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Abstract: The presented article aims to design an educational test bench setup for smart grids and
renewable energies with multiple features and techniques used in a microgrid. The test bench is
designed for students, laboratory engineers, and researchers, which enables electrical microgrid
system studies and testing of new, advanced control algorithms to optimize the energy efficiency. The
idea behind this work is to design hybrid energy sources, such as wind power, solar photovoltaic
power, hydroelectric power, hydrogen energy, and different types of energy storage systems such as
batteries, pumped storage, and flywheel, integrating different electrical loads. The user can visualize
the state of the components of each emulated scenario through an open-source software that interacts
and communicates using OPC Unified Architecture protocol. The researchers can test and validate
new solutions to manage the energy behavior in the grid using machine learning and optimization
algorithms integrated in the software in form of blocks that can be modified and improved, and then
simulate the results. A model-based system of engineering is provided, which describes the different
requirements and case studies of the designed test bench, respecting the open-source software and
the frugal innovation features in which there is use of low-cost hardware and open-source software.
The users obtain the opportunity to add new sources and new loads, change software platforms,
and communicate with other simulators and equipment. The students can understand the different
features of smart grids, such as defect classification, energy forecasting, energy optimization, and
basics of production, transmission, and consumption.

Keywords: smart grid; renewable energies; energy management; education; remote laboratory;
optimization; SCADA; PLC

1. Introduction

The smart grid industry is expected to be worth roughly USD 162.4 billion by the
horizon of 2030, according to Precedence Research, with a CAGR of 18.2% from 2021 to
2030. This huge growth in this industry requires the training of highly qualified technical
professionals in the smart grid field. The smart grid components are a hybridization
between multi transversal disciplines, for example electrical, energy, automation, Internet
of Things, networking, optimization, and machine learning engineering, for which the
technical expert must be polyvalent and must be trained in the new ways of hybrid skills.

Universities and engineering institutes are racing to deliver high-quality smart grid
technical engineers to solve energy problems, and for powerful management in a currently
high state of energy demand, the struggle is to select the best software to use, in order to
give technical courses and simulations. This software is very limited, for which the student
can see one or two components but can never hybridize these skills and apply them in a real
case study, such as a hardware application with a high-cost and low-limited functionality.
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Professors, instructors, and laboratory technicians find difficulties selecting the best fitting
equipment that is modular, easy to maintain, and has multiple features.

Therefore, it is mandatory to find a solution which is frugally innovated, has the same
or better functionalities, a simple design, and a low-cost budget, knowing that from USD
50.5 billion in 2016, the global market for educational hardware and software has grown to
USD 110.9 billion in 2022 and will be USD 121.3 billion in 2025, according to BCC Research.

As a result of recent breakthroughs in Information and Communication Technologies
(ICTs), a digital transition is underway. This is having a beneficial influence on every
element of the technological world, allowing for connectedness and ubiquity that were
previously unimaginable. As a result, the line between the real and digital worlds ais
becoming increasingly blurred. New trends are emerging because of these advancements,
including the Internet of Things (IoT), cyber-physical systems (CPSs), Big Data, cloud
computing, Industry 4.0, and smart grids (SGs). Engineering efforts are heavily focused on
methods to achieve a more dependable and efficient distribution system [1]; and because of
these efforts, smart grid research now provides a variety of working areas for integrating
contemporary technology into existing infrastructure [2].

The goal of this paper is to design an initial prototype of the smart grid educational
test bench, using model-based system engineering for complex systems, in order to define
the technical requirements of the system, the principal users, and the stakeholders of the
test bench. The MBSE study helps to better design the system and better control the scope
or the goal of the system.

The idea, as elucidated in Figure 1, is to develop an educational test bench where
the students can learn about the multiple renewable sources such as photovoltaic power,
concentrated solar power, wind power, hydroelectric power plants, and the integration of
vehicle-to-grid methods, to study the behavior of each energy on the grid. The test bench
introduces different types of energy storage systems, such as pumped storage, compressed
air energy storage, batteries, molten salt, and hydrogen.
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learn the characteristics of each load and its impact on the grid. The consumed, produced,
or stored energy will be inputs for energy management systems for which the student
can build intelligent algorithms to optimize the energy consumption, detecting defected
components and forecasting energy production and consumption. In other case studies,
the user can learn the different monitoring techniques for power quality, the state of
converters, etc., as well as the false data injection to test cybersecurity in the smart grid.

The goal of this article is to show how to design an open-source smart grid test bench
for educational purposes, with multiple features which are newly used in smart grids as
solutions to manage energy in a smart way, increasing the efficiency, availability, and grid
reliability. According to the state-of-the-art research given in this article, these features focus
on the use of monitoring systems for energy production, transmission, and consumption,
using multiple automation equipment and frameworks, sensors, smart meters, and SCADA
systems, in order to gather or collect different data, visualize them, and store them in
a database. These data will be used for machine learning algorithms that can predict
the consumption and the production, classifying defects of different grid components,
and optimizing the energy. Introduction of the model-based system engineering (MBSE)
approach to collect the gather requirements will be presented in this article, in order to
make the design and the selection of the components clear and easy to apply. General
simulations will be presented in this paper, focusing on how the test bench features will be
functioning with some user stories.

2. The State of the Art

Smart grids are the next generation of power grids that emerged as the digital trans-
formation applied to the energy industry. They are defined as a modern electric power grid
infrastructure for improved efficiency, reliability, and safety, with a smooth integration of
renewable and distributed energy sources through automated and distributed controls,
modern communication, and sensing technologies [1]. This enhancing process is coherent
with the goals of Advanced Distribution Automation (ADA), and the continuous evolution
of the research will enable the building of optimal grids of the future. Such challenges
have been clearly defined in research and standardization as well: in grid equipment
monitoring, fault location, isolation [2] and restoration [3], inclusion of renew-able energy,
electric vehicles, grid reconfiguration [4], adaptive protections, volt and var control, me-
tering, event recording, and communications infrastructure are some of the examples of
research priorities. The attempt to improve reliability and power quality involves several
applications on the smart grid, which requires an important set of protection devices to
monitor and control multiple relaying functions. This context has always been a priority in
power engineering education [5,6], and numerous advances are widely recognized in the
last years of modeling [7], simulation [8], and laboratory platforms [9,10]. In consequence,
the teaching approaches of power engineering and protective relaying control have turned
into a constant innovative evolution; certainly, the role of digital modeling and simulation
is encouraging all the teaching efforts to form a new generation of students who are well
prepared for the smart grid challenges, applications, and research [11].

