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Abstract: Wind energy is one of the fastest growing sources of energy worldwide. This is clear from
the high volume of wind power applications that have been increased in recent years. However,
the uncertain nature of wind speed induces several challenges towards the development of efficient
applications that require a deep analysis of wind speed data and an accurate wind energy potential at a
site. Therefore, wind speed forecasting plays a crucial rule in reducing this uncertainty and improving
application efficiency. In this paper, we experimented with several forecasting models coming from
both machine-learning and deep-learning paradigms to predict wind speed in a metrological wind
station located in East Jerusalem, Palestine. The wind speed data were obtained, modelled, and
forecasted using six machine-learning techniques, namely Multiple Linear Regression (MLR), lasso
regression, ridge regression, Support Vector Regression (SVR), random forest, and deep Artificial
Neural Network (ANN). Five variables were considered to develop the wind speed prediction models:
timestamp, hourly wind speed, pressure, temperature, and direction. The performance of the models
was evaluated using four statistical error measures: Root Mean Square Error (RMSE), Mean Absolute
Error (MAE), Mean Absolute Percentage Error (MAPE), and coefficient of determination (R2). The
experimental results demonstrated that the random forest followed by the LSMT-RNN outperformed
the other techniques in terms of wind speed prediction accuracy for the study site.

Keywords: wind speed; wind energy; machine-learning algorithms; artificial neural network; mean
absolute percentage error

1. Introduction

Currently, the investment in renewable energy sources has attracted worldwide atten-
tion due to several factors, including the lack of sufficient conventional energy resources
that are incapable of meeting the highest energy demands, which might lead to a global
energy crunch, compared to the renewable energy sources, the fossil energy produces a
huge amount of air emission pollutants, such as carbon dioxide, nitrogen, and sulfur, which
cause critical environmental and health issues, leading to a big global warming issue.

As a consequence, many countries have realized the need to invest in sustainable
energy sources to achieve their current and future energy demands through developing
applications, designing systems, or implementing projects that utilize various renewable
energy sources. Of the number of alternative energy sources, the wind is the most effective
due to its low operating cost and extensive availability [1]. Wind speed is one of the key
factors to explore before and after installing a wind farm [2].

Nevertheless, understanding the nature of the wind speed has been recently attracted
special attention from the research community who considered various wind speed diver-
sity and dimensions yet still explored for more intelligent extrapolation. As the uncertain
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nature of the wind speed is a barrier in obtaining an optimal power generation and eco-
nomic planning, one of the most important questions to answer during the feasibility study
phase of any farm site is the wind speed profile at a specific turbine height [3,4].

Compared to low carbon energy systems, the wind energy is implicitly a promising
source to achieve sustainability in energy outfits, which forms a foundational element for
smart grid structures [5]. The intermittent and stochastic nature of wind power creates
a number of challenges for medium to large-scale wind energy penetration projects [6].
Consequently, the system accuracy and the power quality can be degraded with the
addition of a wind energy penetration system, mainly when its being integrated into the
main grid [7,8].

The need to balance the energy and find the best power generation scheduling and
dispatching procedures can be accomplished with the help of forecasting wind speed and
power generation [9]. Likewise, forecasting is an essential part of keeping the costs compet-
itive by reducing the need for wind curtailments and, thereby, adding a profit in electricity
request operations [10]. However, the variability and uncertainty of wind profiles make it
fragile to forecast the wind speed and the wind power directly [11]. Hence, many efforts
in the literature were for the development and advancement of wind speed forecasting
approaches by considerable energy and environmental researchers worldwide [12].

Numerous forecasting methods have been developed by the scientific community, each
exercising a different approach and performing well with a different forecasting horizon.
These prediction techniques are classified following common terminological criteria for
wind prediction as explored by several studies from the literature [13]. The majority of
techniques are divided into two clusters: physical and statistical methods [14,15]. Physical
methods consider the physical considerations similar to the original terrain, temperature,
and the layout of the wind farm to reach the estimate, and utilize the output from numerical
weather prediction models that provide weather prediction by using the atmospheric
mathematical models.

