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Abstract: The building sector is undergoing a deep transformation to contribute to meeting the
climate neutrality goals set by policymakers worldwide. This process entails the transition towards
smart energy-aware buildings that have lower consumptions and better efficiency performance.
Digitalization is a key part of this process. A huge amount of data is currently generated by sensors,
smart meters and a multitude of other devices and data sources, and this trend is expected to
exponentially increase in the near future. Exploiting these data for different use cases spanning
multiple application scenarios is of utmost importance to capture their full value and build smart
and innovative building services. In this context, this paper presents a high-level architecture for big
data management in the building domain which aims to foster data sharing, interoperability and
the seamless integration of advanced services based on data-driven techniques. This work focuses
on the functional description of the architecture, underlining the requirements and specifications
to be addressed as well as the design principles to be followed. Moreover, a concrete example of
the instantiation of such an architecture, based on open source software technologies, is presented
and discussed.

Keywords: high-level architecture; building services; building value chain; big data; Internet of
Things; data analytics

1. Introduction

The built environment is one of the most energy-demanding sectors which is responsi-
ble for a significant share of the total amount of final energy consumption. In the European
Union (EU), the energy used over the entire building life cycle, thus including the construc-
tion, usage, refurbishment and demolition, accounts for approximately 40% of the overall
EU energy consumption and 36% of the greenhouse gas emissions [1]. As a consequence,
buildings are among the main targets of the current policies aimed at decarbonization
and greenhouse gas reduction. This is also further motivated by the fact that the existing
building stock is in many cases quite old and energy-inefficient [1] which leaves room for
undertaking actions to curtail the energy consumption and enhance the energy perfor-
mance. To this purpose, the EU issued an Energy Performance of Building Directive [2] and
an Energy Efficiency Directive [3], which pushed member countries to develop a legislative
framework to pursue better energy efficiency and climate neutrality for the building stock
by 2050. These directives have been revised [4] as part of the Clean Energy Packet [5], more
strongly pushing the adoption of new technologies to modernize the building sector and
asking for the definition of clear building renovation strategies. Recently, a proposal for a
further upgrade of these directives has been released [6] which sets more ambitious goals
and calls for additional efforts in digitalization.
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The digital transformation is commonly recognized as one of the main ingredients
for the smartification of the building sector [7]. Digitalizing the built environment and
facilitating data sharing is key to achieve the aforementioned energy efficiency targets,
as it unlocks the possibility to process cross-domain data and to develop innovative data
driven services. Heterogeneous data are used for example in [8] for balancing the building
energy demand with the local renewable generation and in [9] to enable the measurement
and verification of buildings’ energy performance in real-time. Data-driven approaches
based on different machine learning techniques are proposed for a large variety of building
applications. Some of them directly address the problem of improving the building energy
performance by means of smart energy management or control [10–13]. Other applications
are instead complementary to the task of the optimal energy management of the building
and provide, for example, load prediction [14–16], demand estimation [17,18], anomaly
detection and diagnosis [19], or models calibration [20]. Finally, some other applications
do not directly focus on the building energy management but they put the basis for
the identification of refurbishment needs or other energy saving measures. Applications
belonging to this category are for example those aimed at the enrichment (or error detection)
of energy performance certificates [21] at the measurement and verification of energy
conservation measures [9,22], etc. Directly or indirectly, therefore, all the applications above
eventually either help to improve the energy performance or to conceive strategies for
energy saving, hence contributing to pursuing the defined energy efficiency targets.

The concept of digitalization is multifaceted and encompasses several aspects. First of
all, it involves the conversion of the available building-related data into digital models that
can be easily accessed and processed via dedicated software. The Building Information
Model (BIM) is one of the most important and well-known examples of models providing a
digital representation of building information [23–25]. Other efforts in this direction include
the definition of open ontologies, such as SAREF [26] and Brick [27], aimed at providing
unified representations of specific classes of building data. Beyond this, the concept of
digitalization also concerns the integration of digital tools to deploy building automation,
optimize operations and streamline processes. From this standpoint, the adoption of
building management systems (BMSs) [28] is becoming a consolidated practice, but other
innovative digital tools such as last generation digital twins [29,30] are also emerging
and increasingly gaining importance. In general terms, digitalization also includes the
employment of any digital technology to access, store, interpret, analyze and process
existing data in order to support business planning and decision making. In this regard, a
large set of opportunities exist nowadays thanks to the large spread of technologies coming
from the Internet of Things (IoT) domain [31] and to the possibilities made available via
cloud computing [32].

Overall, the digitalization process has the potential to bring a number of benefits
for all building value chain (BVC) stakeholders, including higher productivity, energy
efficiency improvement, reduction in the costs of building constructions, better situational
awareness in support of decision making, etc. Moreover, it can unlock new business
opportunities through the smart integration of buildings within the electrical grid [33,34]
or with other inter-dependent domains [35]. Nevertheless, digitalization also comes with
a set of challenges related to data management. Today, huge amounts of building data
are generated by sensors, smart meters, IoT devices and a multitude of other data sources.
These data are largely heterogeneous and they come with very diverse formats, sizes,
varying granularity, quality, etc., thus posing serious obstacles to the effective handling and
exploitation of data. Furthermore, data are typically dispersed in different locations and
non-interoperable platforms [36] , which prevents extracting their full value, using them for
multiple use cases and creating advanced applications based on cross-domain information.
As data may contain sensitive information, ensuring data privacy is also a main concern,
similar to providing data sovereignty and cybersecurity to protect the business value of the
data [37].
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All the above challenges call for the adoption of ad hoc data science solutions to
exploit the full potential of the available data [38]. To this aim, technologies specifically
conceived for big data management are increasingly required to deal with the volumes,
variety and veracity of incoming data. IoT-based platforms are also necessary to put in
place the software functionalities needed to support data handling and to deploy software
infrastructures that can be easily scaled, extended and upgraded. Blockchain and other
distributed ledger technologies (DLTs) may be used to enforce trustworthiness and data
sovereignty, while cloud computing options can be implemented not only to guarantee
elasticity in the allocation of computational resources, but also to facilitate the creation of a
market of turnkey services in the building sector. Finally, the most recent machine learning
(ML) and artificial intelligence (AI) techniques can be employed to process, understand,
classify and correlate data, thus allowing to generate more complex and meaningful
information out of the raw samples, which would eventually lead to the implementation of
more advanced services and applications [39–41].

