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Abstract: The fulfillment of the sustainable development goals of the United Nations (UN) in remote
communities undoubtedly goes through the consequent development of the energy supply system
(ESS). Structuring a procedure for modeling the ESS, according to development requirements, is vital
for decision making. This publication reviews the main methods for designing local development
programs that apply a sustainable livelihoods approach and a group of modeling tools for ESS. The
necessary criteria are verified to structure a model that integrates the expectations of sustainable
development, through the indicators of sustainable livelihoods (SLs), with the requirements of the
ESS and the use of available renewable energy resources. In the review carried out, it is found that
the methods of analysis and planning of sustainable local development are disconnected from the
models for energy planning. On the other hand, the relationship of the indicators for calculating SLs
with the characteristics and behavior of energy demand with respect to time is verified. The main
criteria, parameters, and optimization methods necessary for the design and expansion of ESS in
hard-to-reach areas are also discussed. Lastly, the necessary elements are proposed to be validated
through a future study case for the dimensioning and expansion of ESS in hard-to-reach communities,
integrating the analysis of development programs based on SLs.

Keywords: sustainable livelihoods; energy management; isolated microgrids; renewable energy;
energy system optimization

1. Introduction

The sustainable development goals (SDGs) promote the need for greater efforts in the
research of sustainable energy projects. The inclusion of affordable and clean energy for
all is a clear demonstration of the correlation between access to energy and sustainable
development, as it modernizes people’s lives, facilitating connectivity, improving health
systems, and optimizing production, among other things.

To determine compliance with the SDGs, the United Nations Statistical Commission
pertaining to the 2030 Agenda for Sustainable Development proposed an indicator frame-
work [1]. The indicators proposed by United Nations (UN) do not allow establishing the
relationship between energy demand coverage and the development of remote communi-
ties. Dawodu et al. [2] and Yang et al. [3] enounced the postulate that “what is not measured
cannot be controlled”. Developing a system of indicators to establish this relationship, tak-
ing into account the work that UN has provided with regard to methodologies to measure
development, would be a contribution to the measurement of sustainable development [1].
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Studies conducted by Léga et al. [4] suggest the need for research efforts to model
energy supply systems (ESSs), according to the requirements posed by the evolution of
development for a community with difficult access. This is due to the fact that existing
decision support tools for the design and expansion of off-grid generation systems based
on renewable energies contain limitations in the social criteria used in short (hourly) and
long-term (yearly) planning [5].

Sustainable livelihoods (SLs) have been a fundamental tool for evaluating develop-
ment projects in communities, taking into consideration their sustainable development
by the Department for International Development (DFID) of the United Kingdom [6,7].
Flora et al. [8] proposed an expanded methodology using DFID’s livelihoods approach as a
way to carry out an evaluation of communities with a greater focus on their cultural and
political capitals.

Energy planning is the process of developing policies to help guide the future of a
local, national, regional, or even global energy system. The discipline of energy planning
takes into consideration political, social, and environmental aspects and is carried out
taking into account historical data collected from previous energy plans of the country
under review. The planning effort involves finding a set of sources and conversion devices
to meet the energy requirements/demands of all tasks in one way.

Mukisa et al. [9] researched models to critically examine the predominant factors in
the sustainability of microgrids using temporality criteria. This work presented a model
for interpretive analysis of the Sustainable Livelihoods Approach for the implementation
of alternative energy technologies in Uganda according to the modeling of the enabling
factors for each capital and the relationship of the indicators. Hence, this paper raised the
need to define the criteria, variables, parameters, and solvers needed to structure a model
that integrates the expectations of sustainable development using SLs with the expansion
of the ESS, taking as a reference Ringkjøb et al. [5].

This investigation focuses on the review of research on energy supply systems that
integrate the SLs with system requirements and the exploitation of available renewable
energy resources, as well as the consequent sizing or expansion of the energy supply system.
This allows us to structure a procedure for modeling the energy supply system, according
to the requirements posed by the development evolution planned for a remote community.