Statistical techniques aim to describe the relationship between long time-series of wind
speed at a specific geographical site by generally applying recursive methods, and it can be
stated that short-term forecasting models are generally grounded on statistical approaches
due to the fact that numerical weather prediction models give a weakness in handling
a small scale phenomenon, and they are not suitable for short forecast time periods. In
addition to that it requires a long operation time and a large number of computational
resources [16]. While statistical models gain knowledge from observed data, there is
no need to specify any fine model a priori, i.e., the tolerance of the data and the online
measurement adaptability [17].

To the best of the authors’ knowledge, the presented work is considered the first study
in East Jerusalem that analyzes long-term wind speed profiles using machine-learning
algorithms to make wind speed predictions. This works’ importance is due to the lack
of sufficient conventional energy sources in Palestine, which mainly depends on other
nearby countries to compensate for its energy demands. Recently, the Palestinian Authority
has begun to think about sustainable energy sources by investing in many renewable
energy projects.

Thus, this work is considered as a preliminary study to model wind speed in East
Jerusalem. Despite the availability of similar studies, the literature emphasized that wind
prediction is site-dependent. This means that optimal prediction models of one location
might not be the optimal for others. This analysis approximately elucidates the wind
status in the region and provides strong feedback for those who invest in wind energy in
the region.

The remaining parts of this paper are structured as follows: Section 2 summarizes
some recent studies related to wind speed prediction using machine-learning and artificial
intelligence algorithms applied to other metrological sites worldwide. Section 3 presents
the methodology and overviews the six machine-learning algorithms considered in this
study, as well as their evaluation metrics. Dataset and its exploration are discussed in
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Section 4. The experimental results and their discussions are detailed in Section 5. Finally,
in Section 6, we draw the conclusion and shed light on some future research lines.

2. Related Work

In recent years, wind speed prediction has been tremendously attained through
machine-learning algorithms with promising prediction accuracy. Compared with tradi-
tional prediction techniques, machine-learning methods have better performance in terms
of feature extraction and model generalization [18]. Usually, the machine-based learning
methods make the prediction, while the statistical methods are intended to find the infer-
ence [19]. Several machine-learning methods employ statistical models as bootstrapping
methods [20]. However, statistical learning methods rely on distributions, whilst machine-
learning algorithms implement an empirical process that requires suitable data to work
with [21].

The statistical methods, therefore, consider how raw data is collected; however,
machine-learning algorithms might affect the prediction accuracy without requiring deeper
knowledge about the underlying aspects of data since one of the limitations is the data
shape or volume. Although the statistical methods are very vigorous regarding the number
of samples, as well as the data distribution, machine-learning methods are very helpful and
more applicable when a large dataset is available [22]. Moreover, associated researchers
also apply deep learning for analogous prediction problems [23]. Models based on an
Artificial Neural Networks (ANN) generally yield greater benefits in the tasks of prediction
compared to statistical models due to their direct interaction with raw data, dealing with
missing and malformed values, or applying some dataset preprocessing operations [23].

Therefore, statistical techniques are used in innovative ways by many machine-
learning algorithms, deep-learning neural network approaches are also efficient for the
analogous task. However, some machine-learning algorithms, especially the ANN ap-
proach needs high-level of computational resources when being applied to big datasets [24].
In this study, both machine-learning and deep-learning approaches were considered for
the prediction of wind speed at the study site.

Similar experimental studies were carried out at different metrological stations. Khos-
ravi et al. [25] predicted wind speed and other parameters in Iran using three machine-
learning algorithms, namely Support Vector Regression (SVR), adaptive neuro fuzzy in-
terference system, and multilayer feed-forward neural network. Four features were con-
sidered: timestamp, pressure, temperature, and relative humidity. The comparison results
between the actual and predicted values indicated that the SVR outperformed the other
two models. Similarly, five machine-learning algorithms were used to forecast wind power
based on daily wind speed data in Nigde, Turkey [26]. The results of this study have
shown that machine-learning algorithms can do better prediction results when applied to
long-term wind speed data, and they can be successfully implemented before establishing
wind plants in study areas.