Given this context, the goal of this paper is to present a high-level architecture for build-
ing data management that unlocks the sharing and interoperability of heterogeneous data,
the interconnection of advanced data analytics tools and the seamless integration of new
services to continuously create business value. The presented architecture stems from the
big data architecture presented in [42] and it is designed to fulfill the requirements of differ-
ent smart building use cases defined during the European project MATRYCS [43]. Overall,
it aims to serve as a reference architecture for the deployment of the software components
needed for a proper data governance and for an easy integration of third-party services. In
this paper, a detailed view of the architectural requirements and functionalities is provided
together with concrete examples of technologies that can be used for the instantiation of
the architecture. More specifically, this paper provides the following contributions:

• It analyses the requirements and specifications coming from different use cases about
smart buildings in order to define the main concepts and design principles for a big
data architecture for the building domain;

• It shows the functional view of a high-level architecture for building data management
which unlocks data sharing, interoperability and the easy connection of advanced
turnkey services for the built environment;

• It provides a view of exemplary technologies that can be used for the instantiation of
such an architecture, together with the discussion of a real use case that highlights the
key benefits that this architecture may bring with respect to in silo systems.

The rest of this paper is organized as follows. Section 2 provides a review of related
works concerning reference architectures for big data, which can also be relevant for the
building domain. Section 3 discusses the steps for the creation of value in a big data value
chain and defines the roles of the actors participating in it. Section 4 analyzes the main
needs of the stakeholders and derives the most important requirements, specifications
and design principles to be considered for the definition of the building data architecture.
Section 5 describes the proposed architecture, focusing on the functional role of each
software component and their inter- and intra-layer interactions. Section 6 presents a
specific use case that shows how the proposed architecture allows integrating different
types of data useful for developing advanced building applications and provides a view
of the technologies used for the concrete instantiation of such an architecture. Finally,
Section 7 provides the final remarks and concludes this work.

2. Review of Other Big Data Architectures

With the explosion of the amount of data being generated by sensors, smart meters
and other IoT devices as part of the digitalization process of many industrial sectors, using
and exploiting these data in an optimal way via ad hoc data science and data analytics tools
is becoming increasingly strategic. In this scenario, a number of architectures have been
proposed in the recent past to allow for proper data processing and usage. Some important
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architecture proposals are not domain-specific, but more generally oriented towards the
industry and big data context.

The big data value reference model, defined by the big data value association (BDVA),
is a first example of such architectures [44]. It is structured along horizontal and vertical
concerns. The horizontal concerns focus on different steps of data handling. At the bottom,
there are the physical devices (sensors, actuators, edge things, etc.) that generate the
data and the physical cloud infrastructure where the data will be received and processed.
On top of them, there are four software layers which take care of: (i) data management,
namely all the preprocessing needed to clean, translate and harmonize the incoming data;
(ii) data protection, which addresses the issues of anonymization, trust and privacy for
the received data; (iii) data processing, which handles the queries, streaming or storage of
different types of data; and (iv) data analytics, where machine learning and other analytics
tools are employed to extract further value from the received raw data. Finally, the upper
horizontal concern refers to the visualization for the end user and to the set of tools needed
to allow their interaction with the available data and tools. The vertical concerns instead
refer to the cross-cutting aspects that have to be addressed along the entire chain of data
handling. These include aspects such as cybersecurity, communication and connectivity,
standardization, data sharing and access to marketplace.

The Industrial Internet Reference Architecture (IIRA), created by the Industrial Internet
Consortium, is an abstract architecture that aims at addressing different industrial sectors,
providing unified definitions and patterns that can be applied across different use cases [45].
It is structured in four architectural viewpoints, each one providing different architectural
details that are relevant for the definition and description of use cases. At the top is
the business viewpoint, which provides a view of how the business objective has to be
reached and how the involved stakeholders interact. Moving downwards, there is the
usage viewpoint which describes the tasks to be performed by each actor of the use case and
how these are interfaced with the IoT system. The third layer is the functional viewpoint
and it focuses on the methods, tools and interfaces that are needed in the IoT system to
support the defined use case from a functional perspective. Finally, the implementation
viewpoint more concretely describes the technological components needed to perform
the functionalities described in the above layer. Beyond this partition in viewpoints, the
IIRA also provides a discussion of different architectural patterns underlying the different
options of implementing the IoT system, or parts of it, at the edge, in the cloud, or directly
in the servers of the involved enterprise.

The Alliance for Internet of Things Innovation (AIOTI) is concerned with the develop-
ment of innovative IoT solutions and it proposed a high-level architecture specific for the
IoT domain [46]. The scope was to create a coherent architectural view that can be adopted
for the development of large-scale pilots where “things” are at the center of the use case.
The AIOTI architecture provides two views, a domain model and a functional model. The
domain model aims to describe how things, users and services are connected and interact
within a specific use case. The functional model gives a view of the software components
over different layers according to the type of service they provide. This includes a network
layer for the provision of all the communication and connectivity services, an IoT layer for
the middleware services and an application layer for the implementation of the specific
industrial use case.

The Fiware Open Reference Architecture [47] was developed by the Fiware consortium,
which develops and provides open source software for the implementation of smart IoT
platforms for different use case scenarios. The Fiware architecture looks more closely at
the functional and software implementation perspectives. It builds upon a Fiware Context
Broker, a key element of each Fiware platform, which is the software component responsible
for handling and re-routing the data to the different applications in the platform. The rest
of the platform is built in a modular way using generic and/or specific enablers which
are software packages responsible for some generic or specific data processing tasks. The
Fiware architecture has three layers with the context broker at the center, a set of enablers
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responsible for the connectivity towards field devices at the bottom, and a set of enablers for
data processing, analysis and visualization at the top. Each enabler exhibits open APIs as
interfaces for the flexible and modular interconnection within a Fiware-powered platform.