Because of the unavailability of an inexpensive and changeable hardware platforms,
a majority of power electronics control education and training is simulation-based. The
introduction of hardware-in-the-loop (HIL) simulation has made it simpler to produce
simulation findings that are similar to those obtained in real tests. Hardware-in-the-loop
simulation systems, on the other hand, continue to be expensive. While computer simu-
lations do mimic the behavior of actual systems to some extent, they cannot adequately
model or study numerous practical difficulties. Physical experiments should be an integral
element of training for next-generation power electronics engineers and leaders, since they
are the greatest approach for representing the dynamics and features of real applications.
Two significant difficulties must be addressed in order for this to happen: the availability
of adequate hardware platforms and the reduction of software development load. After
multiple revisions, it normally takes a trained individual several months to set up an
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experimental system. In addition, various topologies often necessitate distinction of new
hardware designs. When it comes to software coding, it is usually someone else’s job; it
is tough for a hardware engineer to create codes. A beginner’s understanding of the pro-
gramming platform and the target machine might take months or even years. Furthermore,
debugging code might take a long time. This is especially true in the control community,
due to the emphasis on creating control algorithms and, in comparison, the rarity of some
certain skills [12].

Another significant issue to address is the financial commitment required to install
the SGs on a big scale. To operate properly, these facilities require not only the manage-
ment of energy generation and consumption equipment, but also a multitude of sensors,
actuators, and controllers [13]. These gadgets come with not just purchase prices, but also
configuration and connecting charges. Two approaches are gaining traction and can be
used to address these difficulties. On the one hand, dealing with such diversity is difficult.
The Open Platform Communications (OPC) protocol is a communication interface for
the industry. It provides a platform for control and automation applications to facilitate
interoperability and heterogeneity [14].

In terms of open-source hardware, the Raspberry Pi, BeagleBone, Phidget, Intel Edison,
and Arduino boards are examples. Arduino, a low-cost, single-board microcontroller, is the
most obvious example. In terms of R&D and academic activities, Arduino has become a
strong instrument for developing various applications in the domains of data acquisition,
automation, and engineering in general [15]. Consequently, it has no sense orchestrating
SGs/SMGs without integrating both devices in SCADA systems used in current industrial
practice [13]. Therefore, PLC and Arduino must converge within an interoperable approach,
under industrial supervisory systems [13].

In [12], The SYNDEM Smart Grid Research and Educational Kit, a reconfigurable,
open-source, multifunctional power electronic converter with the ability to directly down-
load codes from Matlab/Simulink, is introduced with the goal of assisting researchers,
graduate students, and engineers in moving from simulations to experiments for various
power electronic-based systems. This eliminates two significant obstacles faced by the
control community in conducting experiments for power and energy systems: a lack of
suitable hardware platforms and the burden of software code. As a result, after finishing
simulations, experimental results may be obtained fast. The kit is anticipated to exploit
the control community’s capabilities in designing control algorithms while minimizing
efforts in constructing hardware systems and programming the algorithms, resulting in a
considerable increase in research and learning efficiency and productivity. The kit may be
used for both lab bench and stand-alone research tasks. While the kit is designed for power
and energy-related applications, it can also be used for other purposes. It can be applied
to the research and education of other control systems as well, because of its versatile
interfaces and computational power.

The use of machine learning classification algorithms to detect different defects of
components is a smart feature in the new micro grids, for example, the classification of
power transformers and the health monitoring represented in [16].

In [11], the authors presented an implemented real-time platform, which properly
works for educational purposes of relaying control for smart grid applications. This
platform is the initial test bench based on a hardware–software integration with DSSim-
PC; As an interesting improvement, a co-simulation of distribution system models from
DSSim-PC interacts with real IEDs and protection devices. This characteristic brings a
potential hardware in the loop feature, which is suitable to develop Advanced Distribution
Automation solutions applied to smart grids.

The work realized by [17] focuses on a methodology for developing a new remote
renewable energy laboratory idea for educational purposes. This laboratory’s renewable
energy system is a hybrid power system (HPS) with three energy sources. An HPS is made
up of two or more energy source systems, energy storage systems, power conditioning
equipment, and controllers in general. The suggested system combines wind, solar, and
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biodiesel energy, as well as a storage battery, a power conditioning system, and a coupling
unit. This can assist not just to support research on various energy sources, but also to raise
awareness among students about the necessity of clean energy. This research proposes a real-
world renewable energy laboratory at the University of Quebec in Rimouski, which is now
under development. The laboratory contains three renewable energy source systems: wind
turbines, solar panels, and a biodiesel generator. A battery bank is used for energy storage.

The authors in [13] have demonstrated a system that uses the open communication pro-
tocol OPC to integrate open-source electronics hardware (Arduino) and software (Arduino
OPC server) with proprietary hardware (PLC) and Supervisory Control and Data Acqui-
sition software (SCADA). The open-source device oversees data collecting and sensing.
The proposal outlines the initial steps toward combining the adaptable Arduino platform
with the well-known capabilities of SCADA [18] systems and PLCs used in real-world
applications. There are currently no publications that discuss such an approach.

Hydrogen energy systems have the potential to be part of a clean, dependable, cost-
effective, safe, and long-term portfolio of smart energy solutions. The fact that hydrogen
may be generated from a multitude of sources, including fossil fuels, nuclear power,
biomass, and renewable energy, is a significant benefit. Hydrogen, on the other hand, has
characteristics that are significantly different from those of traditional chemicals and fuels
like methane, propane, and gasoline. Among hydrogen’s distinguishing qualities are its
extremely broad flammability limits in air, low ignition energy, and low density, which
results in significant buoyancy. Hydrogen has no odor or flavor, and its flame is nearly
imperceptible in daylight. As a result, safety precautions that apply to traditional chemicals
and fuels typically do not apply to hydrogen. The work shared in [19–21] are advantageous
references focusing on H2 integration in SG and solutions with hydrogen options, along
with hydrogen safety training for laboratory researchers and technical personnel.

In [22], the aim was to bring the laboratory experience in the validation of energy
management strategies for smart grids, which incorporates renewable energy and hybrid
energy storage based on hydrogen and batteries. This knowledge might be useful in the
construction and scaling-up of future plants. The achievement of a series of actions aimed
at optimizing the operation of smart grids yielded key conclusions. The first stage was to
set up an experimental platform and a one-of-a-kind laboratory environment that allowed
for the testing of a wide range of controllers. After that, it was required to describe all
of the equipment in order to understand their operating curves and characteristics, in
order to create realistic models that allowed for accurate testing of the controllers prior
to their implementation in the real plant. The next stage was to create a collection of
models that could accurately reproduce the real system in order to simulate and improve
energy management systems at the University of Seville. The study covers from most basic
operation modes to recent advances in optimal control strategies. The benchmarking of
experimental results has pointed out that MPC is able to optimize the smart grid operation
economically while respecting equipment constraints, which is expected to contribute
to a higher equipment lifetime and reduced operational costs. In [23], the authors have
presented the influence of demand response actions on the electricity cost for residential
houses, which is a key element in the test bench for which the users can test and simulate
different demand responses to see the influence on the electricity cost.

