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Abstract: The intermittent and uncertain properties of wind power have presented enormous obsta-
cles to the planning and steady operation of power systems. In this context, as an effective technique
to study wind power uncertainty, the development of an accurate wind speed scenario generation
method is of great significance for evaluating the impact of wind power in the power system. In the
case of several wind farms, accurate scenario generation involves precise acquisition of the correlation
between wind speeds and the greatest retention of statistical properties of wind speed data. Under
this goal, this research provided a new method for scenario development based on principle compo-
nent (PC) and R-vine copula theories that incorporates the spatiotemporal correlation of wind speeds.
By integrating with PC theory, this strategy avoids the dimension disaster induced by employing
R-vine copula alone while taking benefit of its flexibility. The simulation results utilizing the historical
wind speeds of three adjacent wind farms as samples showed that the method described in this article
could effectively preserve the statistical properties of wind speed data. Eight evaluation indicators
covering three facets of the scenario generation method were used to compare the proposed method
holistically to two other commonly used scenario generation methods. The results indicated that this
method’s accuracy was increased further. Additionally, the validity and necessity of applying R-vine
copula in this model was demonstrated through comparisons to C-vine and D-vine copulas.

Keywords: principal component theory; R-vine copula theory; several wind farms; scenario generation;
spatiotemporal correlation

1. Introduction

To address issues such as the energy crisis and greenhouse gas emissions, the de-
velopment and utilization of renewable energy have accelerated in recent decades, and
renewable energy sources, including wind power, are becoming more integrated into the
power grid. However, wind energy as a form of renewable energy exhibits a high degree of
randomness and intermittency, posing certain challenges for the safe and stable operation
of the power grid as well as planning [1].

In the existing literature, wind power modeling methods have been widely used. In
the study of power generation expansion planning, Sahragard et al. [2] considered the
wind power penetration in power generation expansion planning by using the conversion
model of wind speed and wind power. Band et al. [3] took the wind energy in the Gulf
of Oman as the research object and assessed the change of its power generation potential
according to the relevant wind power model. One of the current challenges is determining
how to account for wind energy generation uncertainty in the optimization and planning
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of grid dispatching with wind energy integration. Additionally, when a grid contains
several wind farms, it is critical to accurately capture the temporal and spatial correlation
between wind farms for wind power modeling. As a result, in-depth research on wind
energy uncertainty modeling in the context of multiple wind farms remains necessary.
Scenario generation has been extensively studied as a method to deal with the uncertainty
associated with wind energy. Three types of scenario generation techniques exist. The
first is a method for simulating wind power time series using the Markov chain model
and the autoregressive moving average (ARMA) model. D’Amico et al. [4] developed
first and second order semi-Markov chains to generate synthetic wind speed time series,
which is a more accurate approach than using a simple Markov chain in reproducing
the statistical properties of wind speed data. Chen et al. [5] used Fourier series and an
ARMA model to determine the seasonal trend and temporal autocorrelation of wind speed,
respectively. Sim et al. [6] compared and analyzed the ability of autoregressive integrated
moving averages (ARIMA) to predict wind speed and generate wind speed time series data
from historical values. Sun et al. [7] proposed a method for generating multi-wind farm
scenarios based on truncated multivariate Gaussian mixture models and Markov chain
quasi-Monte-Carlo sampling. Morales et al. [8] decoupled the multivariate ARMA model,
simplifying parameter estimation while preserving the statistical properties of wind farm
wind speed data sets. Abedi et al. [9] combined the ARMA and fuzzy models to preserve
the spatiotemporal correlation of wind farms while studying the impact of wind power
correlation on the joint energy and reserve market. Duong et al. [10] demonstrated the
efficacy of a hybrid method based on principal component analysis (PCA) and the ARMA
model for generating data sets that preserve wind farm temporal and spatial correlation.

The second category of method for studying wind energy scenario generation is the
machine learning method represented by generative adversarial networks (GAN). Recent
research has applied the Wasserstein GAN (WGAN) [11], a conditionally improved WGAN
combined with an unsupervised labeling model [12], a faster and more stable improved
GAN [13], a controllable GAN with new evaluation indexes [14], and a GAN combined
with reinforcement learning without manual labeling [15] to the generation of wind power
scenarios. These findings demonstrate that these types of methods are capable of effectively
preserving wind energy output’s spatiotemporal correlation.

