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Abstract: The sensorless control of the permanent magnet synchronous motor (PMSM) has attracted
wide attention due to its high reliability, economic and safety benefits. A fast and high-precision
rotor-position estimation is inevitable for the implementation of sensorless control. Sliding-mode ob-
server (SMO) is a preferred solution for sensorless control by many industrial companies. This article
addresses the comparison of different switching functions employed in the control structure of sensor-
less field-oriented control with SMO. The switching functions are classified and their influence on the
performance of the PMSM is verified for different shaping coefficients (SC). In addition, a statistical
evaluation of the switching functions is provided to find the optimal values of SC. An experimental
and statistical evaluation validated the substitutability of signum and hyperbolic switching functions
and optimal values of SC have been found.

Keywords: permanent magnet synchronous machine; sensorless control; sliding-mode control;
switching function; estimation; observer; optimization

1. Introduction

Permanent magnet synchronous motors (PMSMs) are widely used in various appli-
cations with high demands on movement dynamics and positioning precision. Position-
controlled drives with PMSM are generally denoted as servodrives. In modern servodrives,
field-oriented control (FOC) with the sensor for position measurement becomes the stan-
dard control topology. However, the position sensor is a sensitive part of the servodrive in
terms of mechanical and electrical robustness and, therefore, decreases the overall reliability
of the drive. In addition, the position sensor requires additional mounting space in the
servomotor housing that increases the overall space requirements of the drive solution.
Different reasons for the elimination of the position sensor from the FOC topology ex-
ist. The replacement of the sensor by estimation of the position value leads to enhanced
reliability, especially in harsh environments. Position estimation can also be used as a
backup in case of failure of the position sensor, making it the fault-tolerant drive. Moreover,
for low-cost servodrives, the position sensor can be a substantial part of a unit price and the
replacement of the sensor by position estimation may lead to a significant cost reduction.
Sensorless control of PMSM methods can be divided into the following groups [1]:

1. Methods for medium- and high-speed drives. They work reliably for speeds above
10% of the rated drive speed.

Energies 2022, 15, 2689. https://doi.org/10.3390/en15072689 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en15072689
https://doi.org/10.3390/en15072689
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-1986-4285
https://orcid.org/0000-0002-2450-0056
https://orcid.org/0000-0002-8743-5220
https://orcid.org/0000-0003-0349-5232
https://orcid.org/0000-0002-7266-7520
https://orcid.org/0000-0002-9477-4079
https://doi.org/10.3390/en15072689
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en15072689?type=check_update&version=1


Energies 2022, 15, 2689 2 of 17

2. Methods for low-speed drives. The low-speed operation is often considered as speeds
below 10% of the rated speed.

3. Hybrid sensorless control methods for the whole speed range. They are a combination
of low- and high-speed methods.

At medium- and high-speed ranges, methods based on the motor model, which uses
measured voltages and currents for the rotor position and speed estimation, are widely
used. The estimation of the permanent magnet’s flux or electromotive force (EMF) is used
as these physical variables contain the information about rotor position [2]. This group
of methods includes a flux observer (FO) [3,4], Luenberger observer (LO) [5,6], model
reference adaptive system (MRAS) [7,8], extended Kalman filter (EKF) [9,10] and sliding-
mode observer (SMO). A detailed review of these methods is provided in [11,12].

The SMO belongs to the most used algorithms due to its simple structure, low sen-
sitivity to parameter variation, low computational requirements and high insensitivity
to disturbances [13]. Therefore, different SMO sensorless methods have been widely ac-
cepted and implemented in PMSM control using microcontrollers. Application examples
are provided by Texas Instruments [14], Microchip [15] or NXP [16].

A general theory of sliding mode is widely developed and a design of a sliding-mode
observer can be found in [17]. By its nature, SMO is inevitably linked to the chattering
problem. The chattering problem is described as oscillations appearing in the implementa-
tion of SMO and caused by high-frequency (HF) switching of SMO, exciting unmodeled
dynamics in the closed loop. HF switching is caused by employing a discontinuous signum
function inside the control structure. In many cases, a low-pass filter (LPF) is added to
the control structure of SMO to eliminate chattering. Applying the LPF causes unwanted
side effects as a phase delay and gain attenuation and thus needs additional compensation
strategies. The elimination of the LPF from the control structure can be obtained by using
higher-order sliding-mode controller (HOSMO) [18]. The HOSMO can mitigate chattering,
but it requires the knowledge of switching function derivatives, which makes it more
complex for microprocessor implementation. Recent works have been focused on solving
this problem by applying super-twisting sliding-mode observers (STSMO). In [19], a simple
adaptive STSMO with a compensation of voltage source inverter nonlinearity was pro-
posed. The STSMO with a robust moving average filter was investigated in [20], with the
ability of start-up from a very low speed (<4% of nominal speed), but the complexity of the
observer design increased as more parameters had to be tuned.