Multivariate machine-learning models were employed to predict wind speed in Surat,
India. Several algorithms were experimented and compared, such as linear regression,
gradient boosting regressor, ada boost regressor, decision tree regressor, random forest
regressor, Long Short-Term Memory (LSTM), multi-layer perceptron, and Recurrent Neural
Network (RNN). They were tested on hourly wind data gathered for a duration of 10 years
(2010–2019), and the efficiency of the models was tested by the correlation factors and mean
absolute error values [27].

Recently, the effectiveness of four machine-learning models: decision tree regressor,
gradient boosting regressor, random forest regressor, and voting regressors were exper-
imented to predict wind speed and study their direct correlation with wind power in
Bangladesh [28].

Aman et. al. [29] predicted wind speed for a very short-term wind speed in Canada
using four machine-learning algorithms, namely multiple-layer perception regressor, deci-
sion tree regressor, K-nearest neighbors regressor, and random forest regressor. They found
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that multiple-layer perception regressor provided the best prediction accuracy of 95.3%.
In a study conducted in Romania, a comparison was carried out between four algorithms,
namely ANN, SVR, random forest, and random trees to predict wind speed.

The authors concluded that the SVR provides the best prediction accuracy of wind
speed [30]. In a similar work, Wang, T. [31] proposed a combined model to predict short-
term wind speed based on an empirical model decomposition, feature selection, SVR,
and the cross-validated lasso. The dataset was collected from two wind stations located
in Michigan, USA, and the results demonstrated that the combined model effectively
predicted the wind speed.

3. Methodology
3.1. Machine-Learning Model Flowchart

In this research work, we used the generic scientific methodology, following a typi-
cal machine-learning approach consisting of the following phases: data gathering, data
processing, feature selection, building machine-learning models, and model testing and
validation. Figure 1 shows a generic flowchart of how to build a typical machine-learning
model. The flowchart starts by gathering raw data to work with. During this step, several
preprocessing operations can be applied to translate the raw data into a suitable format
acceptable by machine-learning algorithms, such as normalization, standardization, feature
scaling, and Principal Component Analysis (PCA).

Figure 1. A typical flowchart of a machine-learning algorithm.

Next, the dataset is split into two parts: training and testing. Best practices recommend
splitting the dataset into 80% for training and 20% for testing, other divisions are also
applicable based on the dataset and application domains. Machine-learning algorithms are
broadly classified into two categories: supervised and unsupervised learning. Supervised
learning works with labeled data, i.e., when the target values are known to the machine-
learning models in advance, whereas in unsupervised learning the data is unlabeled; in
this case, clustering algorithms can be used to group relevant samples based on some
similarity measures.
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Supervised learning is further divided into two sets of techniques: classification and
regression. When the features contain continuous numeric values, the regression algorithms
can be applied, and the classification algorithms are applied for features with categorical
data. Next, the machine-learning models will be trained on the training set to build the
model. The built model is validated using the testing set to calculate its accuracy, and it
can be retrained until a satisfactory accuracy is achieved. In classification problems, the
confusion matrix can be used as a performance measure to check the accuracy, whereas
several statistical error metrics can be used to analyze the regression models, such as MSE,
MAE, and R2.

3.2. Machine-Learning Algorithms

Of the number of prediction techniques, machine-learning regression and Deep Neural
Networks (DNNs) are two common types of Artificial Intelligence (AI) models, which are
extensively used for wind speed prediction [32–34]. Support Vector Machine (SVM) is a
commonly used model for wind speed prediction [35]. These models can be easily applied
to specific wind speed data without considering any local wind variations [36].