More recently, large efforts have been devoted to the definition of data spaces. Data
spaces are intended to act as a decentralized ecosystem of shared data that aim to support
the trusted exchange of data for the creation of a data economy and for leveraging their
business value. In this context, the International Data Space (IDS) Association released
the IDS Reference Architecture Model [48]. Similarly to IIRA, the IDS architecture con-
sists of different viewpoints which are associated with businesses, functions, processes,
information and systems. The business layer defines and describes the different roles
of the participants to the IDSs in relation to their task with respect to the data exchange.
The functional layer focuses on the functional requirements to be addressed in the IDS
ecosystem. Particular attention was paid to the topics of trust, security and data sovereignty,
ecosystems, standardized interoperability, value-adding apps and the data marketplace.
The process layer describes the process steps to onboard exchange data and uses value-
adding apps in the data spaces. The information layer deals with the methods to define
the domain-agnostic common languages to be used within IDSs. Finally, the system layer
concerns aspects related to the integration, deployment, execution, and configuration of
the logical software components in virtualized environments such as virtual machines and
application containers. In addition to these horizontal layers, cross-cutting layers associated
with security, governance and certification are also considered.

The architecture proposed in this paper is not in contrast with the proposals above,
but rather focuses on a different architectural view. The definition of the stakeholders’ roles
presented in Section 3 is in line with the roles’ definition provided at the business layer of
the IDS architecture. The software architecture instead mostly focuses on the functional
and implementation viewpoints. Similarly to the BDVA architecture, it describes the set of
functionalities to be provided within the architecture to guarantee the handling of data at
the different levels of the data value chain and it offers a view of the interconnections of the
different software components together with practical examples of the technologies that
may be used for architecture instantiation.

3. Building Data Value Chain

The smart building sector involves many stakeholders (e.g., building owners, facility
managers, constructors, utilities, energy service companies, governmental institutions),
each one with a different role, also depending on the considered use cases. In this section,
stakeholders are considered in more general terms, abstracting from their particular role
within a specific building application scenario, and rather looking at their role from a data
value creation perspective.

As described in [49], the data value chain may involve multiple steps, each one bring-
ing additional insights and business value to the available data. Figure 1 shows the flow
of subsequent steps for the creation of data value within an IoT data-driven architecture,
where raw data are first incrementally transformed into information and then into ad-
vanced knowledge. As visible in Figure 1, each one of these steps may involve different
types of data processing which require dedicated methods, tools, services or applications
to be carried out. Within this data value chain, stakeholders can assume different roles
depending on their position with respect to the considered data transformation process. In
particular, each operation of data transformation can be generically seen as a process that
involves stakeholders who make available the data in input, stakeholders that provide the
software applications to process the data and stakeholders that eventually receive and make
use of the transformed data. Figure 2 gives a schematic view of the interactions among
these stakeholders within a generic flow of data transformation. Such a classification of the
stakeholders, described in greater detail in the following, is in line with the roles defined
for the data space ecosystems [48].
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• Building data owners: these are the entities that have legal ownership of the data to be
processed. They have full control of the data, namely the rights to decide the terms
and conditions with which the data can be made available and accessed by other
stakeholders. Examples of this category may be building owners or facility managers
that own meters and sensors generating raw data, or service companies that create
enriched data or information exploiting specific software (in this case, they could own
the enriched data or information they create).

• Building data providers: these are the entities responsible for making the data available
to third parties. In many cases, this entity coincides with the building data owner,
but there could also be cases in which an external provider (e.g., an IT provider) is in
charge of setting up the tools required to give access to the considered data.

• Service providers: these are the entities that provide the services, namely the tools,
software or applications necessary to process the input data for transforming them
into higher-complexity and higher-value data. Depending on the type of data trans-
formation they perform and where this transformation step is positioned in the data
value chain, services can be further distinguished in different sub-categories (e.g.,
with reference to Figure 1, data analytics service providers offer software services to
convert raw or enriched data into information).

• Building data consumers: these are the entities that receive the added-value data created
via a service and make them available to the final recipient. This role in many cases
can coincide with the building data user, however, similarly to the distinction between
data owners and data providers, these entities are generally different.

• Building data users: these are the entities that make use of the processed data and
that exploit their business value. Depending on the conditions and terms with which
they are granted access to the starting (input) data, they may become owners of the
added-value data. Examples of this category may be building managers, energy
service companies, governmental institutions or other stakeholders that make use of
elaborated data to run their business.

Figure 1. Data value creation within an IoT data-driven platform (adapted from [49]).

Figure 2. Stakeholders’ roles within the building data value chain.
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4. Identification of the Main Architectural Requirements

From a methodological point of view, the requirements for the designed building data
architecture are collected by analyzing: (i) the specific needs of different data value chain
stakeholders; (ii) the functional requirements derived from a heterogeneous set of smart
building use cases; (iii) the non-functional requirements derived from use cases and from
general good practice considerations associated with the development of IoT frameworks.

4.1. Data Value Chain Stakeholder Requirements

Table 1 shows the main needs associated with each one of the stakeholders in the data
value chain. For building data owners, the main concern is to keep the sovereignty of the
data [50] and to ensure that the terms and conditions imposed for their use are fulfilled.
As such, they can retain ownership of the shared data and exploit their business value.
On the other end of the data value chain, building data users may be concerned about the
trustworthiness of the data they obtain since their decisions and business may be highly
dependent on such data. Blockchain and DLT can help both to empower data sovereignty
and to guarantee the trustworthiness of the data transactions [51,52]. The use of these
technologies should thus be envisioned in the overall architectural solution.

Table 1. Main stakeholder requirements in a big data ecosystem.