The most used and yet still simple chattering-reduction method for SMO is to replace
the discontinuous switching function with some type of continuous function [20]. This is
also referred as a boundary layer approach [21]. The principle of continuous switching
is to construct a boundary layer and to generate a quasi-SMO instead of a pure SMO.
The thickness of the boundary layer impacts the performance of the quasi-SMO. If the
boundary layer is narrow the approaching speed of the sliding-mode motion increases
but it results in chattering and harmonic distortions. On the other side, the wide bound-
ary range suppresses chattering but reduces the robustness of the control system [22,23].
The boundary region is determined by the shape coefficient (SC) which is unique for each
switching function. Appropriate adjustment of SC is necessary to reduce chatters and
to improve the control system performance [23]. Different continuous switching functions
used in sensorless PMSM control with SMO can be found in the literature:

• Signum function [24–27];
• Saturation function [28–30];
• Sigmoid function [13,31–34];
• Hyperbolic function [22,23].

The SC is in most cases selected as a constant value that is obtained by a trial-and-error
procedure. An advanced approach [23] is the real-time adjustment of the SC. Even in that
case, the values of the SC are given as a set of random constant values. Therefore, a study
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provided in this paper gives guidelines to find the values of the SC that would be optimal
for the given implementation of SMO.

The optimization is widely used in the design of electric drives. The subject of the
optimization is the motor construction [35,36], the selection of the control type [37] or the
settings of the controller parameters [10,36,38]. The optimization is also used in adaptive
control where it is a part of the process of control parameters adjustment to a change
in external conditions [39]. In this paper, the optimization is used for a selection of the
switching function and also to find the SC values. The paper is an extension of [40] and its
main contributions are:

1. Systematic classification of different types of switching functions;
2. Design and experimental verification of a second-order SMO (SOSMO) with phase-

locked loop (PLL);
3. Experimental verification of different switching functions with the proposed SOSMO;
4. Statistical evaluation of a large set of measurements to find the optimal values of SC.

2. Implementation of SOSMO for Sensorless Control of PMSM

The state equation of SM-PMSM using the αβ stator currents as state variables is de-
fined as: [

i̇α
i̇β

]
=

1
Ls

[
−Rs 0

0 −Rs

][
iα
iβ

]
+

1
Ls

[
uα − eα

uβ − eβ

]
, (1)

where uα and uβ are the applied stator voltage components, iα and iβ are the stator cur-
rent components, eα = −ωeλPM sin(θe) and eβ = ωeλPM cos(θe) are the stator back-EMF
voltage components, where ωe is the electrical angular velocity and λPM = 2

3
kt
p = ke

p is the
permanent magnet flux, where kt is the motor torque constant, ke is the EMF constant and
p is the number of pole pairs, Rs = R2ph/2, where R2ph is the phase-to-phase resistance
and Ls = L2ph/2 = Ld = Lq, where L2ph is the phase-to-phase inductance and Ld, Lq are
the direct and quadrature axis inductances.

It can be seen from (1) that the back-EMF components include the value of rotor
position and velocity. The amplitude of the back-EMF components cannot be directly
measured during the control process and its estimation is thus required. A second-order
sliding-mode observer (SOSMO) [41] is used in this paper for the speed and position
estimation. The mathematical model of SOSMO can be defined as:[

˙̂iα
˙̂iβ

]
=

1
Ls

[
−Rs 0

0 −Rs

][
îα
îβ

]
+

1
Ls

[
uα − êα − zα

uβ − êβ − zβ

]
, (2)

where superscript (ˆ) indicates an observed value and zα, zβ are the observer feedback
signals. If the actual motor parameters, i.e., the resistance and the inductance of the
windings are the same as in the observer equations, the applied voltage components are
known and the current components are measured, the only unknown values are the back-
EMF components. Thus, matching the observed currents to the measured currents yields
the actual back-EMF values. The observer’s task is to force the observed current to match
the measured current, thus, the sliding surface is given as:

s(t) =
[

īα
īβ

]
=

[
îα − iα
îβ − iβ

]
, (3)

where īα, īβ represents the error between the observed and measured current components.
The switching action will occur when:

s(t) = 0. (4)