In [24,25], the smart, autonomous electrical grid’s energy management problem is
represented as a multi-objective model with the goal of optimizing dependability while
reducing both the operation cost and the variance between demand and the system’s target
energy consumption. The hybrid storage system is utilized in this model to control the
unpredictability of renewable energy sources. Furthermore, the participation of responsive
customers is modeled utilizing demand-side management tactics, in which the demand is
shifted from peak hours to off-peak hours, and plug-in electric vehicles are employed to
satisfy the demand locally. The proposed model is solved using the shuffled frog leaping
algorithm (SFLA) approach, through which the non-dominated solutions are obtained.
Then, the fuzzy and the weighted sum methods are used to select the best solution.
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The use of machine learning to forecast the energy consumption is a mandatory feature
in smart grid application, especially in industrial case studies, as elucidated in [26], in
which the author applies the Fast Forest Quantile Regression to predict the energy demand
with the key performance indicator of production. Authors in [27] described the potential
of predictive control to minimize the electricity cost in heat pumping. The designed test
bench users can test these algorithms in a laboratory scale and see their performances.

Authors in manuscript [28] showed a cost-effective controller for a hybrid, renew-
able energy system that included solar panels and a storage system that included fuel
cells, supercapacitors, and batteries. This book considers a thorough model and control
architecture for the presenting system. The hybrid renewable energy system [29] is well-
represented using numerical derivations. Three test scenarios are used to evaluate the
system’s performance on the Matlab/Simulink platform’s jobsite. The authors compare the
LWMCSO technique, which is a combination of the Levy Whale Optimization Algorithm
(LWOA) and the Modified Crow Search Optimizer (MCSO), to existing methods such as the
Adaptive Fractional Fuzzy Slide Model Control (AFFSMC), the Salp Swarm Optimization
Algorithm (SSOA), and the Ant Lion Optimization (ALO) technique. The effectiveness
of the presented technique offers advantages, such as for balanced and unbalanced load
conditions, the proposed system can work well along with the increase in the stored energy
by using different storage devices.

As an extension of the smart grid test bench, it is very important to think about how
to simulate or emulate smart cities components. For example, when integrating energy
harvesting in roads using piezoelectric polymers [30], the idea is to integrate different smart
cities features in the test bench. The co-simulations can be presented as a digital twin of
the micro-grid or the hybrid power system, where the user can test a scenario offline and
see the result in the simulation, and then apply it in the test bench using the framework
presented in [31], using edge cloud for online courses and remote laboratories.

Smart grid simulation is an important feature for users to see and to test critical multi-
ple scenarios. Many researchers have been using Matlab, Python, C++, and programming
to simulate the demand response, optimization, and control techniques. The main chal-
lenge is to combine and co-simulate the grid components from different software using
the Mosaik platform introduced in 2011 and in [32], which is open source and easy to use
to test management algorithms, as presented in [33]. Other researchers in [34] have used
this open-source software to co-simulate cyber-physical energy systems for planning and
executing energy management systems. In [35], the authors simulated the transient stability
of a grid integrating multiple wind power plants using the Mosaik framework. The use of
this open-source software for educational purposes and integrating it in the proposed test
bench will give students and researchers the opportunity to test numerous scenarios and
case studies.

3. Design Approach of the Proposed System

The key aims of the proposed educational training test bench include improving
theoretical learning on different components of the smart grid and its functioning principles,
as well as learning the actual energy managements technique, the control techniques, the
predictive maintenance algorithms, and the diagnostic and prognostic techniques [36] using
artificial intelligence, in order to engage students’ attention to the difficulties covered in
those courses and expose them to the development of the smart grid’s energy management
systems. Additionally, the aims include augmenting conceptual doctrines and revealing
and enhancing students’, developers’, and researchers’ interest in the research. Among the
effects of the project are development of new teaching materials with enhanced quality that
concentrate on the newest developments in the field.

Furthermore, accurate power flows tests and energy management algorithm simu-
lations for smart grids facilitate a hands-on, intuitive, and interactive experience. In fact,
the smart grid architecture is often viewed as a complicated system, as it is an innovative,
high-tech, and revolutionary product, for which there is a necessity to use modern design



Energies 2022, 15, 2702 7 of 31

methods for such a system, such as systems engineering (SE). Systems engineering is a
multidisciplinary and composite method to ensure that designed systems are implemented,
used, and retired effectively. It is referenced by ISO 12588, EIA-632, and IEEE 1220 [37], as
elucidated in Figure 2, which depicts the boundaries of these guidelines, which classify
processes regardless of the application sector of systems engineering
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In this section, we present the design of the system using a Model-Based System
Engineering Approach (MBSE), which is based on CESAM as the main framework, and
is supplemented with the MBSE grid structure and SysML as the modeling language.
In the following, the major features of this utilized approach, including the SE, MBSE
methodology, and the basis for architectural design framework included in this work, are
explained. Then, the design of the investigated system utilizing the above-mentioned
MBSE framework and SysML modeling language is presented.

3.1. Definitions about the MBSE Methodology

A system may be defined as a combination of interconnected and interacting ele-
ments that follow a set of rules. At the same time, the whole group is interacting with its
surroundings in order to form a unified whole [38].

A complex system is one whose behavior is difficult to describe, owing to depen-
dencies, competitions, relationships, or other sorts of interactions between its pieces, or
between a system and its surroundings. High nonlinearity, development, random organi-
zation, adaptability, and interaction processes are some of the features that emerge from
such links in complex systems. In numerous circumstances, it is more useful to depict a
system as a network, with nodes representing components and connections representing
their interactions.

Model-based systems engineering (MBSE) is a structured technique for supporting the
creation of complex systems’ requirements, design, analysis, verification, and affirmation.
MBSE places models initially at core of system design, as opposed to document-centric
engineering [37].

In a digital-modeling context, MBSE offers benefits that document-based systems
engineering does not. MBSE in a digital-modeling environment provides advantages that
document-based systems engineering cannot provide. Numerous papers are produced
by various writers in a document-based method to record the system’s design through
diverse stakeholder perspectives, such as system behavior, software, hardware, safety,
security, or other disciplines. A single source of truth for the system is produced using a
digital-modeling method, in which discipline-specific views of the system are developed
using the same components [39].