Due to the high variation of wind speed, the model accuracy is tied with wind data
spatial and temporal dependencies [37]. Multiple Linear Regression (MLR), ridge regres-
sion, lasso regression, random forest, SVR, and ANN are the six machine-learning methods
experimented in this work [38,39]. These models were selected in this study because regres-
sion models, CNN, and Long Short-Term Memory (LSTM) showed the best accuracy under
different weather types [40]. A brief description of each algorithm used in this research is
given below.

3.2.1. Multiple Linear Regression (MLR)

Machine-learning-based regression techniques, also known as multiple regression,
are statistical methods being widely used to study relationships between variables. They
correlate multiple independent variables (predictors) to predict the target output (depen-
dent variable). Since MLRs can connect more than one independent variable, they are
considered as an extension to the Ordinary Least Squares (OLS) regression. Given a set
(n) of independent variables {x1 + x2 + x3 + x4 + . . . + xn}, xn ∈ R, and m a number of
samples, the MLR model can be mathematically represented by the following equation
(Equation (1)) [21].

ŷi = β0 + β1xi1 + β2xi2 + β3xi3 + · · ·+ βnxin + εi , (i = 1, 2, 3, . . . , m) (1)

where yi ∈ R is the dependent variable, ŷi is the estimation of γi, ε is the deviation of ŷi
from its mean value; β is the regressor coefficients estimated from least-square estimates, β0
is the intercept, βn is the slope of the regression line, and m is the number of data samples.

3.2.2. Ridge Regression

Ridge regression is a variant of MLR, it is mainly used when the dataset suffers
from multicollinearity, i.e., when the correlation between independent variables is too
high, which makes the least squares estimate producing unbiased results that might be
far from the true values. When the regression estimates consider this degree of bias, the
ridge regression can reduce the standard errors to minimum levels. The mathematical
representation of the ridge regression is similar to the MLR with some constrains as
illustrated in Equation (2).

Here, C denotes the number of boundaries of the ridge regression. The regularization
shrinks the parameters to reduce the model complexity by a penalty hyperparameter factor
(λ), denoted as a coefficient of shrinkage as depicted in Equation (3). The true difference
between MLR and ridge regression is that the second part of Equation (2) contains the
constraint (B), which is calculated following Equation (4), and multiplied by the penalty
factor (λ). The existence of this factor will decrease the residual error, and hence, the ridge
regression might achieve higher accuracy [22,41].
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β0
2 +β1

2 + β2
2 + · · ·+ βn

2 ≤ C2 (2)

β̂ridge = argmin ∑n
i=1[yi − ŷi]

2 = argmin min(||yi − XB||22 + λ||B||22) (3)

||B||2 =
√

β02 + β1
2 + β22 + · · ·+ βn2 (4)

3.2.3. Lasso Regression

Lasso regression is another variant of MLR that is also suitable for models either having
higher levels of multicollinearity, or requiring a partial automation or part selection, such
as parameter elimination or variable selection. The lasso regression adopts the shrinkage
mechanism and, as such, the data values are shrunk towards a central tendency (mean or
median) [42], which makes it appropriate for simple or sparse models with few features.

Compared to the ridge regression, the lasso regression tends to make the coefficients
approach absolute zero. As depicted in Equation (5), the mathematical model of the lasso
regression can be easily extracted from the ridge regression with a minor difference in
such a way that the second term of Equation (3), in which the lasso regression adds a
level of penalty equals the absolute value of the magnitude of the coefficients, it uses L1
regularization to force the coefficients approaching zero, and it can be eliminated from
the model.

Larger penalties can cause some coefficient values to be as much closer to zero as possi-
ble, which is the ideal theme to produce simpler models. Moreover, L2 regularization (used
by the ridge regression) does not result in the elimination of the coefficients or encouraging
sparse models. The key difference between L1 and L2 is that L1 is the sum of the weights,
while L2 is the sum of the square of the weights.