The third category of wind power scenario generation methods is based on copula
theory-based wind power spatiotemporal modeling. Copula theory has attracted the
attention of numerous researchers due to its ability to be applied to both linear and nonlinear
correlations. By adopting the truncation method for the D-vine copula, Haghi et al. [16]
were able to reduce the computational burden while maintaining the flexibility of selecting
the appropriate copula function for the varied correlation characteristics of wind farms.
Similarly, Becker [17] examined the time autocorrelation of wind energy forecast errors
using a D-vine copula. Lin et al. [18] used the t copula to generate the joint distribution
of multiple wind farms and combined it with the imprecise Dirichlet model to increase
the rationality of the generated scenarios. Borujeni et al. [19] also used t copula to derive
the joint probability distribution for hours when examining the tail-dependent structure
of wind speed data. Eryilmaz et al. [20] investigated the system reliability of a wind
power system with two wind farms by using Gumbel copula to capture the correlation
between wind speeds between the two wind farms and evaluating the system’s total
capacity in relation to the turbines’ reliability. To fully account for the impact of wind
power uncertainty on economic dispatch, Li et al. [21] sampled the joint distribution of
multiple wind farms established via D-vine copula and obtained wind speed data sets that
took spatial correlation into account. Deng et al. [22] developed a wind speed scenario
generation method that took into account the tail dependency structure of wind speed data.
They used t copula and C-vine copula to establish joint distributions of spatial and temporal
correlation of the tail structure, respectively, in order to minimize parameter calculation.
Qiu et al. [23] used C-vine and D-vine copulas to generate wind speed scenarios from
clustered multivariate wind speed data sets. Eventually, scenarios that were more consistent
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with historical data were retained. To model the correlation between multiple wind farms,
Xu et al. [24] proposed a simplified C-vine copula constructure similar to truncation.
Probabilistic small signal stability analysis is used to demonstrate the method’s effectiveness
in wind power probability modeling with high correlation. Henderson et al. [25] estimated
copula parameters using a Bayesian approach and demonstrated the effect of the size of the
wind speed data sets on the uncertainty associated with parameter estimation via multiple
copula functions.

Wang et al. [26] used Gaussian/t copula to capture the temporal correlation between
multi-period wind power forecast errors in order to accurately assess the capacity of the
energy storage system that must be configured in the system containing the wind farm.
Li et al. [27] developed a dynamic copula to model the correlation between wind power fore-
cast errors and wind power fluctuations as another application for studying the correlation
of wind power forecast errors. The combination of the ARIMA model and the generalized
autoregressive conditional heteroscedasticity (GARCH) model improved the accuracy of
the wind power prediction error range obtained using this method. Philippe et al. [28]
used step-by-step Gaussian copula and Archimedean copula modeling to estimate tem-
poral and spatial correlations, significantly reducing the number of estimated parameters
while maintaining scenario accuracy. Given the copula functions’ ability to model both the
dependency structure and the marginal distribution separately, Wang et al. [29] combined
the highly flexible R-vine copula and probabilistic forecasting to improve forecast quality
in the case of multiple wind farms with incomplete sample data. Wang et al. [30] proposed
a distance-weighted kernel density estimation method to improve the accuracy of the
marginal distribution and combined it with the R-vine copula to accurately model the
spatiotemporal correlation of wind farms in another study involving the application of
the R-vine copula. Additionally, in the study of probabilistic power flow, copula theory
was frequently used to investigate the correlation between wind speeds in order to fully
account for the uncertainty associated with wind energy [31–33].

While it is clear that extensive research has been conducted on the scenario generation
method for dealing with wind energy uncertainty, there are still some gaps in the existing
research. In the case of multiple wind farms, the scenario generation method based on
Markov and ARMA model [4–7] lacks the flexibility to account for non-linear correlation
and spatial correlation. Additionally, in order to satisfy the ARMA model’s requirement for
stationary data, it is necessary to perform corresponding transformations or assumptions
on the input data, limiting its applicability. While the GAN-based scenario generation
method [11–15] is effective at obtaining correlation between data, it is time consuming to
train and its efficiency varies significantly depending on the experimental equipment.

As a result, the copula theory has been widely applied, as it is capable of effectively
resolving the aforementioned issues. However, existing studies have identified drawbacks
such as the loss of statistical characteristics in the data [16,24], the lack of flexibility in
applying a single copula [18–20,28,31–33], and the consideration of only temporal or spatial
correlation [20,21,23,24]. Furthermore, in the application of vine copula theory, most of
them have studied C-vine and D-vine copula with special structure [16,17,21–24], and there
is little research on R-vine copula with more general structure. Due to the fact that the
few scenario generation methods involving the R-vine copula applied it directly [29,30],
the curse of dimensionality problem also occurs when dealing with high-dimensional
data. While the independence test mentioned in [30] could assist in reducing the number
of variables, when applied to data with correlation, this method contributed little to
reducing the computational burden. In light of these limitations and research gaps, we
proposed a novel method combining R-vine copula and PC theory for alleviating the R-vine
copula’s curse of dimensionality while retaining the proposed model’s accuracy. R-vine can
obtain correlations with a variety of different characteristics and separating spatiotemporal
correlation modeling alleviates the problem of dimensional disaster, whereas using PC
theory establishes the conditions for separation modeling. The simulation first verified the
effectiveness of the scenario generation process proposed in this article, then compared the
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proposed method and other methods comprehensively using three aspects of the scenario
generation evaluation indicators to verify the accuracy of the proposed method. Finally, by
comparing the results obtained with C-vine and D-vine, the advantages of using R-vine
in this model were evaluated, as well as the necessity and effectiveness of using R-vine
copula to improve the accuracy.

This article is structured as follows. Section 2 discusses the theoretical foundations
of PC theory and R-vine copula. Section 3 presents a method for generating wind speed
scenarios. Section 4 introduces the wind speed data used in this study and evaluates the
effectiveness of the method. Section 5 draws a conclusion.

2. Principal Component and Vine Copula Theories
2.1. Principal Component Generation Process

PC theory can extract the primary characteristics of historical data by transforming
the correlated historical data for each dimension into an uncorrelated set of PC values. For
a given matrix, X containing n-dimensional sample data:

X = [x1; x2; . . . ; xn] (1)

xm =
[

x1
m, x2

m, . . . , xk
m

]
, m = 1, 2, . . . , n (2)

where n is the dimension of input data, xm is the mth dimensional vector of input data, and
xk

m is the kth observation value of xm.
The basic generation process of PC is as follows [10]:

1. Centralized input data:
X′ = X− x (3)

x =


x1 x1 · · · x1
x2 x2 · · · x2
...