Stakeholder Requirement

Data owners Data sovereignty

Data publishers and consumers Open APIs

Service providers Standardized data models

Service providers No vendor lock-in

Data users Trustworthiness

For data providers and consumers, the main role is to make available and access the
data, respectively. For this, open application programming interfaces (APIs) should be
possibly adopted, so that no technological barriers exist for access to the data [53]. On the
service providers’ side, an important feature is the use of standardized data models. To this
purpose, de facto standard ontologies and data schemes may be used, such as SAREF [26]
and Brick [27]. This in fact avoids the need for developing customized interfaces to interpret
and convert the input data. In addition, the architectural solution should allow the easy
integration of third-party services and the co-existence of multi-vendor technologies. From
this standpoint, it is thus essential that the architectural model is highly modular, with a
clear decoupling of the functionalities performed by each module.

4.2. Functional Requirements

Table 2 gives an overview of the main functional requirements identified from the
pilot use cases of the MATRYCS project which span over the different business objectives
and scales of the built environment [43]. First requirements are related to the need of
processing two different types of data: streaming and batch data. Stream data are usually
measurements generated by field devices which are transmitted with a certain reporting
rate and need to be collected and processed in near real-time. An example is given by the
data generated by building sensors as input to a BMS [8,54,55]. Batch data instead generally
consist of large datasets that need to be processed a posteriori all at once. Examples of these
data are large sets of cadastral data or of energy performance certificates (see [36] for an
exhaustive list of building-related data repositories). Due to the diverse nature of the data,
different solutions are typically employed for their communication. Publish/subscribe
patterns [56] are typically preferred for handling streaming dataflows since they allow
the easy re-routing of the data to multiple consumers as well as generating event-based
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triggers. On the other hand, request/response mechanisms are generally preferred for
querying and collecting batch data in one-to-one communications.

Other requirements are related to the management or preprocessing of the incoming
data. As the quality of the used data is of utmost importance, dedicated services are
necessary to check the possible presence of outliers, incorrect entries, inconsistencies,
duplicates or incomplete data over existing or incoming datasets. Specific data curation
routines should be also in place to ensure the proper organization and structuring of
data coming from a variety of heterogeneous data sources. Finally, data management
requirements also include the use of ad hoc databases and data persistence logics to ensure
the availability of both raw and processed data over time.

Table 2. Main functional requirements for smart building use cases.

Functional Need Requirement

Need to handle streaming of near real-time data. Stream processing

Need for efficient querying and collection of large datasets. Batch processing

Need for preprocessing services to handle outliers, duplicates,
inconsistent or incomplete data. Data cleaning

Need for services that automatically organize and structure
heterogeneous data. Data curation

Need for efficient data storage and persistence solutions. Data management

Need to unlock interconnectivity among different
technological components. Interoperability/modularity

Need for dedicated interfaces to import data from other platforms
and repositories. Interoperability

Need for intelligence to extract meaningful information over large
sets of heterogeneous data. Data analytics

Need for user-friendly interfaces and querying systems to access
and interact with available data.

User friendliness and
interactivity

Need for immediate notification of possible events, warnings and
alarms.

User friendliness and
interactivity

Need for user-friendly graphical interfaces for the clear and
effective presentation of reports and/or results.

User friendliness and
interactivity

Need for attractive dashboards with interactive graphs, charts,
and maps and other suitable visualization options.

User friendliness and
interactivity

Interoperability is another main requirement. First of all, the architectural solution
should be designed to facilitate the co-existence of the different technologies needed to
simultaneously run all the middleware and application-oriented services foreseen to cope
with complex use cases. To this aim, specific software components may be needed to
guarantee syntactic and semantic interoperability [57]. Moreover, many use cases require
the data provided by third-parties or external repositories. For this, dedicated interfaces
are needed to ensure the interconnection of multiple platforms in the overall building
ecosystem. The complexity of many use cases and the availability of large amounts of data
also leads to the necessity to adopt appropriate data analytics and AI tools to synthesize
information, extract patterns, discover correlations and create additional insights that
are not directly deducible from the raw data. Since this plays a key role for the creation
of business value from the data, a dedicated framework should be envisioned in the
architectural model to easily plug different AI modules tailored to the specific needs.

A last important requirement from a functional point of view is associated with the
final presentation and visualization of the information for the final users. To this aim,
specific dashboards and graphical user interfaces should be provided to ensure interactive
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access to information, the immediate notification of events, visualization of graphs, maps,
charts, etc.

4.3. Non-Functional Requirements

In addition to the above specifications, an additional set of non-functional require-
ments can be identified in relation to common practices of big data management within
IoT frameworks (see Table 3). When dealing with big data, a first major requirement is
scalability. The IoT framework must be able to easily scale up to cope with increasing
amounts of incoming data and integrated services. Microservice-based architectures are
typically recommended to this purpose for the deployment of the software [58]. Cloud
computing can offer elasticity in the allocation of computational resources typical of cloud
systems [32]. Virtualization approaches and the distributed deployment of software com-
ponents at the edge [59] (where applicable) can also help in reaching scalability. The choice
of ad hoc middleware technologies (databases, brokers, etc.) that can be easily distributed
over clusters of servers is also of paramount important from this point of view.

Table 3. Non-functional requirements for IoT-based architectures.

IoT Need Requirement

Need to flexibly scale horizontally to integrate increasing
amounts of data and services. Scalability

Need to process very large amounts of heterogeneous data in a
computationally efficient way. Performance

Need to easily replace outdated software or integrate new
components without affecting system operation.

Upgradeability and
extensibility

Need for solutions that ensure proper operation including in
presence of errors or failures. Reliability

Need for solutions to prevent unintended or unauthorized
operations on data and system components. Security

Need to avoid any technological barrier towards the integration
of data and services from any stakeholder. Cost effectiveness

Computational efficiency and performance are other important requirements when
having to process huge amounts of data. Cloud computing and high performance comput-
ing (HPC) can be essential to run some of the services and this again brings the need for
virtualization and distributed deployment in the proposed solution. Easy upgradeability
and extensibility are other key aspects. These take into account the need for dynamically
updating the available software to address new use cases or to exploit new technologies
and technical solutions that may become available over time. The modularity provided by
a microservice-based philosophy is important in this perspective, since it can enable the in-
tegration of new software modules in a sandbox environment and the smooth replacement
of obsolete software or technologies with novel ones.

