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Abstract: Due to the penetration of renewable energy and load variation in the microgrid, the
diagnosis of power quality disturbances (PQD) is important to the operation stability and safety
of the microgrid system. Once the power imbalance is present between the generation and the
load demand, the fundamental frequency would deviate from the nominal value. As a result, the
performance of the power quality classifier based on the neural network would be deteriorated since
the deviation of fundamental frequency is not taken into account. In this paper, the regulated two-
dimensional (2D) deep convolutional neural network (CNN)-based approach for PQD classification
is proposed. In the data preprocessing stage, the IEC-based synchronizer is introduced to detect the
deviation of fundamental frequency. In this way, the 2D grayscale image serving as the input of the
deep CNN classifier can be accurately regulated. The obtained 2D image can effectively preserve
information and waveform characteristics of the PQD signal. The experiment is implemented with
datasets containing 14 different categories of PQD. According to this result, it is revealed that the
regulated 2D deep CNN can improve the effectiveness of PQD classification in a real-time manner.
Furthermore, the proposed method outperforms the methods in previous studies according to the
field verification.

Keywords: power quality disturbances; signal synchronization; regulated two-dimensional deep
convolutional neural network; microgrid; power quality classifier; IEEE Std. 1159

1. Introduction

With the high penetration of renewable energy and widespread usage of power-
electronic loads, the operation stability of the microgrid would be deteriorated due to the
power quality disturbances (PQD). For the grid-connected mode, the voltage-type PQD of
the power grid would interfere with the operation of the microgrid [1]. The current-type
PQD is significant to the microgrid in the islanded mode due to the nonlinear loads in the
power system [2]. The emergence of PQD would lead to the malfunction or inefficiency of
electricity equipment in the microgrid. Therefore, identification and detection of PQD are
indispensable to the system reliability and security. In recent years, intelligent approaches
based on deep learning have been applied for the classification of PQD. Among numerous
intelligent approaches, the convolutional neural network (CNN) is one of the effective
structures and is widely employed in the PQD classification work [3].

The one-dimensional (1D) CNN for PQD classification has been implemented in
the literature [4–8]. These studies are focused on the improvement of the classification
performance in the over-fitting problem [4], modification of the process in the feature
extraction of PQD [5,6], and proposal of the hybrid classification model [7]. To deal with
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the issues related to computational burden and the complexity of the classification model,
the advanced data compression technique in the data preprocessing is proposed in [8].
However, a lot of PQD information would disappear due to the compression process.

Due to the learning capability for the diversity and complexity of image features,
the CNN method is applied for the classification of two-dimensional (2D) images [9]. If
one would apply the CNN for the classification of PQD, which is a 1D signal, the data
preprocessing process is required to convert the 1D power signal to the 2D image. Since
more PQD information can be included in the 2D image than that in the 1D signal, many
image conversion techniques have been carried out in recent years [10–17]. Fast discrete
curvelet transform is employed in [10] to extract the feature image of PQD. In [11], the
signal-waveform image is directly utilized for the training the PQD classifier. The space
phasor diagram is applied in [12–14] for the transformation of the sag signal into the
PQD image. In the studies of [15–17], an image transformation matrix is proposed, where
the sampling points of the PQD signal are rearranged in the matrix and then converted
into the grayscale image. However, some important features are completely lost in the
transformation of [12–14]. Once the fundamental frequency is deviated from the nominal
value, the rearrangement of the image transformation matrix in [15–17] would lead to
classification inaccuracy. This is because the time positions of PQD would be deteriorated
due to the variation of fundamental frequency.

In this paper, a regulated 2D deep CNN-based power quality classifier is proposed
to enhance the identification performance. In Section 2.1, the mathematical models of
classical PQD discussed in this paper are introduced. The IEC-based synchronizer is
developed in the preprocessing stage to estimate the deviation of fundamental frequency of
the microgrid in Section 2.2. Then, the 2D grayscale image for the training of the deep CNN
classifier is regulated in Section 2.3 with the obtained fundamental frequency, where the
PQD information can be accurately preserved. After the PQD training with the structure of
deep CNN mentioned in Section 2.4, the power quality classifier is ready for the disturbance
identification. To examine the performance of PQD classification, the results of training
and evaluation phases and field experiments with the proposed and compared classifiers
are presented in Section 3.