...
. . .

...
xn xn · · · xn

 (4)

xm =
1
k

k

∑
d=1

xd
m, m = 1, 2, . . . , n (5)

2. Calculation of the covariance matrix of the input data:

C =


cov(x1, x1) cov(x1, x2) · · · cov(x1, xn)
cov(x2, x1) cov(x2, x2) · · · cov(x2, xn)

...
...

. . .
...

cov(xn, x1) cov(xn, x2) · · · cov(xn, xn)

 (6)

cov(xp, xq) =
1
k

k

∑
d=1

(xd
p − xp)(xd

q − xq), p, q = 1, 2, . . . , n (7)

3. Calculation of eigenvalue vector λ and eigenvector matrix U of matrix C:

λ = [λ1, λ2, . . . , λn], λ1 > λ2 > . . . > λn (8)

U =[u1, u2, . . . , un] (9)

4. Calculation of principal components:

Z = UTX′ (10)

Each row in Z is a PC, and the order of PC is the number of the row it is in.
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2.2. Vine Copula Theory
2.2.1. Copula Theory

Copula is a type of function that employs the marginal distribution function to create a
joint distribution capable of capturing all correlated information between variables. Along
with linear correlation, copula functions have the distinct advantage of being able to
describe nonlinear correlation. Sklar’s theorem, which serves as the theoretical foundation
for copula functions, defines the joint distribution of variables. According to Sklar’s
theorem [23], for n-ary random variables X = [X1, X2, . . . , Xn] with continuous cumulative
distribution functions (CDF) F1(x1), F2(x2), . . . , Fn(xn), there is a unique copula function to
obtain the joint distribution among variables which can be formulated as:

F(x1, x2, . . . , xn) = C(F1(x1), F2(x2), . . . , Fn(xn)) (11)

The joint probability density can be formulated as:

f (x1, x2, . . . , xn) = c( f1(x1), f2(x2), . . . , fn(xn))·
n

∏
m=1

fm(xm) (12)

where C is the copula function, c is the density function of C, and f1(x1), f2(x2), . . . , fn(xn)
is the probability density functions of X.

As illustrated in Figure 1, copula functions can be classified into two families: elliptical
copula family and Archimedean copula family. The Archimedean copula family contains a
number of different copula functions, the most frequently used of which are the Gumbel
copula, the Clayton copula, and the Frank copula. The Gaussian copula and the t copula
are the most frequently encountered in the family of elliptical copulas.

Figure 1. The main types of copula functions.

2.2.2. R-Vine Copula

Copula functions, as discussed in Section 2.2.1, exhibit a variety of characteristics [22].
While Gaussian, t, and Frank copulas all have a symmetric structure, only the t copula is
suitable for capturing upper and lower tail dependency structures. Both the Clayton copula
and the Gumbel copula are asymmetric structures that can be used to represent lower and
upper tail dependency structures, respectively. However, only the Gaussian and t copulas
are suitable for describing the joint distribution of multivariate variables, whereas the other
functions are restricted to establishing correlation between binary variables. As a result, a
single copula function has limitations in capturing the correlation of multivariate variables
with varying tail dependency structures.
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The emergence of vine copula enables the solution of the problem of high-dimensional
copula. The fundamental concept of vine copula is to decompose the multivariate copula
probability density expression into a binary copula joint probability density product, as
defined in Equation (13) [22]. As can be seen from Equation (13), the decomposition is not
unique when it comes to n-ary (n ≥ 3) copula functions.

f (x |v ) = cx,vj |v−j
(F(x

∣∣v−j ), F(vj
∣∣v−j ))· f (x

∣∣v−j ) (13)

where v is vector composed of a set of variables, vj is a variable in v, and v−j is the vector
formed by removing vj from v.

Different decomposition methods produce trees with a variety of distinct structures,
each with one less layer than the mount of variables. And the structure of the tree is referred
to as R-vine structure. The n−1 layer trees T = (T1, T2, . . . , Tn−1) are used to represent the
R-vine copula model of n-ary random variables, and the nodes set and edges set of the tree
Ti(i = 1, 2, . . . , n− 1) are Ni and Ei, respectively. The nodes and edges of each layer tree
are formulated as: {

N1, E1 i = 1,
Ni = Ei−1 i = 2, 3, . . . , n− 1.

(14)

It should be stressed that when two edges on the tree Ti are used as two connecting
nodes on the tree Ti+1, it must be ensured that there is a common node between the two
edges [34]. Taking n = 4 as an example, Figure 2 shows a certain R-vine structure in the
case of four-dimensional variables. Therefore, it can be deduced that the R-vine copula
joint probability density of Equation (12) is [34]:

f (x1, x2, . . . , xn) =
n

∏
k=1

fk(xk)
n−1

∏
l=1

∏
e∈Ei

ca(e),b(e)|De
(Fa(e)|De

(xa(e)|xDe ), Fb(e)|De
(xb(e)|xDe )) (15)

where De is the set corresponding to the conditioning variables, a(e) and b(e) are any other
variables excluding the variables in De, xDe is the set of variables corresponding to De, and
ca(e),b(e)|De is the copula probability density of variable a and b.