In general, MBSE is joined with several concepts: models, systems thinking, systems
engineering, processes, tools, and frameworks. A model is a simplified depiction of
something, such as a mathematical, graphical, or physical representation, which abstracts
reality to remove some of its complexities. A system must be modelled with less detail
so that its structure and behavior can be seen, and its complexity can be managed. To
put it another way, models must adequately reflect the system, and the system must
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validate the models [40,41]. In the next section, we build the requirement architecture of
the studied system following the MBSE grid framework [39,42], and the CESAM systems
architecting methodology [43]. It is an architecture and modeling framework developed by
CESAMES™, which complies with INCOSE standards [44].

3.2. MBSE Design of the Proposed System

This research uses an MBSE grid and a CESAM method to illustrate the idea and
requirements of the smart grid’s test bench for educational purposes. The research project
model was built using the CAMEO tool, and is based on SysML. The first and most
important phase in the system development process is understanding the demands of the
stakeholders and establishing the system perimeter [45]. This work’s goal is to arrive at the
end of this phase. It entails gathering the necessary data to ensure that the studied system’s
objectives are met. This step’s key phases may be summed as follows:

3.2.1. Identifying the Expectations of the Stakeholders

Individuals and entities involved are likely to provide a source of requirements.
Table 1 divides stakeholders and their needs into operational, functional, performance, and
constraint categories.

Table 1. Classification of the stakeholders’ needs.

Need ID Need Description Category Stakeholder

N1 Simulating a micro power grid behavior Operational Designer
N2 Emulating photovoltaic solar power Operational End user, Designer
N3 Emulating photovoltaic defects and malfunctioning Operational End user, Designer
N4 Emulating wind power Operational End user, Designer
N5 Emulating turbine defects and malfunctioning Operational End user, Designer
N6 Emulating hydropower Operational End user, Designer
N7 Emulating water turbine defects and malfunctioning Operational End user, Designer
N8 Emulating hydrogen and fuel cells Operational End user, Designer
N9 Storing energy in batteries Functional, Performance End user, Designer
N10 Studying the behavior of batteries Functional End user
N11 Emulating AC energy consumption Operational End user, Designer
N12 Emulating DC energy consumption Operational End user, Designer
N13 Studying the behavior of Squirrel cage induction motor Performance End user
N14 Studying the behavior of brusher DC Motor Performance End user
N15 Acquiring data from energy meters Functional End user, Designer
N16 Controlling switches Performance End user, Designer
N17 Controlling power converters Operational End user, Designer
N18 Storing data in a server Operational End user, Designer
N19 Interfacing with programmable logic controller Performance End user, Designer
N20 Accessibility to data preprocessing Performance End user, Designer
N21 Choosing forecasting algorithms Operational End user, Designer
N22 Choosing diagnosis algorithms Operational End user, Designer
N23 Choosing optimization algorithms Operational End user, Designer
N24 Interfacing with Matlab, Python script Performance End user, Designer
N25 Visualizing acquired data and energy KPIs Functional End user
N26 Ability to add or remove components loads and sources Functional End user
N27 Respecting the environmental standards Constraint Standards entities
N28 Respecting the safety standards Constraint Standards entities
N29 Enabling remote access to the test bench Operational End user
N30 Testing and validating new scripts Performance End user, Designer
N31 Generating report and comparative test studies Performance End user
N32 Having a virtual reality simulation Operational End user
N33 Allowing a simulation through internet connection Operational End user
N34 Allowing remote access and parametrization Operational End user
N35 Testing and validating novel algorithms Operational End user
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Figure 3 illustrates the major needs diagram, which depicts the stakeholders’ overall
expectations from the studied system.
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3.2.2. Creating the PFMSO Diagram

The PFMSO diagram of the analyzed system is elucidated in Figure 3. We define a
block to represent the system and requirements to specify the mission and the purpose.
The system and the mission are linked by a bond of satisfaction; rather, the mission and the
purpose are linked by a link of derivation or association. An association with stereotypes
such as "missions" is performed to clarify. If required, the mission can be improved by
establishing sub-mission criteria, providing them an identity, and associating them with a
stereotype to explain.

3.2.3. Determining the Studied System’s Interfaces with the Different Outside Stakeholders

One of the primary purposes of this research is to investigate the longevity of the
examined system and then illustrate its near surroundings and boundaries. Figure 3
illustrates the major needs diagram, which depicts the stakeholders’ overall expectations
from the studied system. The whole lifespan of the studied system is presented, followed by
its immediate surroundings and boundaries. Figure 4 elucidates the detailed requirements
of the test bench.

Table 1 displays the phases of the system’s lifespan, as well as the roles and impli-
cations of each stakeholder, whereas Figure 5 depicts the lifecycle of the smart grid’s test
bench. Table 2 lists the principal stakeholders and their participation in each phase in the
lifecycle of the test bench.
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Table 2. Stakeholders’ participation in the lifecycle phases.

Lifecycle and Stakeholders Design Installation Exploitation Maintenance Withdrawal

Designer X X X X
End user X

Standards X X X X X
Maintenance X X X

3.2.4. Defining Operational Use Scenarios

The operational use cases define the services that the system should provide to each
of its end users. This step may appear self-evident, but it helps to explain stakeholders’
intentions and, as a consequence, describes demands much more precisely.

Figure 6 depicts an example of an operating phase use case in which the studied
system must provide the three aforementioned services to end users:

• Dynamic simulation of the micro grid.
• Experimenting with smart energy management algorithms applied on smart grids.
• Testing and validation of the newly designed control techniques on various sections of

the smart grid’s test bench.
• Remotely and virtually interacting with the system for learning, executing, and

parametrizing the system’s performance indicators.
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4. Design, Simulation, and Case Studies of the Educational Test Bench

In this section, the design of different components of the test bench will be described,
such as selecting the right equipment of sources and loads. Simulations of the behavior of
these components, using Matlab R2020a, will be presented to study the coherence with the
hybrid power flow, integrating some case studies on how the user can use each component.

4.1. Power Flow Design

In this educational test bench, we are proposing two types of loads, a direct t cur-
rent motor of 500 W and a squirrel cage induction motor of 1.1 kW. The wind and hy-
dropower emulator can generate up to 1000 watts. In addition, 600 watts can be generated
for the photovoltaic solar panels and 120 watts can be generated for the fuel cells, as
elucidated in Table 3.

Table 3. Power flow design and the components maximum power value.

Power Flow Variable Maximum Value (W)

DC Load PDCLoadmax 500
AC Load PACLoadmax 1100

Wind Power Pwindmax 1000
Hydro Power Phydromax 1000

Fuel Cell PFCmax 120
Solar Power PPVmax 600

The energy will be transmitted using a DC bus, using two rectifiers and two buck
converters, in order to integrate the hydropower and wind power emulators. Two boost
converters are used for the energy storage systems battery and fuel cells, and an inverter is
used for the AC load.