Reliability and security are two other critical requirements. Reliability is generally
intended as the capability to provide fundamental functionalities including in the presence
of errors or failures (see [60] for more details on the concept of reliability in the IoT domain).
In loose terms, it also incorporates the concept of the availability and survivability of the
system. To ensure high reliability, the architectural solution should not have single points of
failure, should employ suitable mechanisms for managing the redundancy/replication of
software components as well as the mirroring of data, and it should have high modularity
to ensure that possible issues are isolated within the affected subsystem and do not compro-
mise the operation of other components. The use of recent containerization approaches may
represent a technological solution that allows addressing some of the above points, thus
leading to higher reliability [61]. Security is also quite a broad concept as it encompasses as-
pects related to data confidentiality, privacy, integrity and cybersecurity [62,63]. The overall
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IT system should have tailored solutions to allow, among others, the anonymization of the
data, restricted access to confidential information, the application of authorization policies,
the detection of undesired data manipulation and the encryption of data transmission.
From a cybersecurity perspective, specific security policies should be in place to constantly
monitor for malicious activities or other violations, to track and respond to incidents, and
to search for known and unknown threats. Such policies should be constantly updated to
reflect the best practices in the cybersecurity domain in order to ensure the security of data,
software components, technologies and thus that of associated stakeholders.

Finally, the building data system should allow to offer, buy and sell both data and
services in a cost-effective way. The service provision here generally refers to any deploy-
ment model including the options of data as a service (DaaS), software as a service (SaaS),
platform as a service (PaaS) and infrastructure as a service (IaaS) [64]. From an architectural
point of view, this means that the architecture design should permit the easy integration
of new data and services and allow offering them into a marketplace without placing
any technological barrier on any of the stakeholders. Once more, here modularity and
virtualization represent two key specifications in this regard.

4.4. Architecture Design Principles

Based on the derived set of requirements and in alignment with the best practice
recommendations given in [65], the following design principles were followed for the
definition of the building data architecture presented as follows in Section 5.

• Modularity via microservices: the proposed architecture is a microservice-based archi-
tecture; namely, each of the indicated software components should be intended as
an independent and loosely coupled process that performs a small and well-defined
task that interacts with the rest of the system only via its I/O interfaces. As already
discussed, a microservice philosophy helps achieve high modularity, which is essen-
tial to foster scalability, upgradeability, extensibility, reliability and to open to a fair,
cost-effective and multi-vendor provision of services.

• Cloud virtualization: the designed architecture does not put any constraint on the
deployment of the related software. This opens to the possibility to virtualize the
microservices and implement any kind of cloud deployment model [64] where the
provisioning and maintenance of hardware, IT platform and/or software could be
handled by third-party providers. Thanks to the modular design of the architecture,
if desired, some of the functional blocks may be flexibly moved at the edge, thus
customizing the software deployment according to specific needs.

• Openness and data sharing: the proposed architecture aims to open the building data
and services to boost the business opportunities in the building domain. In this context,
openness refers to the possibility of having open data (available for free or under fair
conditions), open API specifications to facilitate data sharing (also among different
domains), and open source services to foster the creation of cost-effective building
ecosystems.

• Security: the architecture must integrate a security framework that allows having
trusted and secure data transactions, simultaneously fulfilling all the requirements of
privacy, confidentiality and sovereignty that may exist in each application scenario.

• No vendor lock-in: the architecture design is conceived to allow for the easy integration
of new services and applications coming from different vendors free from technological
barriers, for example, being dependent on some proprietary solutions. The interfaces
with the rest of the ecosystem must be clearly defined, transparent and possibly based
on standardized solutions. This can lead to the development of an open market
of turnkey services in the building sector with fair conditions for all participating
stakeholders.

• Distributed data ecosystem: the proposed architecture takes into account the fact that
building data will still be dispersed over several independent platforms. The aim
here is to conceptually define the functional blocks that should exist, which can
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then reside in different locations. In other words, the proposed architecture defines
the functional layers to transform raw data into information and knowledge, but
the software components can be flexibly distributed, giving place to a distributed
ecosystem in support of data and building services economy.

5. MATRYCS Big Data Architecture for Building Services

The proposed architecture was designed to cover the main steps indicated in Section 3
for the creation of value from the available data. To this purpose, each enrichment step of
the data value chain is mapped to a specific layer, which contains all the methods, tools
and components necessary to this aim [66]. Figure 3 shows the conceptual partition of the
proposed architecture in layers, together with their association with each step of the data
value chain. Overall, the MATRYCS architecture consists of:

• Infrastructure layer: this encompasses all the sensors, meters, IoT devices as well as
other data hubs or data sources that generate the (raw) data as input to the MATRYCS
ecosystem.

• Governance layer: this contains all the software components necessary for the collection
of the raw data, their preprocessing, cleaning, curation and management. At this
level, raw and possibly unstructured data are thus transformed into enriched data
structured according to the chosen syntactic and semantic models.

• Processing layer: this includes all the components for the training, validation and
running of the ML and AI tools used to carry out advanced data processing and the
transformation of data into more elaborate information.

• Analytics layer: this provides the toolboxes with the building applications offered to
address specific use cases, together with the associated visualization tools and user
interfaces. Here, the applications can use and assemble different pieces of information
offered by the processing layer for creating complex knowledge.

• Security layer: this is a cross-cutting layer that spans over all the other layers with
the scope of providing the software technologies and the framework necessary to
guarantee the security of the building ecosystem at all of its levels.

Figure 3. High-level view of the MATRYCS architecture layers and of their association to each
transformation step of the data value chain.