Figure 2. A four-dimensional R-vine copula structure.
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3. Formulation of Wind Speed Scenarios
3.1. Reification of the Structure of the R-Vine Copula Model

The approach proposed by Dißmann et al. [34] for determining the structure of the
R-vine copula model was used in this research. The process of developing an R-vine copula
model is divided into three stages: the first stage involves determining the specific structure
of each layer of the copula, the second stage involves estimating the parameters of the
binary copula corresponding to each edge, and the third stage involves evaluating the
goodness of fit of each binary copula. The R-vine copula model’s trees are structured using
the inverse standard of the minimal spanning tree approaches provided by the Prim’s and
Kruskal’s algorithms. Prim’s approach is used to estimate the greatest spanning tree of each
layer of the R-vine copula model, which is more suitable for dense networks. Additionally,
the weight assigned to each edge in Prim’s algorithm is the empirical Kendall’s rank
correlation coefficient τ for each binary copula function, which may be calculated as:

τ =
2

n(n− 1)

n

∑
1≤i,j≤n

ζ
[
(xi − xj)(yi − yj)

]
(16)

ζ
[
(xi − xj)(yi − yj)

]
=


1 (xi − xj)(yi − yj) > 0,
0 (xi − xj)(yi − yj) = 0,
−1 (xi − xj)(yi − yj) <0.

(17)

where xi and yi(i = 1, 2, . . . , n) are the samples corresponding to binary copula, respectively,
and n is the total number of samples in each sample set.

The Akaike information criterion (AIC) is used to assist in determining the optimal
binary copula for each node of each tree for the R-vine copula model, which may be
expressed as follows [28]:

AIC = 2k− 2
n

∑
i=1

log c(ui, vi) (18)

where k is the number of parameters of the corresponding copula pair, c is the copula
density function, and ui and vi are the CDF values of the ith value of two sample
sets, respectively.

Maximum likelihood estimation (MLE) is applied to estimate the parameters of the
binary copulas. For the two marginal CDFs U = F1(x) and V = F2(y), the maximum
likelihood estimate of the copula functions can be expressed as [19]:

γ = arg max
n

∑
i=1

log c(ui, vi) (19)

In [34], a more extensive discussion of the R-vine copula model construction and
parameter calculation is provided. Figure 3 depicts the flowchart for building the R-vine
copula model structure.
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Figure 3. The flowchart depicting the formation of the R-vine copula model.

3.2. Procedure of Scenario Generation Method

According to the introductions in Sections 2 and 3.1, the following are the precise
processes for generating the wind speed scenarios based on the historical wind speed of p
wind farms in q years:

Step 1: WN(N = 1, 2, . . . , p) represents dividing the historical data of the Nth wind
farm by time T = 1, 2, . . . , 24 h, where the ith(i = 1,2, . . . ,24) row Wi

N is the historical wind
speed set of wind farm N at the ith hour in q× 365 days.

WN =
[
W1

N ; W2
N ; . . . ; W24

N

]
(N = 1, 2, . . . , p) (20)

Step 2: For the wind speed data sets of p wind farms in the same hour Xi =
[Wi

1; Wi
2; . . . ; Wi

p](i = 1, 2, . . . , 24), the PC generation process introduced in Section 2.1
is utilized to transform the p-dimensional spatially correlated wind speed sets into PC
Zi =

[
Zi

1; Zi
2; . . . ; Zi

p

]
[10].

Step 3: The kernel density estimation (KDE) method [21] is applied to estimate the
marginal cumulative distribution function (CDF) of Zi

N(i = 1, 2, . . . , 24, N = 1, 2, . . . , p),
and the values of Zi

N is transformed into the values uniformly distributed over [0,1].
Step 4: Combined with Sections 2.2 and 3.1, the corresponding R-vine copula struc-

ture is determined for the transformed matrix ZN =
[
Z1

N ; Z2
N ; . . . ; Z24

N
]
(N = 1, 2, . . . , p).

According to this, 24-dimensional temporal correlated scenarios SN =
[
S1

N ; S2
N ; . . . ; S24

N

]
are generated.

Step 5: The inverse transformation is applied to the marginal CDF in Step 3 to trans-
form the scenario Si

N(i = 1, 2, . . . , 24, N = 1, 2, . . . , p) into the PC values.
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Step 6: Through the data reconstruction as shown in Equation (21) [10], the scenario
matrix Si =

[
Si

1; Si
2; . . . ; Si

P

]
(i = 1, 2, . . . , 24) of each time stamp transformed to PC values

are transformed into wind speed values WSi that restore the spatial correlation among
wind farms.

WSi = UiSi + xi, i = 1, 2, . . . , 24 (21)

where xi and Ui are the mean and the eigenvector matrix when the PCs are generated using
the wind farms’ data of the hour, which are shown as Equations (4) and (9).

The pseudo code of the scenario generation is as follows (Algorithm 1):

Algorithm 1 Mixed method to generate wind speed scenarios based on PC and R-vine copula
theories.

Input: Historical wind speed of p wind farms in q years.
Output: Wind speed scenarios of p wind farms.
1: for i = 1 : p do
2: Divide the samples of wind farm i into 24 sample sets by time T = 1, 2, . . . , 24.
3: end for
4: for j = 1 : 24 do
5: Apply PC theory to the matrix consisting of sample sets of p wind farms at the jth hour.
6: Transform the values of each PC into CDF values using KDE.
7: end for
8: for k = 1 : p do
9: Apply the R-vine copula model to generate PC scenarios according to the matrix consisting of
the kth PCs of each hour.
10: end for
11: for l = 1 : 24 do
12: Restore the p generated PCs of the lth hour to wind speed scenarios by data reconstruction of
PC theory and the inverse transformation of the kernel density function.