The organization of the article is as follows: Section 2 provides a literature review of
SL indicators based on 47 papers. The papers selected integrate the sustainable livelihoods
approach into development projects that include energy systems. Moreover, some refer-
ences include the modeling of ESSs for remote communities. Section 3 presents energy
planning models applicable to energy supply systems in remote communities. Section 4
discusses the findings and forthcoming work derived from this review. Lastly, in Section 5,
the conclusions on the findings of this paper are presented.

2. Sustainable Livelihoods Approach Indicators

The term “sustainable livelihoods (SLs)” was first used by Robert Chambers in the mid-
1980s. These can be defined as the capabilities, assets (both material and social resources),
and activities needed to live. A livelihood is sustainable when it can cope with and recover
from sudden breaks and shocks and maintain its capabilities and assets both now and in the
future without undermining the foundations of its natural resources. Therefore, livelihoods
are affected by external effects that increase their resilience and, consequently, decrease
their vulnerability according to Duffy et al., Gutiérrez-Montes et al., and Jacobs [10–12].

The sustainable livelihoods approach has been used by the DFID and Food and
Agriculture Organization (FAO) to analyze how a population or community is developing
its livelihoods, as well as to assess changes in these over time [13]. This model uses five
capitals well known as natural, human, social, physical, and financial to quantify the
community’s assets.

The asset pentagon is adopted to graphically represent the quantification of the five
capitals. This was developed to allow information about people’s assets to be presented
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visually, providing important interrelationships among the various assets [6]. The asset
pentagon shows the state of the assets, where loss implies a deformation or narrowing
of the resulting figure when each of the five assets is evaluated. Figure 1 shows how
community capitals interrelate to contribute to vulnerabilities and the trend of changes
in vulnerabilities. This graph has been modified from the original version of FAO model,
focusing on the enablers of energy policies [13]; it presents how energy policies, processes
(including energy supply planning), and institutions can be decisive in the accumulation or
loss of assets.
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remote communities.

The incorporation of cultural and political capital, in the community capitals frame-
work model (CCF) allows analyzing the sustainability of livelihood strategies and the
impact of development initiatives in a holistic manner, as it facilitates the identification of
the effects (positive and negative) of a livelihood on the remaining capitals and, therefore,
on the wellbeing of households and communities according to Cherni et al., Pandey et al.,
and Scoones [14–16].

Additionally, recent works carried out by Jordaan et al. [17], Nogueira et al. [18], and
Butler [19], proposed other capitals derived from the previous models as a way of focusing
on the objectives pursued.

Table 1 evaluates a series of papers that measured the development of remote commu-
nities according to different interests. Table 1 contributes to identify the capitals considered,
the relationship with the ESSs, and the method of calculation. The five capitals model of
the sustainable livelihoods approach prevails, evaluated through surveys tabulated with
descriptive statistical tools.
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Table 1. Evaluation of methodologies for calculated assets of SLs.

Authors
Capitals ESS

RelationshipHuman Social Cultural Political Physical Financial Natural

1. Emery and Flora [8] 3 3 3 3 3 3 3 No

2. Henao et al. [20] 3 3 – – 3 3 3 Yes

3. Cherni et al. [14] 3 3 – – 3 3 3 Yes

4. Chen et al. [21] 3 3 – – 3 3 3 No

5. Fang et al. [22] 3 3 – – 3 3 3 No

6. Horsley et al. [23] 3 3 – – 3 3 3 No

7. Martinkus et al. [24] 3 3 3 3 3 3 3 No

8. Pandey et al. [15] 3 3 – – 3 3 3 No

9. Aquino et al. [25] 3 3 3 3 3 3 3 No

10. Jordaan et al. [17] 3 3 3 3 3 3 – No

11. Herr et al. [26] 3 3 3 3 3 3 3 No

12. Hobson et al. [27] 3 3 – – 3 3 3 No

13. Nogueira et al. [18] 3 3 3 3 – 3 3 No

14. Butler [19] 3 3 3 3 3 3 3 No

15. Hendrickson et al. [28] 3 3 3 3 3 3 3 No

16. Mukisa et al. [9] 3 3 – – 3 3 3 Yes

Notes: “3” = has been deemed and “–” means the opposite.