To design the required battery, we initially calculate the energy consumption of the
loads, taking into consideration 8 h of autonomy.

time = 8, (1)

Eload = Pload × time, (2)

Pload = PDCLoadmax + PACLoadmax, (3)

Eload = 12.8 kWh, (4)

We assume that the efficiency of the battery is 90% to calculate the energy that should
be stored, EBat, considering the aging of the battery and other temperature components
which reduce the efficiency of the battery, and in order to add more storage for other usage.

ηBat = 90%, (5)

EBat = Eload/ηBat = 14.22 kWh, (6)

We will use the 48 V batteries, so we calculate the total capacity, CBat

VBat = 48 V (7)

CBat = 1000 × EBat/VBat = 296.3 Ah (8)

We choose for this application a 48 V battery with a capacity of 300 Ah, and a GTK
lithium ion 48 V, 300 Ah Li ion battery. The user can use a supercapacitor in order to emulate
the energy management in electric vehicles [46] and test the different control algorithms.

Figure 7 describes the power flow in the test bench, in which the different energy
sources are connected to the DC bus to inject the power produced via power converters and
the loads directly connected to the DC bus. In the case of the DC motor, the user can always
use a DC/DC converter for control, and the AC loads are connected via the AC bus created
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by the selected inverter. In this test bench, the user can test the aging of the battery using
different estimation algorithms, and by replacing the battery [47] or estimating the total
capacity using artificial intelligence algorithms, such as the sunflower algorithm in [48].
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4.2. Photovoltaic
4.2.1. Design

In this part, we design the solar photovoltaic energy generation. We have mentioned
that the solar panel power is up to 600 W; the best optimal choice is four photovoltaic panels
of 150 watts of each type; the voltage shall be 34, 8 V and the current is 4, 3 A. The output of
the PV string is connected to a DC/DC converter, PSEC-749HS, to inject the power received
to the DC bus, for which the output voltage shall be 48 VDC, as represented in Figure 8. The
converter is controlled using the PID and PWM in order to track the maximum power point
of the PV [49]. The set point can be changed using the PLC controller and can be connected
to a control algorithm in the server using C++, Python, or other languages. Taking into
consideration the voltage reference [50], the user can also test the fuzzy logic control for
MPPT [51], and compare the different tracking algorithms as a case study scenario. The test
bench user will be able to see the produced current and voltage of the whole photovoltaic
string. Table 4 elucidates the different characteristics of the selected PV module.

4.2.2. Simulation

In the simulation, the user of the test bench can always run simulations from a software
to compare with the device under testing. The model uses the diode I–V characteristics
for each module using Equations (9) and (10), where Id (A) and Vd (V) are the diode
current and voltage, I0 (A) is the diode saturation current, nI is the diode ideality factor,
which is a number close to 1.0; the k Boltzman constant = 1.3806 × 10−23 J.K−1; the q
electron charge = 1.6022 × 10−19 C; T is the cell temperature (K); Ncell is the number of
cells connected in a series in a module. Figure 9 represents the equivalent model of the
photovoltaic cell, which is used to simulate the selected photovoltaic panels in results
elucidated in Figures 10–13, in which the power characteristics are represented in different
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temperatures and irradiance, illustrating the efficiency of the PV system and the coherence
with the designed hybrid energy system.

Id = I0(e
Vd
VT − 1) (9)

VT =
k ∗ T

q
∗ nI ∗ Ncell (10)
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Table 4. Characteristics of the selected PV module.

Model SPM150-WP-F

Power at STC (Pm) 150 W
Max power voltage 34.8 V
Max power current 4.3 A
Open circuit voltage 42.8 V
Short circuit current 4.5 A

Tolerance ±5%
Module efficiency 0.155

Standard test conditions 25 ◦C, 1000 W/m2, AM = 1.5
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4.3. Wind Power
4.3.1. Design

As mentioned in the power flow design, the wind power is estimated to have a
maximum of 1 kW. In order to increase the case studies in this test bench and scenarios,
two wind turbines of 500 W each were chosen.
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The goal behind choosing two wind power systems is for the diagnostic feature of
the testbench; for example, the user can set a defect in a system and compare it with the
healthy one, then training the clustering algorithm based on the data acquired by sensors
and labelling them, as well as studying multi-source injection in the power system.

Therefore, the chosen wind turbine is ATO -WT-500M2 with the ATO-WTCMPPT-500
controller, in which the output voltage is 48 V AC and the nominal current is 6 A. The
output of the system is connected to an AC/DC converter type HVI 3K5-3U4, in order to
inject the produced energy into the DC bus. Table 5 represents the different characteristics
of the selected wind turbine, where it is illustrated that the system is very efficient and
coherent with designed hybrid energy.

Table 5. Characteristics of the selected wind turbine model.

Model ATO-WT-500M2

Matched Controller Model ATO-WTCMPPT-500
Rated Power 500 W

Maximum Power 510 W
Rated Voltage 48 V

Start Up Wind Speed 2.5 m/s
Rated Wind Speed 11 m/s

Survival Wind Speed 45 m/s
Wheel Diameter 1.75 m
Blase Number Nylon Fiber

Generator Three Phase Permanent Magnet AC Generator
Magnetic Steel NdFeB
Generator Case Die-Casting Aluminum

Controller System Electromagnet
Speed Regulation Automatically Adjust Windward
Installation Flange DN25

Working Temperature –40~80 ◦C
Gross Weight 22 kg

Top Net Weight 14.5 kg

4.3.2. Simulation

The modeling of the wind power system includes 500 W, so in order to simulate
the wind power system, we must calculate the performance coefficient of the wind
turbine, Cp(λ,β).

The output power of the turbine is as mentioned in Equation (11), where Pm = 500 W;
ρ is the air density 1225 (kg/m2); A is the area swept (m2); Vw is the speed of wind (m/s); λ
is the tip speed ratio; β is the blade pitch angle (deg), as elucidated in Figure 14.

Pm =
1
2
∗ Cp(λ,β)∗ρ ∗ A∗V3

w (11)

Cp(λ,β) = C1
(

C2
λi

− C3 ∗ β− C4∗βx − C5
)

e
−C6
λi (12)

1
λi

=
1

λ+ 0.08β
− 0.035

1 + β3 (13)

λ =
Wr ∗ R

Vw
(14)
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Figure 14. Selected turbine power simulation in different wind speeds.