2. Proposed Regulated 2D Deep CNN-Based Power Quality Classifier

The proposed regulated 2D deep CNN-based power quality classifier can be divided
into three stages: signal synchronization (SS), image regulation (IR), and disturbance
classification (DC). In the SS stage, the deviated fundamental frequency can be obtained
with the synchronizer based on IEC Std. 61000-4-7. Then, the obtained fundamental
frequency would be used to split the PQD signal correctly and regulate the 2D grayscale
image matrix in the IR stage. The regulated feature image would then be processed in the
DC stage to perform the PQD identification. The solution procedure of proposed power
quality classifier is depicted in Figure 1. In the following, first, the mathematical models for
the generation of PQD training data are introduced. Furthermore, the proposed approach
to implement the IEC-based synchronizer and image regulation is presented. Then, the
structure of the applied deep CNN model is introduced.
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Figure 1. Solution procedure of the proposed power quality classifier.

2.1. Mathematical Model of PQD

To provide sufficient and diverse PQD data, the mathematical models with the pa-
rameter variations in IEEE Std. 1159 were employed to generate the synthetic PQD for the
training of the power quality classifier in this section [18]. As listed in Table 1, 14 categories
of PQD signals s(t) were applied.

The values of parameters such as intensity (α), distortion of the transient (β), distortion
of the flicker (λ), and time (t1 and t2) were randomly generated to obtain the variety of
each PQD category. The nominal value of fundamental frequency (f ) was set to be 60 Hz,
varying in the range of 59.5 and 60.5 Hz, whereas the sampling frequency (fs) was 7680 Hz,
the number of sampling cycles (Nc) was 12, the total sampling points (Ns) was 1536, and
the amplitude (A) was normalized to 1. T is the fundamental period. The synthetic signals
generated for each PQD category were 10,000 samples and then the total number of samples
was 140,000.
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Table 1. Mathematical models and parameter constraints of PQD.

PQD Category Mathematical Model Parameter Constraints

Normal C01 s(t) = A[1± α(u(t− t1)− u(t− t2))]sin(ωt) α ≤ 0.1, T ≤ t2 − t1 ≤ 10T, ω = 2π f
Sag C02 s(t) = A[1− α(u(t− t1)− u(t− t2))]sin(ωt) 0.1 ≤ α ≤ 0.9, T ≤ t2 − t1 ≤ 10T

Swell C03 s(t) = A[1 + α(u(t− t1)− u(t− t2))]sin(ωt) 0.1 ≤ α ≤ 0.8, T ≤ t2 − t1 ≤ 10T
Interruption C04 s(t) = A[1− α(u(t− t1)− u(t− t2))]sin(ωt) 0.9 ≤ α ≤ 1, T ≤ t2 − t1 ≤ 10T
Harmonics C05 s(t) = A[α1sin(ωt) + α3sin(3ωt) + α5sin(5ωt) +α7sin(7ωt)] 0.05 ≤ α3, α5, α7 ≤ 0.15, ∑ α2

i = 1
Flicker C06 s(t) = A

[
1 + λsin

(
ω f t

)]
sin(ωt) 5 ≤ f f ≤ 25, w f = 2π f f 0.1 ≤ λ ≤ 2

Transient oscillation C07 s(t) = A
[
sin(ωt) + βe−(t−t1)/τ sin(ωn(t− t1))(u(t− t2)− u(t− t1))

] 300 ≤ fn ≤ 900, ωn = 2π fn, 0.5T ≤ t2 − t1 ≤
Nc
4 T, 8 ms ≤ τ ≤ 40 ms, 0.1 ≤ β ≤ 0.8