Table 1 shows that the papers presented by Henao et al. [20] Cherni et al. [21], and
Mukisa et al. [8], have a direct relationship with the ESS and SLs approach. As can be seen,
most of the works consulted were based on the five capitals proposed by the original SL
model, while others, to a lesser extent, used the community capitals framework proposed
by Emery and Flora [8].

Chen et al. [21] presented five types of livelihood asset capitals and relevant indicators.
Therefore, various scaling and indexing methods can be adopted to make them comparable
and enable meaningful interpretation. While others developed a methodology combining
livelihood capitals and questionnaire methods, the main proxy variables were selected by
Fang et al. [22].

The capabilities and assets that make up livelihoods are divided into five types
of capital:

- Human capital: characterized by levels of health, food, education, and knowledge,
among others.

- Social capital: these are networks and connections between individuals with shared
interests, forms of social participation, and relationships of trust and reciprocity.

- Natural capital: natural resources useful in terms of livelihood.
- Physical capital: infrastructure and equipment that meet the basic and productive

needs of the population.
- Financial capital: this refers to the financial resources that populations use to achieve

their livelihood objectives.

Flora et al. [8] proposed a model called the community capitals framework, where
cultural capital and political capital are added to the SLs framework, while physical capital
is referred to as built capital.
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Sarmidi et al. [29] adopted two new variables from the World Bank database, the
total natural capital and subsoil wealth, identifying a strong relationship between natural
resource abundance and economic growth in more than 90 countries.

Proposed Methodology for the Selection of Indicators and Evaluation of the Community’s Assets

Fang et al. [22] suggested a quantitively model for assigning key variables and their
weights for the assessment of sustainable livelihoods in remote communities. The fourth
steps for developing the weighted score are as follows: (1) identify key attributes and
variables related to livelihoods, (2) select a group of experts, (3) score the options, and (4)
calculate the weighted scores. The methodology for identify key attributes and variables of
livelihoods are comprises the following three steps:

1. A participatory analysis of the interaction of capitals. To this end, the results of the
capital diagnosis are taken as a starting point, which are socialized with key actors
through a workshop in which the interactions between capitals are established and
analyzed. This involves conducting a strengths, weaknesses, opportunities, and
threats (SWOT) analysis by capital, determining the positive and negative relationship
between each capital and its performance.

2. Determination of intervention opportunities, in a participatory manner with key
stakeholders, based on the results of the capital interaction analysis workshop. The
opportunities are based on the priorities of local stakeholders according to the results
of previous exercises.

3. The design of a protocol for baseline collection, monitoring, and evaluation of the evo-
lution of the community’s capitals and livelihoods, as a starting point for replicating
the experience in other communities.

Several authors have proposed indicator systems to evaluate local development
projects. The indicators proposed by Almaguer Torres et al. [30] include, among oth-
ers, indicators of (1) compliance with the mission and vision, (2) compliance with objectives,
and (3) compliance with work plans. However, in this proposal, the indicators are limited
to evaluate the implementation process of development projects and do not cover the
operational side of this.

The UN has established an indicators framework for the 2030 SDGs [31]; those terms
are directly related to this investigation. The indicators that contribute to the purpose of
this paper are as follows:

• Guarantee access to affordable, reliable, sustainable, and modern energy for all. Indi-
cators are proposed to measure the population’s access to electricity, the proportion of
renewable energies and clean technologies used, and the level of investment in these
and energy efficiency projects (Objective 7).

• Make cities and human settlements inclusive, safe, resilient, and sustainable. This
evaluates indicators of how communities have incorporated mitigation, resilience,
social inclusion, and adaptation to climate change in different initiatives and projects
that allow them to respond to adversities with a higher level of social cohesion and
integration (Objective 11).

• Take urgent measures to combat climate change and its effects. This includes the
implementation of climate change adaptation and mitigation plans, the implemen-
tation of adaptation, mitigation, and technology transfer activities and development
measures, as well as capacity building for climate change planning and management,
including those focused on women, youth, and local and marginalized communities
(Objective 13).

Indicators based on the sustainable planning framework proposed by some authors
for isolated microgrid implementation projects were reported by Horsley et al. and
Pedrosa [23,32].