β̂lasso = argmin
n

∑
i=1

[yi − ŷi]
2 = argmin min(||yi − XB||22 + λ ||β ||1 (5)

3.2.4. Random Forest

Random forest is a common machine-learning algorithm utilizing the principle of
ensemble learning; it is a technique that combines multiple classifiers/decision trees to
make a more accurate prediction. Each decision tree makes the prediction based on its
own training process applied on a randomly selected subset of the data. The random
forest is trained through a technique called bootstrap aggregation; commonly known as
bagging that requires training each tree on random samples, where sampling is done with
replacement to provide a better knowledge of the bias and the variance. As the number of
trees increases, the precision of the output does as well [43].

3.2.5. Support Vector Regression (SVR)

The Support Vector Machine (SVM) uses a principle called structural risk minimization
inductive to provide a satisfactory generalization on a limited dataset. It can fit very well
for both regression and classification problems. The SVR is an instance of SVM that mainly
deals with regression problems aiming at fitting the error within a fixed value, which is
mainly associated with problems in the process of selecting the right decision boundary.

The best fit is achieved when the number of data points between the boundaries
reaches its maximum value. The SVM can handle a variety of transfer functions, such as
linear, non-linear, polynomial, and radial basis functions. For a simple linear regression
case, given a set of predictors (xi) and a response (ŷi), the SVR model is mathematically
represented following Equation (6), where fi (x) describes the kernel or the transfer function,
and b is a constant value representing the model’s bias [44].

ŷi =
n

∑
i=1

βi fi(x) + b (6)
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3.2.6. RNN-LSTM

An ANN is a collection of connected nodes called artificial neurons distributed among
three levels of layers: an input layer, one/more hidden layers, and an output layer, where
neutrons of one layer are linked to the neurons of a previous layer. The Convolutional Neu-
ral network (CNN) and the Recurrent Neural Network (RNN) are two common types of
ANN. The CNN (ConvNet) approach uses a mathematical convolution rather than a matrix
multiplication to build the prediction model, and it is capable of modeling complex nonlin-
ear relationships between input and output layers through training and learning processes.

This model has the capability to self-learn, self-organize, and self-adapt without
requiring explicit mathematical expressions compared to the physical approach [45]. Each
artificial neuron receives input signals (x1, x2, . . . xm), multiplies each input by a weight
(w1, w2, . . . wm), adds them together with a predetermined bias, and passes them through
the activation function, f (x). The signal produces an output of either 0 or 1 based on the
activation function threshold’s value. A perceptron with its set of inputs, set of weights,
its summation and bias, its activation function, and the target output all together forms a
single layer perceptron.

In a practical implementation of the ANN, some hidden layers are added between
the input and output layers, and this number is a hyperparameter—it is determined by
trial and error to achieve the intended model accuracy. In this research, RNN-LSTM was
implemented due to its highest prediction accuracy. Essentially, the learning process of the
LSTM can create self-loops to produce common paths in which the gradient can arise for a
long-time period. The LSTM is explicitly designed to circumvent long-term dependency
problems, and it can be mathematically represented by the following set of equations:
Equations (7)–(11) [41].

f (t) = σg

(
W f xt + U f ht−1 + b f

)
(7)

it = σg(Wixt + Uiht−1 + bi) (8)

ot = σg(Woxt + Uoht−1 + bo) (9)

ct = ft ◦ ct−1 + it ◦ σc(Wcxt + Ucht−1 + bc) (10)

ht = ot ◦ σh(ct) (11)

where xt ∈ Rd is the input vector to the LSTM unit, ft ∈ Rh is the forget states activation
vector, it ∈ Rh is the input or update gate’s activation vector, ot ∈ Rh is the output
gate’s activation vector, ht ∈ Rh is the hidden state vector, ct ∈ Rh is the cell state vector,
W ∈ Rhxd, U ∈ Rhxh, and b ∈ Rh are weight matrices and bias parameters, which are must
be learnt during the training phase, σg is the Sigmoid function, and σc is the hyperbolic
tangent function.