13: end for

4. Results and Analysis

This section begins by introducing wind speed measurements. Along with the five ma-
jor copula functions illustrated in Figure 1, the R-vine structure also employs two additional
significant copula functions, namely the Joe copula and the Ali-Mikhail-Haq copula. The
validity of the scenario creation approach used in this article is then established, and the
created 1000 wind speed scenarios are compared to the samples using three-dimensional
figures. Finally, the other two models are used to generate the identical amount of scenarios,
and some metrics are utilized to compare and examine the three models’ accuracy.

4.1. Data Sources

The wind speeds of three adjacent wind farms were simulated and studied in this
article. Wind speed data were provided by the National Renewable Energy Laboratory
(NREL), and the three wind farms can be identified by the site IDs 604171, 605146, and
606121, respectively [35]. Wind speed data for the three wind farms were collected over
a six year period from 1 January 2007 to 31 December 2012 using wind turbines with a
hub height of 100 m. The sampling interval for the sample values was one hour. Kendall’s
rank correlation coefficients between two wind speed sample sets for these three wind
farms were 0.8992, 0.7872, and 0.8743, respectively, indicating that there were strong spatial
correlations between the three wind farms.

4.2. Evaluation of the Process for Generating Wind Speed Scenarios

Wind speed samples were transformed into equivalent PC values using PC theory’s
orthogonal transformation and then converted to CDF values using KDE. Because the
distribution of PC values in different orders is quite different, and the first PC frequently
contains the majority of the information in the samples, in order to unify the legend,
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taking the first PCs at hour 7, 15, and 23 as examples, Figure 4 illustrates the probability
density plots of the KDE and the corresponding frequency histogram of the PC values.
To maintain consistency with the examples, the accompanying analysis used the first PCs
of the three-time stamps [22]. As illustrated in Figure 4, the proposed estimate method
achieved the corresponding continuous probability distribution using discrete samples
while retaining the numerical distribution’s statistical properties. To demonstrate that the
orthogonal transformation of PC theory eliminated correlation between PCs over the same
time period, Figure 5 shows scatter plots of wind speed samples and corresponding PCs at
the 7th, 15th, and 23rd h for three wind farms that have all been transformed to CDF values
using KDE. The goal of translating all data into CDF values before to plotting was to unify
the comparison’s dimensions. As illustrated in Figure 5, the three PCs created from the
sample data of three wind farms with clear spatial correlation were dispersed uniformly in
the value space with no correlation. This conclusion established an effective rationale for
focusing exclusively on the temporal correlation between PCs.

Figure 4. Histogram of frequency and probability plot of the first PC (a) at the 7th hour, (b) at the
15th hour, (c) at the 23rd hour.

To examine the PCs’ temporal correlation across time, Figure 6 presents scatter plots
of the CDF values of wind speed samples and the corresponding initial PCs for each wind
farm (WF) at the 7th, 15th, and 23rd hours. As can be observed, the distribution space
and degree of dispersion of the samples and PCs were nearly identical. This demonstrates
that the PCs could still reflect the temporal correlation of samples. To summarize, the
PC generation process used for the three wind farm samples in each period preserved
the temporal correlation between the samples but also eliminated the spatial correlation
between wind farms, providing theoretical support for subsequent consideration of only
the temporal correlation among the PCs.
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Figure 5. Sample scatter plots with related PCs (a) at the 7th hour, (b) at the 15th hour, (c) at the 23rd hour.

Figure 6. Sample scatter plots with related first PCs (a) for WF 1, (b) for WF 2, (c) for WF 3.
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The final wind speed scenarios were derived by performing inverse transformations
on the PC scenarios generated using the R-vine copula theory. Figure 7 depicts scatter plots
of wind speed samples and scenarios for each wind farm at the 7th, 15th, and 23rd hours.
As illustrated in Figure 7, the generated wind speed scenarios were concentrated in the
first half of the coordinate axis, and their distribution space and degree of dispersion were
essentially identical to the wind speed samples. Figure 8 illustrates the link between wind
speed samples and scenarios of the three wind farms for the 7th, 15th, and 23rd hours,
respectively, demonstrating the same linear relationship between samples and scenarios.
By comparing the wind speed samples and the generated scenarios, it was clear that the
wind speed scenarios generated using the method described in this article retained all of
the potential correlation characteristics of the wind speed samples and had a distribution
interval for the values that was nearly identical to the distribution interval for the samples.

Figure 7. Wind speed samples and scenarios at the 7th, 15th, and 23rd hours (a) for WF 1, (b) for
WF 2, (c) for WF 3.

It should be noted that due to the article’s length constraint, only the 7th, 15th, and
23rd hours were randomly chosen for graphical example display. The comparison of the
final wind speed scenarios to the wind speed samples demonstrated that this method
was capable of obtaining the correlation and numerical characteristics of the sample data
effectively. As a result, the results obtained using the method described in this article were
consistent across all time periods. Their results are identical for time periods shown and
not shown.
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Figure 8. Wind speed samples and scenarios for the three wind farms (a) at the 7th hour, (b) at the
15th hour, (c) at the 23rd hour.