The chosen wind turbine in our design has a rayon of R = 0.875. The average wind
speed shall be 12 m/s, based on Equation (11), and the calculated performance coefficient
is Cp(λ,β) = 0.171855. Based on 12, 13, and 14, we can estimate that Wr is 155.02 rad/s. The
model in Matlab Simulink in Figure 15 elucidates that the calculated Wr and the chosen
wind turbine can deliver up to 500 W. Figures 16 and 17 show the simulation of the voltage
and current output. The simulation in Matlab represents the Equations (11)–(14), to make
the design simple if the user wants to add other wind turbines. The user of the test bench
can test the optimal control to increase the efficiency of the wind energy using optimization
management algorithms [52].
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4.4. Hydropower

The goal of this part is to select the right hydroelectric turbine, as mentioned in
the power flow, where the maximum power is 1 kW. In order to increase the number of
scenarios for the diagnostic feature, it is better to use two hydroelectric turbines of 500 W,
based on the same idea of the wind power system. The selected type of the hydro generator
is HYYKJ-US, which is a permanent magnet generator. The output is 110 V AC, with
a maximum current of 4 A, which will be connected to an AC/DC converter type HVI
3K5-3U4, so that the power is injected into the DC bus in 48 VDC. Table 6 sums up the
characteristics of the hydroelectric turbine.

Table 6. Characteristics of the selected hydroelectric turbine.

Model LianDu-US HYYKJ-US

Voltage 110 V
Engine Type 1 phase

Power 500 W
Speed 1500 rpm

Current 2.6 A
Item Weight 21 kg
Frequency 50 Hz

It is necessary to design a prototype of a hydroelectric power station, in order to help
students and researchers to see all the components of the power plant. At this point, the
right generator is selected, and at the implementation phase, other requirements of safety
and water pumping for pumped energy storage will be added and considered.

In future work, a design of the pumping system and the pumped storage can illustrate
the hydroelectric power plants in a laboratory scale, which will help students and the
users of the test bench to see the different components of this type of power plant. The
instrumentation, power sharing, and data management shall still be the same to respect the
modularity feature of the designed system, therefore making it easy to implement.

4.5. Fuel Cells
4.5.1. Design

In order to select the right fuel cell to diversify the power sources in this educational
test bench, it is better to use low-power fuel cells, because they are very cheap and easy to
maintain. For this application, two fuel cells of 60 W, type G-HFCS-60W, are selected; their
output voltage is 13 VDC and they have a current of 4.6 A. It is mandatory to use a DC/DC
converter to inject the power in the DC bus. In this case, there was use of PSEC-749HS,
which can deliver the 48 VDC. Table 7 elucidates the characteristics of the selected fuel cells.
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Table 7. Characteristics of the selected fuel cells.

Model G-HFCS-60W

Nominal Power 60 W
Nominal Voltage 13 VDC
Nominal Current 4.6 A
DC Voltage Range 10–19 VDC

Efficiency >50% at the nominal power
Hydrogen Purity >99.99% (CO content being < 1 ppm)

Hydrogen Pressure 0.45–0.6 bar
Hydrogen Consumption 708 mL/min (at nominal power)

Stack Size 125 × 88 × 85 mm
Stack Weight 550 g

Controller Size 87 × 38 × 113 mm
Controller Weight 240 g

Ambient Temperature −5 to +35 ◦C
Ambient Humidity 10% RH to 95% RH (No misting)

Storage Ambient Temperature −10 to +70 ◦C
Noise <60 Db

4.5.2. Simulation

The simulation of the designed fuel cell uses the model on Matlab Simulink, which
is the simplified model of fuel cell stack operating at nominal conditions of temperature
and pressure. The parameters used in this model are the equivalent circuit, and can be
modified based on the polarization curve obtained from the manufacturer datasheet. We
have entered the specific characteristics of the cell, and the model has elucidated that the
current can achieve 4, 6 A at 13 V, as Figures 18 and 19 show. As mentioned, the power
delivered by each cell is set to 60 W. The model calculates the nominal power, which
is 59.8 W.
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4.6. Sensors and Data Acquisition

The goal in this section is to design and select the right sensors, which will be the
main component or feature of this test bench. In smart grids, the data management is
the key element that enables optimization, prediction, and control; therefore, to collect
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basic energy readings such as current, voltage, and power, the best optimal choice is
the PAC2100 smart meter which, as described in the characteristics in Table 8, has Wi-Fi
communication sharing data over the Modbus protocol, so it can get easily connected
with any type of Programmable Logic Controller (PLC). These data shared on Modbus
protocol can be retrieved using multiple-connection RTU RS485, or by adding a Wi-Fi
TCP/IP gateway, or over ethernet. The user of the test bench can select the preferable way
for the communication, which will increase the number of case studies of the proposed
system, networking, and data acquisition between energy meters in smart grids. Other
sensors can be added to the test bench, for example temperature and irradiance for the
photovoltaic system, the speed of wind turbine or hydro turbine, and temperature sensors
for the ESS and fuel cells. The users may also add vibration sensors or moisture, etc. Due to
the modularity of the test bench, all the sensors can be directly connected and configured
to the system if the data acquisition simply has a Modbus interface over TCP/IP, using the
same access point which is connected directly to the switch of the server.

Table 8. Characteristics of the selected smart power meter.

Model PAC2100

Communication Modbus
Related voltage 230/400 V AC
Measure type 3p4w/3p3w/1p2w/2p3w

Operating temperature −25 to 70 ◦C
IP Degree of protection IP51 front, IP30 body

Measured signal Pulse peak
Pulse constant per pulse equals 0.001 kwh/kvarh

Voltage, current accuracy ±0.5%
Active power accuracy ±0.5%

Reactive power accuracy ±2.0%
Apparent power accuracy ±0.5%

Active energy accuracy ±0.5%
Reactive energy accuracy ±2.0%

Power factor accuracy ±0.5%
Frequency accuracy ±0.1%

Harmonic distortion accuracy ±2.0%

In order to manage the energy distribution, the test bench has eight switches. Con-
versely, the user can add more switches for further advanced control, or add new sources
or loads respecting the DC bus injection requirements discussed in the previous sections.
These switches are controlled by a Phoenix Contact PLC type, PLCNext. The selection of
this PLC was based on the multiple programming methods where the user can program it
using C++, Python, or classical automation programming such as LADDER or Functional
Bloc Diagrams, which make it very simple to interact with the developed forecasting and
diagnosis algorithms in the database.

Therefore, the user of the test bench can also use it for automation control case studies,
mainly programming, wiring, controlling, and developing SCADA system views. The
developed SCADA view is connected to a PostgreSQL database. Thingsboard platform
shall be used for visualization of the energy distribution, and the state of each test bench’s
components, as elucidated in Figure 20.