Equation (4) defines the sliding surface or the switching surface of the SOSMO.
The phase plane is divided into two areas in which the switching function has differ-
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ent signs. The differences between actual and observed currents īα, īβ enter the switching
function. The outputs of the switching function are the feedback observer signals zα, zβ:[

zα

zβ

]
= f

(
s(t)

)
. (5)

The back EMF-components are obtained by filtering the feedback observer signals with
the LPF. The observed electrical position can be extracted from the estimated back-EMF
components using an arctan function or a phase-locked loop (PLL) circuit. The latter is
used in this paper and the design of the PLL can be found in [1].

The implementation of the SOSMO with the field-oriented control of PMSM is shown
in Figure 1. The initial position detection and start-up are executed with a resolver. Then,
above 10% of the nominal speed, the algorithm is switched to the sensorless mode. This
approach is used to provide a fair comparison of different switching functions under exactly
the same conditions for each measurement.

phase-

locked

loop

low-pass

filter

(Eq. 6)

switching function

(Eq. 5 or Eq. 7 

or Eq. 8 or Eq. 9)

SMO 

(Eq. 2)
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Figure 1. A block diagram of sensorless field oriented control with SOSMO and PLL.

3. Classification of Switching Functions

Observer feedback signals zα, zβ from the previous section can be calculated in different
ways based on the type of switching function used in the control structure and the value of
its shaping coefficient (SC). The switching function and value of the SC have a significant
impact on the chattering of the observed values, having further impact on the performance
of the sensorless drive. The purpose of the zα, zβ signals is to force the trajectories of current
differences īα and īβ towards the sliding surface. It was shown in several works that the
discrete function (signum) causes chattering and so continuous functions are preferred.
Different types of switching functions are shown in Figure 2.
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Figure 2. Different types of switching functions: (a) signum, (b) saturation, (c) sigmoid
and (d) hyperbolic.

3.1. Signum Function

The signum function is defined as follows:[
zα

zβ

]
= k1

[
sgn(īα)
sgn(īβ)

]
. (6)

The sign of the current error is determined by the signum function and then multiplied
by the feedback gain k1. The value of k1 is discussed in Section 3.5. The average value of
the feedback signals from (6) in a short time interval represents the estimated back-EMF
values [17]. Therefore, its components can be obtained using the LPF:[

êα

êβ

]
=

ωc

s + ωc

[
zα

zβ

]
, (7)

where ωc is the cut-off frequency of the LPF. For each type of switching function, the re-
sulting observed back-EMF components are obtained using the LPF as defined in (7). The
cut-off frequency is selected to filter out the high-frequency components, but ωc should
not affect the fundamental component of the feedback signal during the filtration process.
The observed back-EMF components will be further used for the position and speed calcu-
lation. The LPF introduces a phase lag and a compensation of the observed position values
is necessary [42].

For an ideal SOSMO, the signum function is executed with the infinite frequency
and the trajectories of the current differences reach and stay on the sliding hyperplane,
i.e., s(t) = 0 and ṡ(t) = 0. However, the switching frequency is limited in a real application,
which is the reason why the chattering phenomenon occurs. To suppress the chattering of
the observer, one of the available solutions is to use other types of switching function as a
substitute for the signum function: saturation, sigmoid or hyperbolic function.
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3.2. Saturation Function

The signum function is replaced by the saturation function. If the absolute value of
the current differences īα and īβ is lower than a predefined value Emax the feedback signal
will change into a linear transient region [15]:[

zα

zβ

]
=

k1

Emax

[
īα

īβ

]
. (8)

The value of k1 is discussed in Section 3.5. Emax is a shaping coefficient for the
saturation function.