4.3. Comparison of Typical Scenario Generation Methods

Following a comparison of the wind speed samples to the created scenarios, this part
compared the proposed model, dubbed the PC-R-vine model, against two other approaches
using the same samples, applying multiple assessment criteria to assess each method’s
performance. As the first study to use PC theory to the generation of wind speed scenarios,
this article made use of the PCA-ARMA model [10] as one of the comparison approaches.
Additionally, the Hourly Mixed Copula Model (HMCM) [28], which has been proven to be
superior to several earlier proposed approaches for generating wind speed scenarios, was
used to compare with the proposed method in this research.

Three types of evaluation indicators can be used to categorize scenario generation:
output-based evaluation, distribution-based evaluation, and event-based evaluation [36].
To fully compare the advantages and disadvantages of various models, the three types of
evaluation indicators mentioned above were used.

5. Output-based evaluation

In contrast to the mean absolute error which only indicates the range of error variation,
the mean relative error can be used to indicate the accuracy of the scenario. As a result, this
article used the average relative error indicator to compare the mean, standard deviation,
skewness, and kurtosis of various numerical characteristics across scenarios and samples.
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The mean shows the data’s overall numerical level and its relative error Emean in relation to
the scenarios and samples can be expressed as follows [22]:

Emean =

p
∑

N=1

T
∑

i=1

∣∣∣∣Msce
N,i−Msamp

N,i
Msamp

N,i

∣∣∣∣
p× T

(22)

where p = 3, T = 24, and Msce
N,i and Msamp

N,i are the generated scenarios’ and samples’
average values of wind farm N at the ith hour, respectively.

Similarly, the relative errors between wind speed samples and scenarios with respect
to standard deviation, skewness, and kurtosis, Estd, Eske, and Ekur, respectively, are shown
as Equations (23)–(25):

Estd =

p
∑

N=1

T
∑

i=1

∣∣∣∣ Stsce
N,i−Stsamp

N,i
Stsamp

N,i

∣∣∣∣
p× T

(23)

Eske =

p
∑

N=1

T
∑

i=1

∣∣∣∣ Sksce
N,i−Sksamp

N,i
Sksamp

N,i

∣∣∣∣
p× T

(24)

Ekur =

p
∑

N=1

T
∑

i=1

∣∣∣∣Kursce
N,i−Kursamp

N,i
Kursamp

N,i

∣∣∣∣
p× T

(25)

where Stsce
N,i, Sksce

N,i, and Kursce
N,i are the generated scenarios’ standard deviation, skewness,

and kurtosis of wind farm N at the ith hour, respectively; Stsamp
N,i , Sksamp

N,i , and Kursamp
N,i are

the samples’ standard deviation, skewness, and kurtosis of wind farm N at the ith hour,
respectively.

The Euclidean distance between the correlation coefficients of the wind speed samples
and the scenarios can indicate the degree to which the wind speed data has been restored
to their original correlation. This article assessed the Euclidean distance of the correlation
between samples and situations in terms of temporal and spatial correlation, as stated
in [28]:

Etemp =

√
p
∑

N=1

T
∑

i=1

T
∑

j=i+1

(
ρ

samp
N,(i,j) − ρsce

N,(i,j)

)2

p× T
(26)

Espa =

√
T
∑

i=1

p
∑

N=1

p
∑

M=N+1

(
ρ

samp
i,(N,M)

− ρsce
i,(N,M)

)2

p× T
(27)

where ρ
samp
N,(i,j) and ρsce

N,(i,j) are the Spearman’s correlation coefficients for the ith hour and jth

hour wind speed data for wind farm N in the samples and scenarios, respectively; ρ
samp
i,(N,M)

and ρsce
i,(N,M)

are the Spearman’s correlation coefficients of wind speed data for wind farm
N and wind farm M at the ith hour in the samples and scenarios, respectively. The smaller
the above-mentioned six evaluation metrics, the more favorable the outcome.

Table 1 presents these metrics for the three models discussed in this section. Except
for the standard deviation, all other evaluation metrics for PC-R-vine were superior to
those for the other two models, as shown in Table 1. Specifically, when compared to the
PCA-ARMA and HMCM models, the PC-R-vine model produced the lowest relative errors
for the mean value, skewness, and kurtosis of the wind speed scenarios, indicating that
the numerical range and probability distribution characteristics of the wind speed data
generated by the PC-R-vine model were closer to those of the wind speed samples. In terms
of standard deviation, the errors of the PC-R-vine and HMCM models relative to wind
speed samples were much smaller than those of the PCA-ARMA model, but the PC-R-vine
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model had a bigger standard deviation than the HMCM model. This finding indicates that,
when compared to the samples, the fluctuation degree of wind speed values generated by
the PC-R-vine model was significantly less than that generated by the PCA-ARMA model,
but slightly greater than that provided by the HMCM model. While HMCM had a lower
relative error for standard deviation, its mean had a higher relative error, which means
that while the generated wind speed scenarios had less fluctuation, their numerical level
was lower than the sample data. Smaller fluctuations around low numerical values, which
have a detrimental effect on the numerical distribution of the scenarios, were generated by
this model to some extent. This is also why the relative errors for kurtosis and skewness
associated with HMCM were greater. Meanwhile, it demonstrated that an effective model
testing process necessitates a thorough evaluation using a variety of indicators.