In the following, a more in-depth view of the software components defined within
each architectural layer is given together with the details of their intra- and inter-layer
interactions.
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5.1. MATRYCS Governance Layer

The MATRYCS governance layer offers a collection of data services in the MATRYCS
ecosystem and acts as an orchestrator layer by providing event-driven pipelines that man-
age data from sources (MATRYCS Data Providers) up to the MATRYCS analytics tools and
services. According to the Big Data Value Chain approach followed in the conceptualization
of the MATRYCS solution, the governance layer was designed to identify and handle the
related activities of integration, preprocessing, semantic annotation, harmonization, storage
and querying of the largely heterogeneous data (building data, energy data, sensors data,
weather data, etc.) that can be encountered in building scenarios.

Figure 4 provides a detailed view of the MATRYCS governance layer and its building
blocks. As shown, the main components are the Interoperability Service, the Data Prepro-
cessing Service, the Streaming Module, the Reasoning Engine, the Trusted Data Sharing
component, and the Data Storage and Querying module. These modules ensure the acqui-
sition of the data from their source as well as their curation, anonymization, preprocessing
and (distributed) storage while harmonizing the format of the various datasets according
to the chosen syntactic and semantic models. Moreover, specific modules ensure that the
secure and trusted data sharing with the other layers of the MATRYCS ecosystem.

• Interoperability Service: it is the service responsible for connecting the data sources
with the MATRYCS technical ecosystem. This service should allow accepting different
protocols (such as SFTP, HTTP, AMQP datasets and events) and, leveraging on its
mechanisms, it distributes the collected information to the other components and
layers of the MATRYCS architecture. Data from external data hubs and other open
data sources (e.g., weather data repositories) are also retrieved via this service for
being included in the MATRYCS data collections and pipelines [67].

• Data Preprocessing Service: the Data Preprocessing Service is a mechanism responsible
for the curation, anonymization, homogenization and semantic annotation of the
data inserted into MATRYCS governance layer through the Interoperability Service.
Specific ontologies and data models must be used here to ensure the harmonization
of all the different incoming data so that the upper level analytical tools and ser-
vices can have a more straightforward and efficient access to interoperable data with
homogenized variables.

• Streaming Module: the Streaming Module is the mechanism responsible for the distribu-
tion of the streaming messages/events between MATRYCS components, modules and
services. This must ensure a one-to-many communication, thus allowing the simul-
taneous distribution of the data to multiple microservices present in the MATRYCS
ecosystem.

• Reasoning Engine: the Reasoning Engine condenses the MATRYCS metadata and
semantic data in order to provide intelligent querying over data and pattern extraction,
thus enhancing the analytical services’ capabilities. It then exposes the extracted
information via REST APIs.

• Data Storage and Querying: the streaming data ingested into the MATRYCS ecosystem
are saved in the data storage module which consists of an object storage that ensures
the retention of incoming events from the streaming module. A querying engine must
also be integrated in order to allow for the fast and multiple queries of the different
entities stored in the object storage.

• Trusted Data Sharing: the Trusted Data Sharing is a module which uses blockchain
technologies to ensure integrity and trustworthiness in the MATRYCS datasets. The
primary purpose of this component is to remove the need for intermediaries and
replace them with a distributed network of digital users that work in partnership to
verify and safeguard the data transactions between stakeholders.
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Figure 4. MATRYCS governance layer architecture.

5.2. MATRYCS Processing Layer

The MATRYCS processing layer encapsulates the machine learning and artificial
intelligence components of the MATRYCS ecosystem and organizes them into a standalone
sandbox to promote and facilitate quick adaptation along different contexts. This layer is
responsible for retrieving the needed data from the storage, for their proper transformation,
for the training, validation and final deployment of the machine learning models and for
feeding these models with the necessary batch and/or streaming data. Figure 5 depicts
in greater detail the software blocks included within the MATRYCS processing layer and
their interconnections. These components are as follows.

Figure 5. MATRYCS processing layer architecture and interconnections.

• Data Feed Module: the role of this module is to retrieve the underlying data from the
storage, perform the needed transformations and finally pass the properly transformed
data to the AI models. This stage is needed because the AI and ML models usually
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cannot operate directly with the raw data in the format they are stored. In fact, each AI
model requires that the data have a specific format in order to be able to handle them.
Typical examples of required transformations are the handling of missing values, the
normalization of input data, or the selection of the right features. Once this step is
completed, the properly transformed (final) data can then be passed to the AI models
through the ML suite.

• ML Suite: the ML Suite is a library of state-of-the-art AI data-driven tools and methods
that is used for the development of MATRYCS AI models. Multiple technologies and
software can be exploited for ML (scipy, scikit-learn, Spark MLib), DL (Keras, Pytorch,
TensorFlow, Horovod) and Image Processing (OpenCV, scikit-image). The result is
to expose a rich and flexible software library in order to define, train and deploy ML
models, including ANN classifiers, knowledge representation and reasoning aiming to
attach new knowledge and predictions on the existing extreme-scale streams of data.

• Model Development Module: this module concerns the exploitation of the ML Suite
and the use of the available tools in order to create and train the models based on
the existing data. By using well-established and stable methods such as regression
analysis, clustering and neural networks, the properly transformed data are fed to the
training models.

• Model Evaluation Module: during the Model Development phase, a certain number
of ML models that are developed will be able to satisfy the needs expressed by
the end-users (as defined in the developed use cases) and they will constitute the
building blocks of the upper MATRYCS Analytics Layer. These ML models, after
development and training, need a process of evaluation and refinement through
appropriate techniques that determine for example the accuracy, performance and
error level, which is necessary before the models can be eventually served. The Model
Evaluation Module aims at covering this specific task.

• Model Serving Framework: The Model Serving Framework represents the bridge be-
tween the underlying MATRYCS Governance Layer and the upper-level MATRYCS
Analytics Layer. This serves the ML models available under the Trained Models library
and those already trained and evaluated by ML developers via the Model Evaluation
Module to the upper level MATRYCS Analytics Toolbox in order to allow their use for
the design of complex services and applications for the built environment.