3.3. Sigmoid Function

If a sigmoid function is used, the discontinuous signum function given by (6) is fully
replaced by a continuous function F(ī) and the observer feedback signals can be written
as follows: [

zα

zβ

]
= k1

[
F(īα)
F(īβ)

]
, (9)

where the function F(ī) is defined as [43]:

F(ī) =
2

1 + e−αī
− 1, (10)

where α is the shaping coefficient of the sigmoid function. If the value Emax in the saturation
function is selected high enough, or if the value of α in the sigmoid function is selected small
enough, the continuous output (i.e., observed back-EMF values) will be achieved even
without the filtering by the LPF. This simplifies the control system and the compensation
of LPF is not necessary anymore. However, removing the LPF reduces the dynamic
performance of the observer due to the sluggish response of the controller.

3.4. Hyperbolic Function

The hyperbolic function is defined as follows:

[
zα

zβ

]
= k1


em īα − e−m īα

emīα + e−mīα

em ¯iβ − e−m ¯iβ

em ¯iβ + e−m ¯iβ

, (11)

where m is the shaping coefficient. The hyperbolic function defined by (11) belongs to
the class of sigmoid functions but its SC is defined in a different manner [43]. However,
it can be shown that the hyperbolic function can be applied as a substitute for the sigmoid
function, if the following condition is met: m = 1

2 α.

3.5. Feedback Switching Gain

The value of the feedback gain k1 plays an important role in the observer’s performance
and stability. The selection of k1 for the the signum function can be found in [17], for the
saturation function in [28] and for the sigmoid function in [43]. The following must stand
to ensure stability for all three functions:

k1 > max(|eα|,
∣∣eβ

∣∣). (12)
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4. Experimental Results of Different Switching Functions in Sensorless Control

An SM-PMSM with the parameters shown in Table 1 was used for the experimental
testing. A prototype of a voltage source inverter (VSI) controlled by an Opal RT OP5600
hardware-in-the-loop simulator was used to drive the machine. Two different sampling
rates were implemented: the SOSMO and the current loop were sampled at 20 kHz and
the speed control loop was sampled at a 2 kHz sampling frequency. The parameters
of all controllers are shown in Table 1. The current controllers were designed by direct
synthesis method for the desired time constant Tn = 1.5 ms, which results in a bandwidth
of approximately 670 Hz. The PI speed controller was initially designed for the operation
with the sensor. Then, it was experimentally tuned in sensorless control by a trial-and-error
approach and the P-component of the PI controller was reduced to make its value fit the
full range of shaping coefficients for all switching functions. When a satisfactory value of
the P-component was found, it was not changed throughout all experiments. This ensured
the fairest possible comparison of switching functions.

Table 1. Parameters of PMSM and controllers.

Motor Type TGN3-0115-30-48/T1

dc link voltage UDC = 48 V
rated torque MN = 1.13 Nm
rated current IN = 12.9 A
torque constant kt = 0.101 Nm/A
voltage constant ke = 6.12 V/1000 rpm
no. of pole pairs p = 5
rated speed nN = 3000 rpm
stator resistance R2ph = 0.258 Ω
stator inductance L2ph = 0.6 mH

PI speed controller kP = 0.05
kI = 0.59

PI current controller kP = 0.12
kI = 86

PLL kP = 1400
kI = 490,000

max. current Imax = 18 A
cut-off frequency of the LPF fLPF = 7.7 kHz
feedback gain k1 = 100

The rotor position and speed estimation using the SOSMO observer are approximately
reliable above 5–10% of the nominal speed. Therefore, some type of start-up procedure is
required. In this paper, the position sensor was used to reach a certain speed level followed
by the switch-over to sensorless control. This approach was chosen due to its simplicity,
to accomplish a smooth initial position detection and to provide a fair comparison of all
switching functions across all the values of SC. A switchover speed of 300 rpm was selected,
which represents 10% of the nominal speed. Below that speed, the observation fails, as the
back-EMF amplitude has a critically low value to be reliably observable.

All four switching functions were experimentally tested with the same SOSMO, for the
same parameters of the PI controller and with the same PLL circuit to provide the most ob-
jective comparison. For each measurement, the same level of a step load torque was applied
to the PMSM by loading with the induction machine controlled by a frequency converter.

Different types of switching functions and SC were used. The results are shown in
Figures 3–6. The arrangement of all figures is the same:

• The upper left picture shows the actual and estimated speeds throughout the experi-
ment;

• The upper right picture shows the calculated speed error ∆ωm = ωm − ω̂m and
indicates the sensorless operation area;
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• The middle left picture shows a detail of the actual and estimated electrical position to
see how accurate the position estimation is;

• The middle right picture shows a detail of the calculated electrical position error
∆θe = θe − θ̂e;

• The bottom picture shows the values of the actual id and iq currents from the field
oriented control.