Table 1. Each model’s evaluation metrics.

PC-R-Vine PCA-ARMA HMCM

Emean 0.0143 0.0701 0.0175
Estd 0.0287 0.0435 0.0224
Eske 0.0983 0.4272 0.3807
Ekur 0.0411 0.1981 0.2009

Etemp 0.0421 0.0844 0.3945
Espa 0.0019 0.0088 0.0033

Additionally, the Euclidean distances in terms of temporal and spatial correlations in
the PC-R-vine model was significantly smaller than that in the PCA-ARMA and HMCM
models, indicating that the wind speed scenarios generated by the PC-R-vine model better
retained the correlation characteristics of wind speed samples.

In summary, while the PC-R-vine model did not outperform the HMCM models in
terms of standard deviation, it outperformed the two models in terms of other assessment
criteria. As a result, it can be stated that the wind speed scenarios generated by the
PC-R-vine model retained a higher degree of statistical fidelity to the wind speed samples.

6. Distribution-based evaluation

Along with numerical characteristics, it is necessary to investigate the distribution
differences between scenarios and samples. To demonstrate the consistency of wind speed
samples and scenarios of each wind farm, Quantile-Quantile plots (QQ plots) between the
wind speed values derived by each model and the corresponding sample data are shown
in Figures 9–11. As illustrated in Figure 9, for wind farm 1, the variation in probability
distribution between the scenarios generated by HMCM model and the wind speed samples
was the most noticeable. In comparison to the PC-R-vine model, the PCA-ARMA model’s
difference in probability distributions varied more prominently in the right corner of
Figure 9b. Through comparison of Figure 10a–c, the discrepancy between the probability
distributions of wind speed scenarios provided by the PC-R-vine model and wind speed
samples was minimal for wind farm 2. This result was also supported by the wind speed
data for wind farm 3, as illustrated in Figure 11a–c. As a result of the preceding, it can be
inferred that the PC-R-vine model’s probability distribution for wind speed situations is
the most similar to the wind speed samples.
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Figure 9. QQ plot for WF 1 of samples and scenarios generated using (a) the PC-R-vine model, (b) the
PCA-ARMA model, (c) the HMCM model.

Figure 10. QQ plot for WF 2 of samples and scenarios generated using (a) the PC-R-vine model,
(b) the PCA-ARMA model, (c) the HMCM model.
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Figure 11. QQ plot for WF 3 of samples and scenarios generated using (a) the PC-R-vine model,
(b) the PCA-ARMA model, (c) the HMCM model.

7. Event-based evaluation

The purpose of the event-based evaluation index is to conduct comparative analysis
on the entire dataset. The coverage rate concept was used in this article to determine the
degree to which the sample data was included in the generated scene. Due to the fact that
the majority of sample data fell within the numerical range of the generated scenarios, this
article appropriately modified the concept of coverage rate by converting it to an uncovered
percentage metric (UPM). It can be stated in the following manner [36]:

c =

p
∑

N=1

T
∑

t=1
I
(

pN
min,t ≤ PN

t ≤ pN
max,t

)
T × NStotal

(28)

pN
min,t = min

(
pN

s,t

)
, N = 1, 2, . . . , p, s = 1, 2, . . . , SN (29)

pN
max,t = max

(
pN

s,t

)
, N = 1, 2, . . . , p, s = 1, 2, . . . , SN (30)

where p is the number of wind farms; T is the total number of time stamps; pN
min,t and

pN
max,t are the maximum and minimum wind speeds of wind farm N in all scenarios at time

t; NStotal is the total number of comparisons in each time period; I(·) is a binary variable
that is zero if the conditions in the parentheses are satisfied, and one otherwise; SN is the
number of scenarios.

Table 2 summarizes the UPM results for the three models. As shown in Table 2, the
PC-R-vine method produced the lowest result with a UPM value of 0.22%, indicating that
the wind speed scenarios generated by the PC-R-vine model contained more wind speed
samples than the other two methods. As a result, the wind speed scenarios generated by
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the method proposed in this article were more representative of the data as a whole, and
their overall accuracy and reliability were higher.

Table 2. Each model’s uncovered percentage results.

PC-R-Vine PCA-ARMA HMCM

UPM (%) 0.22 0.46 0.49

The proposed method was compared to two other models using three different types
of evaluation metrics in this article. The results indicated that the model proposed in this
article outperformed the other two models in numerous aspects of these three indicator
categories. By and large, the PC-R-vine was superior to the PCA-ARMA model in most
dimensions. This is mostly owing to the flexibility of the copula theory utilized in the first
model, which allows for the capture of nonlinear correlations, whereas the latter is limited to
linear correlations. Additionally, the PC-R-vine model is preferable than the HMCM model
because the R-vine copula is adaptable and flexible in terms of copula function selection,
and PC theory and its inverse transformation assure the effective retention of correlations.

It should be noted that both the PC and R-vine copula theories used in this article
are applicable to high-dimensional data, which means that as the number of wind farms
increases, the results will remain stable and the accuracy will remain constant. As a result,
this model is still applicable to a greater number of wind farms. Additionally, the primary
goal of scenario generation methods is to ensure model accuracy, followed by runtime
acceptability. Therefore, the duration of various scenario generation processes varies
depending on the specific methods used, as long as they remain within an acceptable range.
While scenario generation methods that do not use the vine structure have some advantages
in runtime, their accuracy is frequently inferior to the method combined with the vine
copula. The purpose of this article was to provide a method for scenario generation that is
computationally efficient while maintaining accuracy, and thus there was no comparison
of model running time. Although the running time of the scenario generation method
proposed in this article was slightly inferior to that of the HMCM and PCA-ARMA models,
it was completely within an acceptable range, and the method’s accuracy was significantly
higher than that of the other two models, which is consistent with the article’s expectations
and objectives.