Emery and Flora considered the process of data collection and analysis for the defini-
tion of indicators and livelihood assessments developed through a diagnosis, by means of
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semi-structured interviews applied to key actors and households [33]. To determine the
households and actors to be interviewed, the random snowball sampling method can be
used [9,17,20]. This method allows obtaining qualitative information from key stakeholders
and achieving efficiency in data collection.

Kaya and Kahraman [34] and Akinyele et al. [1] have reported criterias for evaluated
the aspects of endogenous development which should be deemed on the energy planning
for remote communities projects. Table 2 shows the main criterias that serve as indicators
of the technical, economic, environmental, and social aspects of energy-related.

Table 2. List of evaluation criteria used in multicriteria decision-making studies conducted on
energy issues.

Aspects Criteria

Technical Efficiency, exergy efficiency, Energy demand profiling, Future
energy demand, Technology Selection

Economic Investment cost, operation and maintenance cost, Lifecycle cost
Environmental NOx emissions, CO2 emissions, Environmental impact

Social Social acceptability, job creation,

Another paper showed another model divided into three stages, in which socioeco-
nomic evaluations were carried out in first to identify the points of consumption, their
needs, and the characteristics of the population. However, the conclusions of the study sug-
gested that it is necessary to include other endogenous variables such as the environment,
in addition to the fact that the model does not have a direct relationship with the capital
frameworks of the study community [4].

Bhaskara, Chowdhury, and other authors [35–38] were more specific and included
within their model proposals variables associated with community development factors, as
in the case of the one based on the STEEP (social, technological, economic, environmental,
and political) model. This is significantly useful for a better understanding of the planning
and development of rural community microgrid [39].

The presence of electric power in small and isolated communities is responsible for
improving the quality of life of human beings. In several cases, the increasing use of energy
is more than expected. Therefore, expansion flexibility is a fundamental aspect to consider
when designing such systems [40–43].

Table 3 presents a summary of the criteria and factors adopted in models that integrate
endogenous variables in the decision-making process taken from the papers consulted
that include indicators for the endogenous dimensions and are related to energy projects.
The table shows that there is no coincidence of the criteria used in projects based on
endogenous dimensions, since these criteria and factors are selected according to the
intrinsic characteristics of each project.

The literature analysis allowed to verify that there is a relationship between the
development models based on the SLs framework and the planning models of ESSs, which
is why it is necessary to create a model that allows projecting the expansion of demand in the
systems. Energy planning is based on the use of endogenous resources and development
policies. As outlined in Table 3, Ankinyele et al. [39] included the largest number of criteria,
while the most common criterion was initial capital and lifecycle costs.
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Table 3. Criteria and factors of endogenous models for decision-making process.

Capitals Criteria

Authors

TotalAkinyele
et al.
[39]

Cherni
et al.
[14]

Bhattarai
and

Thompson
[44]

Karthik
et al. [45]

de Souza
Ribeiro

et al. [46]

Ahmadi
and Rezaei

[47]

Bhattacharyya
[48]

Zhang
et al. [40]

Economic

Initial capital and
lifecycle costs 1 1 1 1 1 1 6

Project financing 1 1 1 3

Returns on
investment 1 1 1 1 4

O&M costs 1 1 1 1 1 5

Technological

Energy demand
profiling 1 1 1 1 1 5

Maturity of
available

technologies
1 1 2

Technology
selection 1 1 2

Reliability
of supply 1 1 1 1 1 5

Future energy
demand 1 1

Types of
load/appliances 1 1 1 1 4

Technical design
and feasibility

evaluation
1 1 1 3

Social

Cooperativism 1 1

Leadership 1 1

Common goals 1 1 2

Project objectives
defined 1 1

Community
Involved Level 1 1

Educating the
potential 1 1

Identifying
suitable sites 1 1

Characterization
of the physical
resources of the

community:
housing,

aqueducts,
roads, etc.

1 1

Environment

Air quality 1 1

Land 1 1

Water and
water quality 1 1

Environmental
impact and

benefits analysis
1 1 2

Political

Presence of
political will or

government
support

1 1 2

Fiscal incentives 1 1

Public and
political

acceptance
1 1

Regulatory
framework for

capacity building
and job creation

1 1

Total 19 6 3 4 5 5 11 6 59
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3. Energy Planning Models

When establishing the indicators of energy demand and supply within an isolated
microgrid, the main factors for which the microgrid was developed are considered. It
is commonly observable that isolated microgrids use renewable sources as a generation
source, which, due to their stochastic characteristics, are variable energy sources. This in
turn allows establishing that the generation plant within an isolated microgrid, in general,
works with the maximum possible efficiency [46,49–52].