3.3. Evaluation Metrics

Several common evaluation metrics were used to test and compare the performance
of the six machine-learning algorithms and to find the optimal model that accurately rep-
resents the data and produces a higher prediction accuracy for unseen data. Therefore,
following an accurate evaluation procedure is considered an integral part of the model de-
velopment process, since some of the evaluation procedures might produce over-optimistic
and overfitted models [46,47].

Two methods are commonly used to evaluate prediction models applied to datasets:
cross-validation and hold out [48,49]. During model training, the cross-validation method
is used to choose the best models having the highest accuracy among others. To avoid over-
fitting, the models were applied again on the test dataset (20%) using the hold out method
to evaluate models’ performance on unseen data [50]. During the testing step, various
evaluation measures can be used to compare the performance of the considered models.



Energies 2022, 15, 2602 8 of 16

There is a wealth of criteria by which the models were evaluated and compared.
The evaluation procedures used in this work are four performance indicators determined
by Equations (12)–(15). Mean Absolute Error (MAE), Mean Square Error (MSE), Mean
Absolute Deviation (MAD), and coefficient of determination (R2) [51]. MAE uses the same
unit as the original data, and the models can be compared using this metric when errors
are measured in the same units.

The MSE provides the amount of error in the statistical models. It measures the
average squared differences between observed and estimated values. In optimal scenarios
(accuracy = 100%), the MSE will be zero. The MAD is the average distance between each
data point and the mean, it measures the variability in a dataset. R2 determines the amount
of variance of the dependent variables described by the prediction model, and an optimal
prediction model has the value of R2 very close to 1.

It is worth mentioning that any one of the aforementioned statistical procedures can
be used to give precise performance analyses that help in ranking the prediction models.

MAE =
n

∑
i=1

|v̂i − vi|
n

(12)

MSE =
n

∑
i=1

(v̂i − vi)
2

n
(13)

MAD =
n

∑
i=1

|vi − v|
n

(14)

R2 = 1− ∑n
i=1 (vi − v̂i)

2

∑n
i=1 (vi − v)2 (15)

where v̂i is the predicted speed value, vi is the actual wind value, v is the average wind
speed value, and n is the number of wind speed samples.

4. Dataset Exploration and Processing

This research work was done in West Bank—Palestine; located on the Eastern coast of
the Mediterranean Sea with altitude ranging from (−276–1000 m) above the sea level. In
this region, the climate conditions change frequently with cold and rainy periods in winter,
and mild and hot periods in summer with relative humidity ranges between (51–83%).
As with other developing countries, the energy demands of the Palestinian people have
increased in recent years. Residents of this region require a great deal of energy to achieve
their sustainable development. Nevertheless, several challenges prevent accomplishing
this sustainability. Some of these challenges are due to economic, political, environmental,
and social issues.

The wind data profile used to train, test, and validate the machine-learning algo-
rithms were taken from the Palestinian meteorological stations’ network in the period
from 1 January 2008 to 31 December 2018 (11 years). The gathered wind data were con-
tinuously logged at a height of 20 m using a cup generator anemometer located at Jabal
Al-Mukabber’s village in East Jerusalem. Table 1 shows the coordinates of the metrological
station of the study site. The dataset contained five variables: timestamp, wind direction,
wind speed, air temperature, and atmospheric pressure. The readings are measured at a
frequency of 3 h (8 measurements for each day).

Table 1. Geographical coordinates of the metrological station in East Jerusalem.

Variable Value

Latitude 31.7555◦ N
Longitude 35.2410◦ E

Anemometer height 20 m above ground level
Elevation 720 m above sea level
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During the analysis of the data matrix as presented in Table 2, we found that each
variable had 32,131 records. The mean wind speed was found to be 3.11 m/s with a standard
deviation of 1.54 m/s, 120 records having null values in the wind speed variable, and the
registered maximum wind speed value was 14.5 m/s. The measured air temperature values
ranged from 0 to 39.7 ◦C with a mean value of 18.22 ◦C, while the measured values of the
atmospheric pressure ranged from (909–939.3 mbar).