4.4. Comparison of Several Vine Structure Models

To demonstrate the importance and effectiveness of R-vine in this article, the most
frequently used C-vine and D-vine structures were applied to the scenario generation
process introduced in Section 3.2. The R-vine copula was replaced with C-vine and D-vine
copulas, and the accuracy of the wind speed scenarios generated by each was compared
and analyzed. Due to the maturity of C-vine and D-vine copula techniques and the article’s
limited space, this article did not delve into detail about the structure of C-vine and D-vine
copula. The accuracy of C-vine and D-vine was evaluated using the evaluation indicators
introduced in Section 4.3, and the results are shown in Table 3.

Table 3. Each vine structure’s evaluation metrics.

R-Vine C-Vine D-Vine

Emean 0.0143 0.0308 0.0315
Estd 0.0287 0.0568 0.0559
Eske 0.0983 0.0944 0.0905
Ekur 0.0411 0.0670 0.0521

Etemp 0.0421 0.0367 0.0371
Espa 0.0019 0.0023 0.0021

UPM (%) 0.22 0.29 0.29
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As shown in Table 3, there was little difference between the results obtained with
C-vine and D-vine, which is due to the fixed structure of the two, limiting the difference
between the two. In terms of skewness and temporal correlation, D-vine and C-vine had the
smallest mean relative errors in Euclidean distance, respectively. From a single perspective,
this demonstrated that D-vine deviated the least from the sample distribution and C-vine
was the most capable of capturing temporal correlations. Nonetheless, as demonstrated in
Section 4.3, their poor performance in other areas means that their advantages in a single
area did not translate to the accuracy of the final results.

In comparison to the C-vine and D-vine copulas, the R-vine copula outperformed them
in terms of mean, standard deviation, kurtosis, Euclidean distance with respect to spatial
correlation, and UPM, indicating that the R-vine results were superior to those obtained by
the other two structures in terms of numerical level, degree of fluctuation, ability to obtain
spatial correlation, and degree of sample data inclusion. While R-vine copula performed
slightly worse than C-vine and D-vine copula in terms of temporal correlation acquisition,
R-vine copula generated correlation scenarios that were closer to the numerical level of the
sample data. While C-vine and D-vine retained the greatest degree of temporal correlation,
the sample data error was greater, resulting in a greater difference between the distribution
and numerical characteristics of the final result and the sample data. As a result, the results
obtained by R-vine were more precise than those obtained by C-vine and D-vine.

In addition, for the wind speed data of p wind farms with time resolution T, the parameter
estimation amount of the method proposed in this article was p× (T× (T− 1)/2)2 +C. When
only R-vine is used, the required parameter estimation amount is (p× T× (p× T− 1)/2)2 + D,
where C and D are constants. It can be seen from this that the method can greatly reduce the
computational burden of parameters to be estimated. Therefore, the method proposed in this
article was an effective scenario generation method that took into account both accuracy and
computational efficiency.

5. Conclusions

By utilizing an accurate generation approach for wind speed scenarios, it is possible to
significantly increase the reliability of incorporating wind power output while developing
a power system that includes wind power. This article provided a new method for creating
wind speed scenarios in the case of many wind farms that takes into account the spatiotem-
poral correlation of wind speeds. To begin, PC theory was used to turn each wind farm’s
24 h wind speed data into PC values, thereby temporarily eliminating spatial correlation
between wind farms. The simulation results indicated that the temporal correlation of the
wind speed data between the PCs was maintained during this stage. Then, the R-vine
copula was utilized to capture the temporal correlation between the collected PCs, and PC
scenarios were constructed that account for the temporal correlation. Finally, using the
inverse process of PC generation, the collected findings were translated into the final wind
speed scenarios, restoring the spatial correlation between wind speed data. The simulation
examination of wind speed data from three wind farms provided by NREL demonstrated
that the proposed method was more accurate at capturing the correlation relationship than
the HMCM and PCA-ARMA models. Additionally, the generated scenarios’ statistical
properties were more similar to the original data, and the probability distribution gap
between the generated scenarios and the original data was lower. All of these data suggest
that the strategy proposed in this article could produce more detailed wind speed scenar-
ios. This method can be applied to scenario-based power system stochastic programming
problems, providing support for the development of power system with wind power.

Although the combination of PC and R-vine copula theories increased calculation
efficiency while maintaining the highest possible accuracy, it has some drawbacks. Re-
stricted by the fact that PC theory is limited to the transformation of linear correlations,
there are limitations in applying PC theory to model complex nonlinear correlations of
wind farms, influencing its applicability in this case. The method proposed in this article
reduced the accuracy of capturing complex nonlinear correlations when seeking a balance
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with computational efficiency. Future research can enhance PC theory’s ability to deal with
nonlinear correlation data sets by combining it with other transformations, allowing it to
convert correlation data into completely independent data, as well as expand its applicabil-
ity to data sets with different correlations, thereby increasing the accuracy of the method
proposed in this article.
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