimal PTS 7.7 3.8

To further represent the achievement of this paper, Figure 12 compares the PAPR
reduction performance of conventional PTS, the FTD-PTS (with Q = 5, Q = 30 and Q = 40),
and PSO-PTS (with iterations = 5, iterations = 30, iterations = 40). Because the particle
velocity and position require an update in each iteration of PSO, the computational com-
plexity of PSO-PTS rises sharply with the increase of the iterations. For a fair comparison,
the alternative phase factor of FTD-PTS and PSO-PTS iterations are the same. The PAPR
reduction performance comparison of FTD-PTS and PSO-PTS when CCDF = 10−3 is
given in Table 7. When Q = It = 5, FTD-PTS and PSO-PTS decreased PAPR by 3.2 dB
and 2.6 dB, respectively, and FTD-PTS decreased PAPR by 0.6 dB more than PSO-PTS; when
Q = It = 30, FTD-PTS and PSO-PTS decreased PAPR by 3.6 dB and 3.2 dB, respectively,
and FTD-PTS decreased PAPR by 0.4 dB more than PSO-PTS; when Q = It = 40,
FTD-PTS and PSO-PTS decreased PAPR by 3.8 dB and 3.3 dB, respectively, and FTD-PTS
decreased PAPR by 0.5 dB more than PSO-PTS. Note that FTD-PTS reaches the optimal
PAPR reduction performance when Q = 40. It can be concluded that FTD-PTS has a lower
computational complexity than PSO-PTS to achieve better PAPR reduction performance.
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Figure 12. The performance comparison of FTD-PTS and PSO-PTS.

Table 7. PAPR reduction performance comparison of FTD-PTS and PSO-PTS.

PTS Schemes PAPR Value When CCDF = 10−3 PAPR Gain

Without PTS 11.5 0

FTD-PTS with Q = 5 8.3 3.2

FTD-PTS with Q = 30 7.9 3.6

FTD-PTS with Q = 40 7.7 3.8

PSO-PTS with Q = 5 8.9 2.6

PSO-PTS with Q = 30 8.3 3.2

PSO-PTS with Q = 40 8.2 3.3

Optimal PTS 7.7 3.8

7. Conclusions

This paper introduced two novel PTS techniques. F-PTS achieved a 91.8% optimal
PAPR reduction performance (0.35 dB less) using 50% operation time compared to con-
ventional PTS, which reduced the computational complexity of multiplier operations
dramatically and maintained a compromise PAPR reduction performance.

FTD-PTS adopts a time- and frequency-domain joint evaluation algorithm and ex-
pands the candidate signal space for the dispersion evaluation. FTD-PTS improved by
18.7% the PAPR reduction performance (0.6 dB) compared to conventional PTS with a
similar computational complexity, which reached the optimal PAPR reduction performance
within a reasonable computational complexity and therefore can meet the demand of
reducing PAPR in large data transmission systems.

Compared with other research results, the FTD-PTS algorithm improved PAPR reduc-
tion performance by 15.1% (0.45 dB) compared to PSO-PTS with a similar computational
complexity.

In the future, further development of PAPR reduction schemes can be made in the
following directions: enhancing the multicarrier system; redesigning the PAPR reduction
schemes optimization objectives; combining artificial intelligence algorithm and PAPR
reduction scheme.
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Abbreviations
The following abbreviations are used in this manuscript:

Abbreviation Full Name
PAPR Peak-to-average power ratio
OFDM Orthogonal frequency division multiplexing
PTS Partial transmit sequence
SLM Selective mapping
SMO Spacing multiobjective
HPA High-power amplifiers
BER Bit error rate
CCDF Complementary cumulative distribution function
Notations Interpretation
x(t) Continuous-time baseband OFDM signal
Xk(t) Frequency-domain OFDM signal
xn Discrete-time baseband OFDM signal
Xv V disjoint sub-blocks
X(k) Signals appears in the vth sub-blocks
b Phase weighting factors
x Scrambled serial time-domain signal
F−1

v IFFT calculation
bopt Optimum phase factors combination
Cadd Additive computational complexity
Cmult Multiplicative computational complexity
CSadd Additive computational complexity of PTS when applying M searching space
CSadd Multiplicative computational of PTS when applying M searching space
Rab Correlation among two random signals
ρa,b Correlation among two random signals x

′
a and x

′

b
X̃ Frequency signals after scrambling in F-PTS
S Dispersion of F-PTS signal
b̃opt Scrambled signal combination with the best dispersion in F-PTS
C f−add Additive computational complexity of F-PTS scheme
C f−mult Multiplicative computational complexity of F-PTS scheme
xm Signal of FTD-PTS
|xc

m|
2 Power of FTD-PTS signal

X̂ Candidate signals in the frequency domain
Spacing(X i) Dispersion of FTD-PTS signal
b̂opt Scrambled signal combination with the best dispersion in FTD-PTS
CFTD−add Additive computational complexity of FTD-PTS scheme
CFTD−mult Multiplicative computational complexity of FTD-PTS scheme
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