Table 2. Wind speed data analysis based on minimum, mean, max, SD, 25th, 50th, and 75th percentiles
of the wind speed dataset.

Temp (◦C) Pressure (mbar) Direction
(Degrees) Speed (m/s)

Mean 18.22 922.55 233.97 3.11
SD 6.98 3.67 91.5 1.54

Min 0 909.0 0 0
25% 12.6 919.9 170.0 2.0
50% 18.5 922.3 270.0 3.0
75% 23.4 924.9 300.0 4.0
Max 39.7 937.3 360.0 14.5

The wind direction was registered in the form of 0 to 360 degrees, according to the
mean of the wind direction, and the overall direction of the wind was found to be southwest.
The dataset was provided in xlsx file having 11 sheets (one for each year).

Before applying the models, we performed some data preprocessing functions to
remove null values and applied some normalization techniques that are required by
some machine-learning algorithms considered in this study. As shown in the literature,
and as a common best practice, the dataset was randomly split into two parts: a train-
ing set that constitutes (80%) and a testing set that constitutes (20%) of the whole data.
Table 2 shows the distribution of the wind speed data showing the minimum, median, and
maximum quartiles.

It shows the complete wind speed data distribution among the whole period (11 years).
75% of the temperature values are less than 23.4 ◦C, which represents a moderate tem-
perature in the study area. Moreover, 75% of the wind speed dataset is less than or equal
to 4 m/s, which is a moderate value, and it is suitable for small turbines, 75% of the at-
mospheric pressure values are below 925 mbar, 25% of wind direction was found to be
northwest, 50% to the south, and 75% to the southeast direction.

Figure 2 shows the full timeline of the dataset. For each variable, it shows its possible
values distributed among the whole period. The correlation table and correlation matrix of
the dataset experimented in this study are presented in Table 3 and Figure 3, respectively.
They used to indicate the direction and degree of the relationship between the variables
in the dataset where the statistical analysis was conducted. The relationship could be
a positive (+) or a negative (−) value corresponding to a correlation between any two
variables. According to Figure 3, it is determined that the pressure variable has a moderate
negative relationship with the wind speed and a medium positive correlation with the
direction. The pairplots of all variables are shown in Figure 4.

Table 3. Correlation matrix that shows the correlation coefficients between dataset variables.

Time Temperature Pressure Direction Speed

Time 1.000 0.036 0.031 0.046 −0.084
Temperature 0.036 1.000 −0.414 0.166 0.012

Pressure 0.031 −0.414 1.000 −0.324 −0.346
Direction 0.046 0.166 −0.324 1.000 0.349

Speed −0.084 0.012 −0.346 0.349 1.000



Energies 2022, 15, 2602 10 of 16

Figure 2. A full timeline of the distribution of all the possible values of each variable in the dataset.

Figure 3. Dataset visualization using the heatmap.
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Figure 4. Dataset visualization that shows the distribution of single variables and the relationship
between any two variables.

5. Experimental Results and Discussion

Multiple machine-learning algorithms were applied on the dataset to predict wind
speed, which includes multiple linear regression, lasso regression, ridge regression, support
vector regression, random forest, and Long Short-term Memory (LSTM). The simulation
testbed used Intel(R) Core(TM) i7-8565U CPU running @ 1.80 GHz, 1.99 GHz with 16 GB
memory, 64 bit MS Windows 10 Pro with x64 processor architecture, The Python environ-
ment setup consisted of Anaconda (4.10.3) with Python (3.8.11) and common ML libraries,
mainly scikit-learn (0.24.2) and keras (2.7.0), among other libraries for data extraction and
visualization, such as seaborn and matplotlib. The dataset was split into training and
testing sets, 80% (28,017) and 20% (3214) from 2008 to 2018, respectively. The models are
trained using the training dataset, and the performance results are presented in Table 4.
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Table 4. Statistical error measures for machine-learning algorithms of the test dataset.