To optimize the design and operation of hybrid systems, several papers have been pub-
lished, as reviewed in this study. Some papers focused on the operation of interconnected
microgrids, where they considered demand response programs to achieve cost-effective
operation [47]. Others sought to minimize grid operation cost and CO2 emissions, while
guaranteeing a certain level of supply reliability [44,53,54].

Cuesta et al. [55] proposed an optimization model based on the proposed hybrid
generation source systems. Other research focused on traditional models for evaluating the
availability of available renewable resources and the cost per kWh of each [40,45,56,57].

A basic model structure was proposed by Bhattacharyya [48] for the optimal design
of a hybrid wind-solar energy system for off-grid or grid-connected microgrids. The
method employs linear programming techniques to minimize the average cost of electricity
production while reliably meeting load requirements and considers environmental factors
in both the design and the operation phases. It is important to consider, for the creation
of efficient management models for isolated microgrids, the introduction of this concept,
which has so far mainly been used in grid-connected microgrid systems [58,59].

According to the hybrid system sizing proposal of Chedid and Raiman [60], models
were presented for the limited availability of microturbines and PV panel types that meet
the requirements of logistics, simple installation, and adaptation to climatic conditions,
greatly reducing the optimization space.

Table 4 shows an evaluation of different reference models that have been used for
energy planning, whether local, regional, or global. It can be established that the studies
dealing with short- and long-term energy models did not take into consideration the assets
of the sustainable livelihoods approach. This limits the evaluation of the contribution to
the sustainable development of communities when applying such models. It can also be
seen that the five capitals model is the most established, but some research went deeper
and proposed the inclusion of other capitals for a more specific evaluation according to
their objectives. It can also be seen that the papers used in the SLs deal with the impact on
people’s livelihoods and are generally developed as multicriteria tools that have a temporal
resolution of specific conditions and spatial resolution in localities, mainly because they are
tools for measuring development in rural and remote communities.

Table 5 shows a revision of the papers analyzed in Table 4, identifying those including
social, technological, economic, and environmental aspects. It is appreciated that the social
aspects were included in most studies. This may be supported by the fact that these papers
dealt with renewable energy projects in rural communities. Technological and economic
aspects were treated to a lesser degree, and only three papers included environmental
aspects. This review allowed establishing that the main models for short and long-term
planning of ESS are disconnected from the sustainable livelihoods approach.
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Table 4. Energy planning models factors for remote communities.