Experimental results for the SOSMO implemented with a signum function are shown
in Figure 3. The point of switchover from the sensor to sensorless control is visible at the
time around t = 1s. A substantial chattering effect can be observed in the waveforms of the
currents and actual speed, which makes this switching function the worst candidate for
implementation in the sensorless control. The speed error ∆ωm has valid values only in the
sensorless mode. Even if the estimated speed is calculated in both modes with sensor and
sensorless, it has very unprecise values at low speeds, where the back-EMF voltages are
very low.

Figure 3. Experimental results for speed and position estimation with signum function.

The saturation function was experimentally tested for six different values of SC (see
values of Emax in Table 2). Experimental results for the SOSMO with the saturation function
Emax = 20 are shown in Figure 4. When comparing Figures 3 and 4, the chattering effect
in the estimated speed is significantly reduced. In addition, the electrical position error
∆θe is also reduced. The results in Figure 4 indicate that the saturation function has better
performance in the sensorless control when compared with the signum function. However,
it can be shown that the selection of some other values of Emax may cause the chattering
effect to reappear. It would be very convenient to find out the exact value of Emax for which
the chattering effect is minimal.

The sigmoid function was experimentally tested for six different values of SC (see val-
ues of α in Table 2). The experimental results for the SOSMO implemented with the signum
function for α = 0.04 are shown in Figure 5. When comparing Figures 4 and 5, the chat-
tering effect in the current waveforms is at a comparable level, but the electrical position
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error is quite reduced. The results in Figure 5 indicate that the sigmoid function has slightly
better performance in sensorless control when compared with the saturation function.

Figure 4. Experimental results for speed and position estimation with saturation function, Emax = 20.

Figure 5. Experimental results for speed and position estimation with sigmoid function, α = 0.04.
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Figure 6. Experimental results for speed and position estimation with hyperbolic function, m = 0.02.

Table 2. Measured RMSE values for different switching functions and SC.

Switching Function SC RMSE ωm (rad/s) RMSE θe (rad)

hyperbolic m = 0.002 0.735 0.323
hyperbolic m = 0.004 0.799 0.167
hyperbolic m = 0.008 0.865 0.066
hyperbolic m = 0.012 0.890 0.058
hyperbolic m = 0.016 0.893 0.079
hyperbolic m = 0.02 0.901 0.070
hyperbolic m = 0.024 0.906 0.094
hyperbolic m = 0.028 0.904 0.100
hyperbolic m = 0.032 0.900 0.106
hyperbolic m = 0.04 0.899 0.094

saturation Emax = 20 0.913 0.128
saturation Emax = 25 0.922 0.110
saturation Emax = 30 0.927 0.094
saturation Emax = 35 0.916 0.096
saturation Emax = 40 0.915 0.095
saturation Emax = 45 0.911 0.110

sigmoid α = 0.003 0.705 0.416
sigmoid α = 0.03 0.885 0.061
sigmoid α = 0.04 0.898 0.077
sigmoid α = 0.05 0.903 0.105
sigmoid α = 0.06 0.905 0.081
sigmoid α = 0.08 0.912 0.112

signum - 4.275 0.192
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It should be again emphasized that a direct correlation between sigmoid and hyper-
bolic function exists. Based on a comparison of (9) with (11), it can be shown that m = 1

2 α.
Therefore, the sigmoid switching function can be used instead of the hyperbolic switching
function and vice versa. This issue has not been discussed in the available literature so far.

The hyperbolic function was experimentally tested for 10 different values of SC (see
values of m in Table 2). The experimental results for the hyperbolic function with m = 0.02
are shown in Figure 6. The value of m was selected on purpose to compare the experimental
results with the sigmoid function for α = 0.04. When comparing Figures 5 and 6, no visible
differences in chattering effect for the speed and current waveforms can be observed.
The values of the mechanical speed and electrical position errors have a very similar level.