ML Algorithm MAE (m/s) MSE (m/s) MAD (m/s) R2 Score

MLR 1.068 1.88 0.883 0.21
Ridge (alpha = 100) 1.067 1.897 0.885 0.203

Lasso (alpha = 0.0001) 1.068 1.881 0.882 0.21
Random Forest (n = 200) 0.894 1.345 0.715 0.435

SVR (Linear) 1.066 1.916 0.884 0.195
LSTM 0.938 1.471 0.762 0.382

For the ridge regression, several experiments were conducted to choose the best value
of alpha. Of the various tested values (0.1, 1.0, 10, 100, and 1000), alpha = 100 was chosen.
Similarly, for the lasso regression, from the values 0.1, 0.01, 0.001, and 0.0001, alpha = 0.0001
was chosen as it gives the best accuracy of the model. For the SVR, the kernel initializer
was set to linear, and the default settings for the other parameters were used. The number
of trees (n) in the random forest was set to 200 after several trials and errors, and other
parameters remained in their default states. On the other hand, the activation function of
the LSTM was set to linear, and it consisted of 50 hidden layers, the model was sequential,
the number of train epochs was 500, and the batch size was fixed to 1.

Figure 5 shows the prediction visualization of the six algorithms. For each algorithm,
its subplot shows the predicated vs. actual wind speed values. By referring to these
subplots, a clear pattern was found in the prediction visualization for the random forest
followed by the LSTM, which verifies the accuracy measures listed in Table 4, while the
rest of the other regressions show large outliers.

The MAE, MSE, and MAD provided lower values for the random forest and the LSTM
models compared to the other methods, the combination of the statistical performance
results showed that the SVR is the worst prediction model for wind speed with R2 = 0.195,
while R2 for the random forest and the LSTM models are found to be 0.435 and 0.382,
respectively. According to the MAE values, slightly larger residual errors were found
for the LSTM model than the random forest model. Overall, the random forest and the
LSTM-RNN models are denser, while the other models provide a disperse prediction.

Figure 6 illustrates the LSTM model loss (top) and the statistical error measures per
epoch (bottom), the model was run for 500 epochs. By observing the graphs, the loss, MAE,
and MSE show a descendant trend, which indicates that the model can provide better
prediction accuracy with higher reliability for future wind speed prediction.

In summary, wind speed is directly related to various weather conditions, bearing in
mind that the fickle nature of the weather and the greater degree of wind uncertainty make
wind prediction a big challenge. A viable solution is to run multiple machine-learning
models in parallel to short, medium, and long-term wind speed predictions to obtain the
maximum strategic and operational decisions of the energy production from wind profiles.
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Figure 5. Machine-learning models prediction visualization.
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Figure 6. Statistical error measures of the LSTM per epoch.

6. Conclusions and Future Work

An effective wind speed prediction plays an important role in developing highly
utilized wind energy projects. Multiple prediction techniques have been applied to wind
speed data with promising results worldwide. However, the accuracy of prediction tech-
niques is highly dependent on the considered metrological station and the wind profiles;
this means that the optimal prediction model for one site might not be the optimal for other
sites. In this research study, we investigated multiple artificial intelligence algorithms to
predict wind speed in East Jerusalem meteorological station (31.7555◦ N, 35.2410◦ E) over
the period 2008–2018. The wind speed prediction has been estimated using six machine-
learning algorithms, namely multiple linear regression, ridge, lasso, random forest, support
vector, and the LSTM.

Therefore, timestamp, direction, pressure, and temperature were introduced to the
machine-learning algorithms to realize the estimation. The relationships among variables
were determined using the correlation matrix and it is found that pressure is highly nega-
tively correlated with wind speed. According to the carried out estimation processes, the
random forest method followed by the LSTM are determined as successful estimators of
wind speed prediction with the lowest error metric scores compared to the other methods.
As a future work, we will investigate other wind speed profiles and metrological station
characteristics collected from other sites to develop more powerful prediction models, as
well as apply mixed machine-learning algorithms to obtain better accuracy.
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