4.7. Design Result

In addition to the selected equipment, power sources systems, and the control systems,
the user can use two types of loads, which can be replaced easily. Or, more loads can be
added, respecting the requirements of the DC bus. For the DC load, a DC brushed motor of
500 W operating under a voltage of 48 V can directly connected to the DC bus or by using
the DC/DC converter type PVTC1015-48-48. The motor reference is ATO-80WDM02420.
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For the AC load, it is better to use the squirrel cage induction motor of 1100 W
operating under a three-phase 380 V AC, with a nominal current of 5 A, type ATO-Y2-
90S-4, which is connected to the DC bus using the AC/DC converter CTP6K. The use of
these two types of motors will increase the case studies of the test bench, where the user
can emulate the characteristics of the motors for electromechanical educational purposes.
Table 9 represents a summary of the all the test bench components.

Table 9. Summary of the different selected equipment for the test bench.

Equipment Quantity Reference

DC Brushed Motor 1 ATO-80WDM02420
Squirrel Cage Induction Motor 1 ATO-Y2-90S-4

Wind Turbine 2 ATO-WT-500M2
Hydro Turbine 2 HYYKJ-US

Fuel Cell 2 G-HFCS-60W
Solar Photovoltaic 4 SPM150P-WP-F

Battery 1 GTK lithium ion 48 V 300 Ah
DC/DC 1 PVTC1015-48-48
AC/DC 1 CTP6K
AC/DC 4 HVI 3K5-3U4
DC/DC 3 PSEC-749HS

Power meters 8 PAC2100
PLC 1 PLCNEXT Phoenix Contact

5. Artificial Intelligence

The use of artificial intelligence in grid and power management has become an impor-
tant feature; it enables energy demand response forecasting, optimizes power shedding,
and classifies power grid defects. As presented in this section, the test bench gives the
opportunity to the users to see how the data are being collected from different sensors and
power meters, then transferred and stored in a local database. The goal is to make it easy
to modify the database architecture while using different prediction, classification, and
optimization techniques in different programming languages.
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5.1. Data Management

The user of the test bench will be able to create multiple energy production, storage
and consumption scenarios, and, as discussed in the previous section, the power meters are
connected to the database server in order to preserve the architecture simply and openly.
The model presented in Figure 21 represents the different tables, where all basic readings
from the power meters are stored; mainly the voltage, current, and power values are
timestamped. Each table feeds the consumption, production, and storage tables in order to
facilitate the integration of machine learning algorithms for energy demand forecasting,
diagnostics, and optimization. The table within the PostgreSQL database with ID "switches”
stores the state of each switch with a timestamp so the users can take into consideration the
developed optimization models. The PLC was inserted directly into the switch table using
OPC UA.
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In each scenario completed, the user can retrieve the data from the database and then
choose the goal of the case study, which can be an optimization model or energy forecasting
or diagnosis. In each case, the user selects the inputs and outputs and then the targets,
and with the help of the pre-developed algorithms instructions in the server, the user can
compare the prediction and self-diagnosis results of different algorithms and generate
reports for offline testing, as represented in Figure 22. For the online prediction graphs of
energy consumption, production and storage can be directly applied and visualized using
the preinstalled SCADA system or on the Thingsboard platform.

For the energy optimization case study, the user can select the pre-developed optimiza-
tion algorithm and study the objective function with constraints, then inject the solution in
the server; the decision-making system will control the switches using the PLC.

5.2. Energy Forecasting

The energy forecasting features are some of the key elements in smart grid and energy
management systems, by which the energy production and consumption is predicted in
order to use them to optimize the energy flow and make the decision easy. The test bench
offers this feature for students so they can learn the different methodologies and implement
their own. In each scenario, a dataset is created, and the user selects which algorithm
to be used: Linear or Non-Linear Regression, Neural Network Regression, or Recurrent
Neural Network, and in this case, the Long Short-Term Memory (LSTM). The use of these
algorithms is easy due to the immense number of Python libraries and the big community,
where the student can inquire and share their findings because of the open source of this
test bench, which will make it easy to improve.
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The result of the energy forecasting algorithms can be saved as a report or can be used in
online dataand visualized in the main dashboard on Thingsboard or on the SCADA system.
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5.3. Autodiagnostic

In smart grids, the diagnostic feature is very important, by which the smart system
can detect the failures of each connected equipment: mainly power sources and secondly
bay feeders and the distribution bus, then other electrical loads. The goal is to detect and
classify the different defects of each component.

In this test bench, the user can create defects and collect the data, then compare
them with the healthy condition in previous case studies using different pre-developed
algorithms. For example, for the Support Vector Machine, Logistic Regression, Random
Forest, and Neural Network, the main defects that can be created are:

• Photovoltaic: Delamination, cell part isolation, or cracks. In order to do so, it is very
easy to replace the photovoltaic module, then compare between each state using the
recorded data.

• DC and AC motors show defects and anomalous consumption using only voltage and
current data and comparing it with the actual load, or detecting voltage sag and swell.
For further diagnostics, the use of extra sensors such as vibration and temperature
sensors can be very useful to label the mechanical defects and study their impacts
on the DC bus or on the energy flow. The same goes for hydroelectric and wind
turbine generators.

• The user can also detect false data injection. A module can be developed using OPC
UA, by which the data acquired will be encrypted, so the goal is to detect where the
attacker operates on which power sensor. To simulate the cyber-attacks in the smart
grid, the user can learn how to find the defect and to secure the designed system.

5.4. Optimization

The goal of the test bench is to introduce students, mainly electrical, energy, and
automation engineering students, to the importance of using optimization algorithms in
power management, power shedding, and energy flow efficiency in smart grids.
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The users can implement their own algorithm, writing their objective function and
constraints, or using the pre-established example using well-known algorithms such as
mixed integer linear programming, the gray wolf optimizer, the whale optimizer algorithm,
or the particle swarm algorithm, in order to minimize the price of the energy consumption.
The most used algorithm is the genetic algorithm in the hybrid power system case studies,
as presented in [53]. The goal is to test other algorithms and calculate their efficiency.

In each case study scenario, the user can set up the price of each energy source, and
change the timeframe in seconds, minutes, or hours. The goal is to minimize the cost of
the energy consumption and maximize the energy availability. The user can also use the
predicted dataset as an input to find the optimal set of switches in time for giving load
planning, and for each set of switches, the energy flow can be simulated and visualized,
then injected into the server in order to schedule the control of switches, as elucidated
in Figure 23.
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The user can select a time frame (j) in seconds, minutes, or hours, then retrieve the
dataset from the database in order to calculate the energy demand of the load of each
timeframe, EjL, in (15), which is the sum of the energy consumption of loads (nl number of
loads) which can be forecasted in previous case studies or can be planned by the user or in
real time manipulations. Then, calculate the energy produced from the different sources,
EjR in (16), which is the sum of each renewable system (ns number of sources).