5. Multiobjective Optimization Problem for Values of SC

In the previous section, the comparison of the suitability of different switching func-
tions was performed by evaluation of the speed, position and current responses. The values
of SC were varied in order to reach the lowest possible chattering effect. Experimental
results indicated that some optimal value of SC for each switching function should exist.
Moreover, the comparison of SC only by visual examination of the speed, position and
current waveforms is not enough to specify which value of SC is optimal. Therefore, some
quantitative criterion must be introduced.

For most real-world problems, there are several objective functions (i.e., quantitative
criteria) for comparing different solutions. These criteria are often conflicting as improving
one leads to a deterioration of the other. Trying to find the “best” solution leads to two
different approaches. The first is the multiple-criteria decision-making (MCDM) [44] that
explicitly evaluates multiple conflicting criteria values of the finite set of possible solutions.
The optimization model can be defined as:

minimize q (13)

subject to
q ∈ Q, (14)

where q is the vector of p objective functions and Q is the set of alternative solutions.
The alternative approach is a multiobjective optimization (MOO) that uses various

optimization methods to generate feasible solutions defined by the design parameters.
The optimization model can be defined as [37]:

minimize f(x) :=
[

f1(x) f2(x), . . . , fp(x)
]
, (15)

subject to
gi ≤ 0, i = 1, 2, . . . , m (16)

xl ≤ x ≤ xu , (17)

where f and x are an objective function vector and a design parameter vector, respectively;
g and m are the constraints and number of constraints, respectively; and xl and xu are the
lower and upper boundaries of x.

In this paper, MCDM was used to select the best solution from the set of feasible
solutions from the experiment. The MOO approach is not applicable because different
switching functions have different shape coefficients and there is no uniform parameter
space. MCDM compares different solutions to make the decision. In the case of multiple
criteria, the evaluated objective of a solution is a vector. Two ways are offered to compare
objective vectors and corresponding solutions.

The first defines the dominance of one solution over another [37]. The solution x
dominates the solution y if the solution x is better than y in all criteria. The set of solutions
that are not dominated by any solution in the set of feasible solutions is called the Pareto
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optimal set (or Pareto front). A simple search algorithm can be designed to find all Pareto
optimal solutions from the existing set of feasible solutions.

The second approach reduces a multiobjective function to a single objective function
by calculating one number as a weighted sum of objectives [45]. The best solution is the one
with the lowest value (minimization problem). In this case, only one solution is optimal
for a chosen set of weights. However, changing the weights leads to a different optimal
solution. Both approaches were used in this paper.

Two different objective functions were selected: the root-mean-square error (RMSE) of
the mechanical speed and the root-mean-square error of the electrical position, defined as
follows:

RMSE ωm =

√
1

n + 1

n

∑
k=1

(
∆ωm(k)

)2
, (18)

RMSE θe =

√
1

n + 1

n

∑
k=1

(
∆θe(k)

)2
, (19)

where

∆ωm(k) = ωm(k)− ω̂m(k), (20)

∆θe(k) = θe(k)− θ̂e(k). (21)

∆ωm(k) and ∆θe(k) is a mechanical speed error and electrical position error, respectively;
ωe(k), ω̂m(k) and θe(k), θ̂e(k) are the kth samples of the actual and estimated mechanical
speed and electrical position, respectively. n is the length of the dataset used for the
calculation of the RMSE.

The weighted objective is the sum of the objectives according to (18) and (19). As the
objectives have different scales, their normalization is necessary before the summing.
The weighted objective wo is calculated as:

wo = wω
RMSE ωm −min(RMSE ωm)

max(RMSE ωm)−min(RMSE ωm)
+ wθ

RMSE θe −min(RMSE ωm)

max(RMSE θe)−min(RMSE θe)
, (22)

where wω and wθ are weights and max(RMSEx), min(RMSEx) are extreme values of the
objectives from all measurements.

Preliminary experiments were used to determine the range of shaping coefficients
of the switching functions. Then, the full-scale experiments were executed as a series of
repetitive measurements for exactly the same conditions (the same initial position detection,
the same PI controller and PLL, and the same value of a load torque applied at the same
time). A total of 319 experiments were executed, containing 138 measurements for the
hyperbolic, 90 for the saturation, 90 for the sigmoid, and one measurement for the signum
function to obtain statistically significant data for further investigation. A standard dataset
had 12 measurements but three extended datasets of 30 measurements were executed
to confirm the data normality required by statistical procedures. The possible erroneous
values were identified and excluded from the datasets by a generalized extreme Studentized
deviate test for outliers [46].