No. References Capitals
Demand of

Energy
Services

Services Methodology Temporal
Resolution

Spatial
Resolution

Evaluation
Method

1 Emery and
Flora [8]

NC, BC, FC,
PC, SC,
CC, HC

- - Multicriteria
study case

Specific
conditions Local Quantitative,

case studies

2 Cherni et al. [14] NC, FC, PC,
SC, HC

Specific
demand Electricity Multicriteria

study case
Specific

conditions Local Quantitative,
case studies

3 de Souza Ribeiro
et al. [46] - Specific

demand Electricity Study of cases Specific
conditions Local Study

of cases

4 Henao [20] NC, FC, PC,
SC, HC

Specific
demand Electricity Multicriteria

study case
Specific

conditions Local Quantitative,
case studies

5 Chen [21] NC, FC, PC,
SC, HC - - Study of cases Specific

conditions Local Quantitative,
case studies

6 Fang et al. [22] NC, FC, PC,
SC, HC - - Multicriteria

study case
Specific

conditions Local Quantitative,
case studies

7 Horsley et al.
[23]

NC, FC, PC,
SC, HC - - Multicriteria

study case
Specific

conditions Local Quantitative,
case studies

8 Bhattarai and
Thompson [44] - Specific

demand Electricity
Study of cases,

HOMER
model

Specific
conditions Local Study

of cases

9 Martinkus [24]
NC, BC, FC,

PC, SC,
CC, HC

- Biofuel
production Study of cases Specific

conditions Local Quantitative,
case studies

10 Pandey et al. [15] NC, FC, PC,
SC, HC - - Multicriteria

study case
Specific

conditions Local Quantitative,
case studies

11 Huang et al. [56] - Long-term
demand Electricity Study of cases Long-term Regional Study

of cases

12 Aquino [25]
NC, BC, FC,

PC, SC,
CC, HC

- - Exploratory
qualitative

Specific
conditions Local Quantitative,

case studies

13 Jordaan et al.
[17]

NC, BC, FC,
PC, SC,
CC, HC

- - Multicriteria
study case

Specific
conditions Local Quantitative,

case studies

14 Nadimi and
Tokimatsu [61] - Long-term

demand Electricity Data analysis Long-term Global Quantitative

15 Yadav et al. [62] - Long-term
demand Electricity Data analysis Long-term Global Quantitative

16 Yadav et al. [63] - Long-term
demand Electricity Data analysis Long-term Global Quantitative

17 Mahmud et al.
[64] - Long-term

demand Electricity Data analysis Long-term Global Quantitative

18 Akinyele et al.
[39] - Specific

demand Electricity Study of cases Specific
conditions Local Study of

cases

19 Herr et al. [26]
NC, BC, FC,
PC, SC, CC,

HC
- - Case

studies analysis
Specific

conditions Regional Study
of cases

20 Hobson et al.
[27]

NC, FC, PC,
SC, HC - - Study of cases Specific

conditions Local Study
of cases
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Table 4. Cont.

No. References Capitals
Demand of

Energy
Services

Services Methodology Temporal
Resolution

Spatial
Resolution

Evaluation
Method

21 Nogueira et al.
[18]

NC, FC, PC,
SC, HC,

CC,
MC, DC

- - Study of cases Specific
conditions Local Study of

cases

22 Chinmoy et al.
[65] - Long-term

demand Electricity Data Analysis Long-term Global Quantitative

23 Khanna et al.
[66] CEPI Specific

demand Electricity Data Analysis Long-term Regional Quantitative

24 Søraa et al. [67] - Long-term
demand Electricity Data Analysis Long-term Global Quantitative

25 Karthik et al. [45] - Specific
demand Electricity Study of cases,

HOMER
Specific

conditions Local Study
of cases

26 Viteri et al. [68] - Specific
demand Electricity Study of cases,

HOMER
Specific

conditions Regional Study
of cases

27 Butler [19]
NC, FC, PC,

SC, HC,
CC, EC, LC

- - Study of cases Specific
conditions Local Study

of cases

28 Mukisa et al. [9] NC, FC, PC,
SC, HC

Specific
demand Electricity Multicriteria

study case
Specific

conditions Local Quantitative,
case studies

29 Musonye et al.
[69] - Long-term

demand Electricity Data analysis Long-term Global Quantitative

30 Lozano and
Taboada [70] - Long-term

demand Electricity Data analysis Long-term Global Quantitative

31
Campos and

Marín-González
[71]

- Long-term
demand Electricity Data analysis Long-term Global Quantitative

32 Ahmadi &
Rezaei [47] - Specific

demand Electricity
Study of cases,

HOMER
model

Specific
conditions Local Study

of cases

Notes: “-” = not applicable; NC = natural capital; BC = built capital; FC = financial capital; PC = political capital;
SC = social capital; CC = cultural capital; HC = human capital; MC = manufactured capital; DC = digital capital;
EC = enterprise capital; LC = legal capital.

Table 5. Endogenous factors evaluated in energy planning models for remote communities.

No. References Social Technological Economic Environmental

1 Emery and Flora [8] People’s quality of
life - - -

2 Cherni et al. [14] People’s quality of
life impact

Evaluation of
generation

technologies
- Yes

3 de Souza Ribeiro et al. [46] People’s quality of
life impact

Evaluation of
generation

technologies
- -

4 Henao [20] People’s quality of
life impact

Evaluation of
generation

technologies
- Yes

5 Fang et al. [22] Impact of labor force
and land - - -
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Table 5. Cont.