EjL =
nl

∑
i=1

EjLi = EjLAC + EjLDC (15)

EjR =
nr

∑
i=1

EjRi = EjPV + EjWIND + EjHyd + EjFC + EjBat (16)
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The user shall set the prices (Pri) of the different type of energy source and load in the
test bench in the selected time frame, then compute the cost of energy in each time frame,
in Equation (17). The calculated cost integrates the state of switches (Si) in each time frame.

Costj =
n

∑
i=1

Si ∗ Ei ∗ Pri (17)

The goal is to minimize the cost of the energy consumption while increasing the use of
renewable resources for efficient and greener energy flow. The user must add numerous
constraints or conditions of the switching, for example taking in consideration the state of
charge of the battery, the fuel cell state, the price of energy, etc. The user is free to add one
or more constraints and also change the objective function, in order to find the optimal set
of switches in a time frame.

6. Grid Co-Simulation Framework

For researchers, PhD students, and instructors, the use of co-simulation is a mandatory
feature of the test bench, by which the user can simulate other sources and loads in parallel
or can simulate another case study scenarios previously done using the acquired datasets,
then co-simulate multiple scenarios and models in parallel and manage a large-scale
grid simulation.

On the other hand, numerous researchers have simulation in different software such as
Matlab, ETAP, and EMTP for power shedding or energy optimization in the grid. The test
bench can directly communicate with different software and programming interfaces using
the Mosaik platform, using TCP sockets. The user should be able to run the simulation
in multiple environments: physical, which is the testbench, and in Python optimization
energy, forecasting, and other software using the OPC communication.

The result of the simulation of the developed algorithms can be saved into a database,
to be co-simulated with real datasets from the test bench, for example, the voltage root main
square value of the squirrel cage induction motor, represented in Figure 24, or the global
energy demand of different installed loads in the test bench, as elucidated in Figure 25.

The result of the optimization algorithms for each node, or grid test bench components,
can be seen and co-simulated in the same timeframe of different simulations to see the
impact and the behavior of the optimization algorithms and measure their performance, in
order to schedule loads and sources, as elucidated in Figure 26.
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Conversely, Figure 27 elucidates the result of the developed forecasting algorithms,
where the user can see the predicted value for a certain scenario in a specific time frame. The
result is run iteratively, respecting the time frame, and co-simulated with other simulations
in other software environments, or physically and directly connected to the real-time data
of the installed power meters.
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7. Modularity and Extension of the Test Bench and E-Learning

One of the most important features in the educational test bench is the modularity,
by which the users can test and study each element or each test bench module by part.
This will make it easy to use and easy to maintain. Each defected module cannot affect the
other, so the availability will be increased. As discussed in the previous section, each part
is designed following the DC bus requirements. They are instrumented and connected to
the server, therefore the whole process, from energy injection in the bus to the monitoring
and control, can be seen as a standalone system, which will make it easy to add new power
sources and can be instrumented in the same way.

In order to add another extension of the test bench, after designing and selecting
the power element, load, source, or storage system, it is mandatory to add power meters
with the same reference, or to add better power meters with high precision there are
compatibility problems. For example, when there is not the same protocol, it is necessary
to use a bridge for the communication. The extension of the test bench can also be within a
high range; for example, when implementing a new photovoltaic system, the users can use
LoRa module Wi-Fi for the network extension, as elucidated in Figure 28.
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In the server point of view optimization, forecasting, diagnostics, data management,
and visualization, there will be only added tables where the user can create, delete, truncate,
or insert into easily, using the SQL queries, which is an open-source software and hardware.
The Figure 28 elucidates how to connect multiple power meters with the PLCNext PLC,
PostgreSQL server, and the Thingsboard platform for visualization. Another functionality
of the test bench is the control; in this part, the PLCNext can control the power converters
and variable frequency drives that have been added with the loads, mainly DC motors and
induction machines.

The server can be connected to a cloud where all data are shared using the Thingsboard
platform. The user can give online classes using cameras on each component, and students
or developers can retrieve data and develop their control program, then inject them into
the server to be run in the hardware. Then, they can visualize their result and generate
reports. This will boost the integrity of the modules and the E-learning courses in smart
grids, but it is mandatory for the instructor to be at the laboratory for the scenario’s setups.

8. Conclusions and Future Work

This article proposes the design methodology of a frugally innovated test bench of
smart grids for educational purposes. This developed concept can be implemented with
a very low cost compared with the existing educational laboratory equipment, and it is
easy to install in every university or school. This design offers to students and researchers
numerous types of case studies on multiple disciplines, for example, for renewable energies,
the user can study the concepts of a hydroelectric plant, wind power plant, and photovoltaic
power plant, and can add more power sources and study their behavior. Through smart
grid components, for example, power grid instrumentation and power meters integrations,
the users can learn the different optimization techniques used for power shedding and
energy flow efficiency, and they can also learn how to use machine learning algorithms for
energy forecasting or defect classification in the grid.

Due to the open-source feature of the test bench, it can be used not only for smart
grids case studies, but also for automation and SCADA using the PLCNext, which can
be programmed in different languages, developing interfaces, and views using SCADA.
Using networking and communication, the user can propose the different communication
protocols to measure the latency and to test the effectiveness of the protocol bridges. The
test bench offers to instructors and students a way to test false data injection algorithms
testing for cybersecurity case studies, which represent a critical element in the smart grids.

The software of the test bench is also open-source and has a big active community,
which is based on simple Python libraries, open visualization platforms for learning the IoT,
and web development case studies. Then, there is the use of multiple co-simulations using
Mosaik, which is a powerful, very futuristic tool which allows the integration of multiple
software simulations, which is very helpful when it comes to optimization, forecasting, and
grid visualization.

In future work, the test bench shall be implemented, and technical notes will be shared.
With the installation difficulties, this test bench uses the DC Bus, and other features must be
added. For example, when injecting power in a three-phase AC bus and then simulating the
energy transmission, these features require a higher and more complex design. Therefore,
it is better to start simple and preserve simplicity for learners and instructors; then it can
be improved and improved by the users and the communities of Mosaik, Thingsboard,
PLCNext, and electrical, energy, automation, and mathematicians engineers using the
concept of the collective intelligence, which has a powerful tool. The laboratories must
be encouraged to design an open-source test bench over buying a test bench with limited
functionality that requires a lot of tutorials with a very high cost.
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