The values in Table 2 are the average of RMSEs obtained from the datasets for each sin-
gle value of SC. The 95% confidence interval of values in Table 2 relative to measured RMSE
ωm, or relative to 2π for RMSE θe, is ± 0.3% on average, and ± 0.5% in the worst case. This
means that the true mean of the measured data lies within these intervals with a probability
of 95% and it is not statistically significantly different from the average estimate.

Figure 7 shows the overview of the optimization results in the RMSE ωm and RMSE θe
space. Each solution is marked with one mark showing the switching function used and
other marks showing whether the solution is Pareto optimal or optimal according to the
weighted objective. The signum function is not displayed in the figure because the values
of the objectives were very far from the optimum. Figure 8 shows the objective values
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of the Pareto optimal solutions in the same order from left to right as shown in Figure 7.
The weighted objectives of the ten best solutions for weights wω = 0.3 and wθ = 0.7 are
shown in Figure 9.
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As has been stated, hyperbolic and sigmoidal functions are interchangeable. The re-
sults of the experiments in Figure 7 confirm this statement although the overlapping of
solutions is not accurate. The inaccurate overlap is a consequence of the fact that the SC
values of α and m do not coincide with each other, as the measurement itself is random
in nature. Considering this, we grouped together solutions that used the hyperbolic and
sigmoid functions. After analyzing the optimization results we can state:
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1. The signum function gives the worst values of objective functions and serves only as
a reference point.

2. The solutions from the group of hyperbolic and sigmoid functions dominate over
those of the saturation function.

3. Multiobjective optimization gives several “good” solutions, so it is necessary to use
additional preferences to select the best one.

4. The optimal solutions according to the weighted objective lie on the Pareto front.

Based on the performed analysis, we lean toward the solution using the hyperbolic
switching function with a shape coefficient m = 0.008 (sigmoid with α = 0.016). This is the
optimal solution according to the weighted criterion with weights wω = 0.3 and wθ = 0.7.
The selected weights show that a smaller deviation of the electrical position than the
deviation of the mechanical speed is preferred. The use of a saturation switching function
is the second option if the time to calculate the hyperbolic function is unacceptable for
given hardware. The fact that all Pareto optimal solutions belong to the same switching
function (hyperbolic-sigmoid) opens the possibility for using M0O to search the exact SC
value instead of selecting an optimal solution from the set of feasible ones. This may be the
subject of future research.

6. Conclusions

This article has proposed a comparison of different switching functions and addresses
the influence of their shaping coefficients on the performance of the sensorless control of
PMSM. The results confirm that the signum function should be replaced with the sigmoid
or hyperbolic function. This is caused by the utilization of the transient region of these
switching functions, which enables the observer to exploit some additional “degree of
freedom” during the observation process. It was proven that the sigmoid and hyperbolic
switching functions are substitutable. In addition, a statistical evaluation of experiments
with different values of shaping coefficients was completed by calculating the electrical
position and mechanical speed root-mean-square-error values. Finally, a multiobjective
optimization for given parameters resulted in several Pareto optimal solutions.

Future research should aim to add some more optimization objectives, such as speed
settling time or overshoot, for a customization and expansion of the optimization problem.
In addition, the shaping coefficients affect both the chattering effect and the robustness of
the system. A selection of new optimization parameters that correlate with the robustness
of the system is also viable.

Author Contributions: Conceptualization, K.K. and V.P.; methodology, K.K. and P.B.; software, V.P.;
validation, V.P., V.Š. and M.D.; formal analysis, F.Ď.; investigation, V.Š. and M.H.; resources, K.K.
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Abbreviations
The following abbreviations are used in this manuscript:

EMF electromotive force
FO flux observer
FOC field oriented control
HOSMO higher-order sliding mode observer
IM-PMSM interior-mounted permanent magnet synchronous machine
LO Luenberger observer
LPF low-pass filter
MCDM multiple-criteria decision-making
MOO multiobjective optimization
MRAS model reference adaptive system
PLL phase-locked loop
PMSM permanent magnet synchronous machine
RMSE root-mean-square error
SC shaping coefficient
SM-PMSM surface-mounted permanent magnet synchronous machine
SMO sliding mode observer
SOSMO second-order sliding-mode observer
STSMO super-twisting sliding-mode observer
VSI voltage-source inverter
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