No. References Social Technological Economic Environmental

6 Horsley et al. [23]
Mining impact on

regional
development

- - -

7 Bhattarai & Thompson [44] -
Evaluation of

generation
technologies

Yes -

8 Pandey et al. [15]
Vulnerability and

adaptation on
climate change

- - -

9 Huang et al. [56] - - Renewable energy
integration -

10 Aquino [25] People’s quality of
life - - -

11 Jordaan et al. [17] Drought resilience - - -

12 Nadimi and Tokimatsu [61] People’s quality of
life impact - - -

13 Yadav et al. [62] People’s quality of
life impact - - -

14 Yadav et al. [63] People’s quality of
life impact - - -

15 Mahmud et al. [64] People’s quality of
life impact - - -

16 Akinyele et al. [39] -
Evaluation of

generation
technologies

- -

17 Herr et al. [26]
Potential long-term

forestry social
impacts

- - -

18 Hobson et al. [27] People’s quality of
life impact - - -

19 Nogueira et al. [18] Circular economy - - -

20 Chinmoy et al. [65] - - Wind integration -

21 Khanna et al. [66] People’s quality of
life impact - - -

22 Søraa et al. [67] People’s quality of
life impact - - -

23 Karthik et al. [45] -
Evaluation of

generation
technologies

Yes -

24 Viteri et al. [68] People’s quality of
life impact

Evaluation of
generation

technologies
Yes Yes

25 Butler [19] People’s quality of
life impact - - -

26 Mukisa et al. [9]

Impact of
implementing

alternative energy
technologies

- - -
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Table 5. Cont.

No. References Social Technological Economic Environmental

27 Musonye et al. [69] People’s quality of
life impact - - -

28 Lozano and Taboada [70] People’s quality of
life impact - - -

29 Campos and
Marín-González [71]

People’s quality of
life impact - - -

30 Ahmadi & Rezaei [47] -
Evaluation of

generation
technologies

Yes -

4. Discussion

This paper reviewed different models used for energy planning and evaluation of
sustainable livelihoods in remote communities. It is observed that they did not include
elements involving endogenous development indicators and sustainable livelihoods. The
development of new models that contribute to integrate these elements is an interest
approach for the scientific community. It is also important to develop weighting factors
to accomplish the integration of the variables of the livelihoods approach; thus, it is
possible, according to the weighting, to simplify the model after the correct evaluation of
its particularities.

The papers that focused on the application of the livelihoods approach in rural energy
projects were based on the original five capitals model; however, there is a trend toward
the inclusion of capitals in different papers following the proposal of the community
capital frameworks.

The conducted works oriented toward energy issues used the sustainable livelihoods
approach to evaluate the optimal configuration of energy carriers that maximize the sus-
tainability of the microgrid. No study used the sustainable livelihoods approach for short-
and long-term energy planning. Demand planning must correlate with the development
expectations of communities based on their capitals or assets.

Models for the development of community energy systems must be very strict in the
selection of the key actors to be consulted for the weighting of indicators. Depending on
the indicator type, the source may go from being primary to secondary or from being a key
stakeholder to a measurement or statistic.

The models in the literature did not refer to the contribution to growth that energy
projects make according to short- and long-term demand planning.

The models found that focused on energy projects did not use the community capital
framework approach; hence, they were based only on the evaluation of the five traditional
capitals, excluding cultural and political ones.

The evaluations of the various models consulted in Table 4 allowed establishing Times
(an evolution of MARKAL) and OSEeMOSYS (open-source energy modeling system) as
those that allow modeling both the development and the use of renewable energy sources.
This model should consider the relationship of livelihood indicators with energy demand
and evaluate the possibility of including these indicators as an energy capital of the study
community. The average household demand and the capital that can be used in community
development projects should be considered as criteria for sizing the energy project in the
short and long term under an hourly resolution.

This paper proposes elements that could be part of a future methodology that uses the
sustainable livelihoods approach or community capital framework for decision making in
the short- and long-term planning of ESSs in remote communities. Therefore, a system of
sustainable development indicators for the ESSs should be proposed.