5.3. MATRYCS Analytics Layer

The MATRYCS Analytics Layer hosts the collection of building services and applica-
tions that are eventually developed to address specific use cases in the building scenario.
These analytical services aim to fulfill the specific needs of the building use cases as cap-
tured from different stakeholders, but also for offering innovative functionalities that can
be important to improve the building management from different perspectives and scales.
A non-exhaustive list of building services that can be provided at this level includes:

• Analytics for building energy performance evaluation and optimization, which may
include services for indoor condition evaluation, intelligent building energy manage-
ment and building automation control.

• Analytics to facilitate building design such as for the identification of refurbishment
needs, the evaluation of energy conservation measures and the assessment of retrofitting
actions.

• Analytics in support of policy making and policy impact assessment on different scales,
such as sustainable energy and climate action plans as well as the evaluation and
harmonization of energy performance certificates.

• Analytics addressing business and financial aspects, such as de-risking energy efficiency
investments as well as the measurement and verification of energy services.

• Applications for general purposes, such as geoclustering and digital twin.

The Analytics Services constitute the overall MATRYCS Toolbox and they can be
exploited to implement holistic energy services to create representations of physical systems
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such as buildings and energy systems, and to perform simulations, examine scenarios and
make predictions. Figure 6 depicts the overall MATRYCS Analytics Service Layer. As
shown, in addition to the different applications, this layer also includes the tools for
data visualization, for the interaction of the end users with the MATRYCS ecosystem
and a virtual workbench to unlock the development of analytics services from external
developers.

Figure 6. MATRYCS analytics layer architecture and development.

5.4. MATRYCS Security Layer

The MATRYCS architecture needs a vertical security layer spanning and interacting
with the different blocks of the MATRYCS architecture for enabling the authentication,
authorization and logging of various events in the system and the enforcement of security as
well as privacy aspects. The MATRYCS end-to-end security framework is thus considered
a cross-cutting security layer that covers the MATRYCS governance, MATRYCS processing
and MATRYCS analytics layers. Specifically, the framework encompasses and relates to
several entities in the MATRYCS architecture: infrastructure/assets, AI/ML services with
a focus on big data, MATRYCS end-users, and data. The end-to-end security framework
aims to secure the MATRYCS platform and its constituent information, thus enhancing
the trustworthiness of the system by applying high-level security and fine-grained access
control as well as appropriate mechanisms for maintaining and reinforcing legal and
security policies over the MATRYCS resources. Role-based policies are created in order to
grant permissions to resources such as the analytics services to be accessed users. Figure 7
shows the connection of the MATRYCS Toolbox services through clients to secure their
interfaces.

Figure 7. MATRYCS Toolbox integration with security layer.
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6. Exemplary Architecture Instantiation and Use Case Study

The MATRYCS architecture presented in Section 5 is intended to be a high-level soft-
ware architecture, namely an abstract and high-level view of the software functionalities
that should be embedded when implementing a MATRYCS platform or ecosystem, together
with their interfaces and interconnections. Accordingly, the proposed architecture only
provides the software specifications without placing any constraint on the specific tech-
nologies that should be used for the practical implementation. Figure 8 shows, however, an
example of open source technologies that may be adopted for a concrete instantiation of
the different software components of this architecture.

Figure 8. Practical instantiation of the MATRYCS architecture with open source technologies.

As mentioned in the previous sections, the main goals of the proposed architecture are
as follows: (i) to ensure the integration and harmonization of large amounts of heteroge-
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neous data provided by different data sources; (ii) to provide a framework for the provision
of advanced AI methods able to extract additional value from the available data; (iii) to
enable the design of complex building services and applications based on cross-domain
data, which would not be otherwise possible when having closed data silos. To discuss how
the MATRYCS architecture unlocks these features, the example of a large facility composed
of business, commercial, entertainment and logistic centers is taken as a sample use case
study. The considered facility is equipped with:

• Air handling units that are used to regulate and circulate air as part of a heating,
ventilating and air-conditioning (HVAC) system as well as calorimeters at the heating
substation and other temperature sensors. A dedicated building management system
is responsible for controlling the operation of the HVAC system.

• An energy management system that collects data from electricity meters associated
with the different centers of the facility and from the renewable energy sources in-
stalled on the facility premises.

• A management system that allows tracking the occupancy of different areas (via ad
hoc sensors) and that is responsible for the execution of the operating schedules of the
lighting system.

• An additional management system that is used for controlling the operation of refrig-
eration units and for monitoring the temperature in the refrigeration chambers of the
cold storage of some existing warehouses.

At the current stage, these different processes are supervised by independent man-
agement systems without any specific coordination among them. Moreover, data related
to each domain are handled in completely different ways, without a common approach
and employing diverse technologies (e.g., different data models, databases). In this context,
a MATRYCS-compliant platform can be implemented as follows, to obtain the following
important benefits.

• Governance layer: via its interoperability connectors, the governance layer supports
different communication protocols such as SFTP, HTTP, MQTT, AMQP and AVRO
and it would allow the connection and retrieval of all sensors and other metering
data. The Data Preprocessing Service would be responsible for the harmonization
of the data of different facility centers, also belonging to different domains, by using
a common data scheme based, for example, on the BRICK ontology or on a hybrid
Fiware data model. This facilitates the re-use of these data and fosters interoperability.
The Streaming Module can be used to distribute the real-time operational data to the
Data Storage components in an asynchronous manner, which consist of a Data Storage
and Distributed Query Engine (for storing the time series data) and a Reasoning
Engine [68] (for the storage of metadata and other enriched data coming from the
Semantic Enrichment module).