Developing a tool that includes cultural capital and political capital in the methodology
for the optimal selection of the microgrid carrier configuration and then proposing an
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interpretation scheme of the shape changes in the resulting polygon (a pentagon applies
to the five capitals model) of sustainable livelihood could be interesting for development
projects in remote communities.

Taking into account the above review of the integration of the livelihoods approach
with short- and long-term energy planning for sustainable development, it is proposed to
structure a methodology to measure and expand the energy supply system.

The methodology must consider the elements summarized in Figure 2 and have the
three main stages described below:

1. The characterization of livelihoods and capitals, which begins with a diagnosis of the
livelihoods and capitals of the community where the model will be applied, and then
proceeds to develop a participatory analysis of capitals interaction to determine the
points of intervention for community planning and create an instrument to evaluate
over time the change in these assets of the community using the sustainable liveli-
hoods approach. Flora et. al. [8] proposed a strategy for endogenous potentiality
development based on the SLs called the community capitals framework, conducted
according to the follow steps: Sustainable livelihood diagnostic: this consists of
the evaluation of the current state of the capitals of the community through semi-
structured interviews applied to the key stakeholders and to the selected households
through the snowball random sampling method, which allows obtaining qualitative
information from key actors and achieving efficiency in data collection. Participatory
analysis of capital interaction: This entails carrying out a SWOT analysis of the capitals
of the community, taking as a starting point the results of the diagnosis of capitals,
through socialization with key actors who will analyze the interactions between the
capitals and the determination of the positive and negative effects of each capital over
others. Determination of intervention opportunities: these opportunities are based
on the priorities of the local actors according to the results of the previous exercises.
Capital assessment protocol: This protocol allows the baseline survey, monitoring,
and evaluation of the evolution of the capitals and livelihoods of the community, as a
starting point for replication of the experience in other communities.

2. The development of a quantitative model will simulate the evolution of the ESS in
the short and long term, by detecting the factors that affect energy demand and
characterizing the indicators for those key factors that affect demand over time [51].
These indicators should be subjected to control ranges within which they should
move because of the analysis of the system constraints and then proceed with the
simulation run of the model and adjustment of the established indicators to optimize
the planning of the ESS. The demand factor indicators establish the factors that will
determine long-term demand growth, and the results obtained in the socialization
with key actors of the interactions between the capitals must be adjusted, taking as a
reference the energy planning developed in the previous steps.

3. Lastly, the design of a network architecture that responds to the energy potential
of the community will be carried out and the results will be compared with other
supply planning models for remote current communities [72]. For this purpose, the
load profiles of the energy services to be supplied will be estimated on the basis of
the defined intervention projects, establishing a priority classification. The different
sources of energy generation available in the community must be evaluated, after
which the network topology configuration must be defined [73]. The simulation of
the model must be implemented, and the optimal model must be evaluated through
different proposed scenarios. After the implementation of the optimal model, one
should return to the first step. With this, the model will have a long-term temporality.
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After structuring the methodology, it must be validated through case studies, verifying
possible corrections that improve the decision-making guide.

5. Conclusions

In this review, it was observed through the references consulted that the main studies
on methodologies to improve the management and operation of ESSs in remote commu-
nities were based on technical and economic factors, as well as on the pure and simple
electrification of the community without considering the energy resources as an instru-
ment for future development. It is evident that these models did not make decisive use
of the elements that constitute endogenous development or the capital frameworks of the
communities to establish a system of indicators to model the impact of the project on the
sustainable development of the community in the short and long term.

It was found that the methods of analysis and planning of sustainable local devel-
opment are disconnected from the models for energy planning. The relationship of the
indicators affecting the short- and long-term energy demand of the communities and,
therefore, the calculation of their livelihoods is appreciated. The criteria, parameters, and
optimization methods necessary for design and expansion were presented.

Author Contributions: Conceptualization, C.P.-M., F.S.-G. and V.S.O.-G.; methodology, C.P.-M.
and V.S.O.-G.; investigation, C.P.-M. and V.S.O.-G.; writing—original draft preparation, C.P.-M.;
writing—review and editing, C.P.-M. and A.V.-D.; supervision, F.S.-G.; project administration, C.P.-M.;
funding acquisition, C.P.-M. and F.S.-G. All authors have read and agreed to the published version of
the manuscript.
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