• Processing layer: the Data Feed Module acts as connection point to the governance
layer and it collects and then transforms the stored data to prepare them for the
Model Development component, wherein the training of the AI models is carried
out. Multiple pre-selected machine learning algorithms (Regressors (Random Forest,
Lasso, Linear, Decision Trees), Long Short Term Memory neural networks, etc.) may
be executed to conduct predictions or to extract other features over the aggregated
(and possibly cross-domain) data. When the training phase is complete, the Evaluation
Module is employed to evaluate the metrics of the trained models. If the validation is
successful, the Serving Framework would then expose the predictions (or other AI
results) to the upper level MATRYCS Analytics services.

• Analytics Layer: the analytics layer contains the MATRYCS Toolbox where the building
Digital Twin and other advanced building services may be offered. Front-end services
can rely upon the served trained models from the MATRYCS processing layer to
enable energy prediction and other energy efficiency services, and to provide advanced
visualizations and reports to the end users.
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• Security: security policies must be put in place to guarantee the security of the MA-
TRYCS ecosystem. Role-based access control using, for example, the OAuth2 and
UMA 2.0 security standards, can be adopted to permit or deny the access of different
user groups to the MATRYCS ecosystem.

Figure 9 summarizes the described flow of operations over the different MATRYCS
architecture layers for the considered use case. The data collection process is initiated
from the interoperability service of the MATRYCS ecosystem. After ingestion, the building
data are harmonized according to MATRYCS data model and organized in a directory
format into the staging area. The Data Feed Module is responsible for the data cube
integration as it receives harmonized building data from the MATRYCS staging area and
performs pre-analytics steps such as the removal of duplicates, null values handling and
outlier detection. Subsequently, the processed data are stored into MongoDB collections,
where a REST API is utilized to enable aggregations and to feed a visualization engine
that facilitates the exploration of building information. Furthermore, a collection of REST
services called the MATRYCS Data Handler is used for preparing the data for training the
machine learning models (pre-mining phase [69]) over stored processed data. This pre-
mining phase consists of operations responsible for selections, group-bys, min–max scaling,
categorical encoding, timeseries preparation and average smoothing. During the models
training, techniques such as clustering timeseries regression are applied for supporting
the building automation control and energy consumption prediction. Algorithms such as
Random Forest Regressors, XGBoost and Arima are leveraged. Moreover, neural networks
such as LSTMs and RNNs, which are suitable for regression and timeseries predictions
when having significant amounts of data, are employed. After training the model, weights
are stored into the MATRYCS Models storage where, on top of it, various applications
for building automation control, energy prediction and building management have been
implemented to provide the data-driven decision support for the final end users.

Figure 9. Data flow over the MATRYCS layers.

Concerning the benefits unlocked by the MATRYCS architecture, one of them is the
interoperable and harmonized representation of heterogeneous data by means of a common
data model. To this purpose, it is worth underlining that the common data model should
be based on open ontologies and data schemas in order to guarantee the possibility of
sharing the data with multiple applications potentially developed by different vendors
(in line with the principles of openness, data sharing and no vendor lock-in mentioned
in Section 4). This is particularly relevant because, in turn, it permits the use of the same
data for multiple services and to design complex applications that make simultaneous
use of data belonging to different domains. With reference to the presented use case, in
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comparison to the siloed management and control currently in use, the deployment of
open data eventually brings the possibility of implementing several additional services of
potential interest for the facility manager, such as:

• A building digital twin based on the combination of the static building information
(building registration number, building boundaries and geometry, building condition,
building address, number of units, number of dwellings, number of floors, building
U-values, etc.) and real-time operational data (e.g., sensors and meters data). The
digital twin can then be simply used for energy performance monitoring or to verify
energy savings, for anomaly detection and predictive maintenance.

• The coordinated energy management of subsystems associated with different energy
vectors within a holistic BMS. This also involves the exploitation of the renewable
energy sources to, for example, maximize the self-consumption and minimize the net
power exchange with the electric grid.

• The evaluation of the overall flexibility coming from the different subsystems (heating,
lighting, etc.) for offering it into future markets of power system flexibility.

• The accurate prediction of different quantities (e.g., heating and electricity demand)
also using cross-domain information whenever beneficial.

• The computation of key performance indicators for the identification of possible needs
for energy efficiency improvements or other energy saving measures in any of the
buildings of the facility.

Overall, the above services would allow identifying and pursuing energy performance
improvements that are not possible today due to the isolated deployment of different
management systems. The proposed architecture would enable the design and provision
of such services, thus opening opportunities for energy efficiency improvements and for
further business cases for both the facility manager and other related stakeholders.

7. Conclusions

With the ongoing digitalization of the building sector, the role of data is becoming
increasingly important. In this paper, an IoT-based architecture has been presented, which
aims at providing a general framework for the development of a distributed ecosystem of
platforms that interact to exchange data and to create business value via the development
and connection of advanced data-driven services. The design of the architecture relies upon
a detailed analysis of the stakeholders, functional and non-functional requirements associ-
ated to different applications and use cases related to the built environment, which have
been here discussed to derive the architecture specifications. The proposed architecture
is composed of several layers, each one addressing a specific step of the data value chain,
thus allowing one to handle raw data, to elaborate them via machine learning and artificial
intelligence modules and finally, to develop complex applications based on the enriched
data and information created via the machine learning tools. The perspective presented
in this paper mostly focuses on the identification of the needed software blocks in each
layer and on their functional interconnection, thus serving as a reference for the possible
implementation of platforms and building data ecosystems aiming to host turnkey services
for the building scenario. While no constraints exist for the software technologies to be
adopted, this paper additionally presents an exemplary instantiation of such an architec-
ture, indicating specific technologies that may be used for the concrete implementation
of a platform compliant with the proposed architectural view. This can thus serve as a
reference for better visualizing how to translate the abstract architectural model into a more
concrete and practical implementation of the software architecture. Moreover, a real use
case study was presented to give a tangible view of how the proposed architecture may
help in deploying innovative services and applications in support of energy efficiency and
energy performance improvements. Future activities will mainly focus on the deployment
of the described architecture in several pilots for testing its capabilities under different
points of view and to analyze in greater depth the impact of the digitalization process on
the energy performance of selected scenarios and use cases.
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