Periodic notch C08 s(t) = sin(ωt)− sign(sin(ωt))× {
9
∑

n=0
k[u(t− (t1 − sn)− u(t− (t2 − sn))]}

0.01T ≤ t2 − t1 ≤ 0.05T
t2 ≤ s, t1 ≥ 0, 0.1 ≤ k ≤ 0.4, c = {1, 2, 4, 6}, s = T

c

Sag with harmonics C09 s(t) = A[1− α(u(t− t1)− u(t− t2))][α1sin(ωt) + α3sin(3ωt) + α5sin(5ωt)] 0.1 ≤ α ≤ 0.9, T ≤ t2 − t1 ≤ 10T, 0.05 ≤ α3, α5, α7 ≤ 0.15, ∑ α2
i = 1

Swell with harmonics C10 s(t) = A[1 + α(u(t− t1)− u(t− t2))][α1sin(ωt) + α3sin(3ωt) + α5sin(5ωt)]
0.1 ≤ α ≤ 0.8, T ≤ t2 − t1 ≤ 10T
0.05 ≤ α3, α5, α7 ≤ 0.15, ∑ α2

i = 1

Interruption with harmonics C11 s(t) = A[1− α(u(t− t1)− u(t− t2))][α1sin(ωt) + α3sin(3ωt) + α5sin(5ωt)]
0.9 ≤ α ≤ 1, T ≤ t2 − t1 ≤ 10T
0.05 ≤ α3, α5, α7 ≤ 0.15, ∑ α2

i = 1

Flicker with harmonics C12 s(t) = A
[
1 + λsin

(
ω f t

)]
[α1sin(ωt) + α3sin(3ωt) + α5sin(5ωt) ]

0.1 ≤ λ ≤ 2, 5 ≤ f f ≤ 25
0.05 ≤ α3, α5, α7 ≤ 0.15, ∑ α2

i = 1

Flicker with sag C13 s(t) = A
[
1 + λsin

(
ω f t

)
(1− α(u(t− t1)− u(t− t2))

]
sin(ωt)

0.1 ≤ α ≤ 0.9, T ≤ t2 − t1 ≤ 10T
0.1 ≤ λ ≤ 2, 5 ≤ f f ≤ 25

Flicker with swell C14 s(t) = A
[
1 + λsin

(
ω f t

)
(1 + α(u(t− t1)− u(t− t2))

]
sin(ωt)

0.1 ≤ α ≤ 0.8, T ≤ t2 − t1 ≤ 10T
0.1 ≤ λ ≤ 2, 5 ≤ f f ≤ 25
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2.2. Signal Synchronization (SS)

Due to the variation of fundamental frequency, the traditional signal transformation
for the training of the neural network in the literature would be deteriorated, where the
splitting process of the PQD signal to form the image matrix is incorrect. To solve this
problem, the signal synchronization of fundamental frequency followed by IEC 61000-4-7
is introduced in this paper to regulate the image matrix [19]. The synchronization process
of fundamental frequency is represented in Figure 2, where the detection method for the
fundamental frequency is not specified, which provides design flexibility for the instrument
manufacturer, f 0 is the nominal fundamental frequency, and f (k) and f (k− 1) are the present
and previous estimated values of fundamental frequency, respectively. As a result, a simple
detection method of fundamental frequency is introduced in this section.
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Suppose the discrete-time PQD signal, si, through the low-pass filter sLP_i can be
expressed as:

sLP_i = A cos(
2π f i

fs
+ θ), i = 1, 2, 3, . . . , I (1)

where f is the fundamental frequency, A is the amplitude, fs is the sampling frequency, θ is
the phase angle, and I is the number of samples. Equation (1) can also be represented in the
complex form as:

sLP_i = AcΩi + A∗c Ω∗i, i = 1, 2, 3, . . . , I (2)

where Ac = A
2 ejϕ, Ω = e

j2π f
fs , and * represents the complex conjugate. Followed by the

autoregressive prediction model, the total squared error, E, for the signal approximation
can be expressed with the linear combination of three successive samples in Equation (3),
where η is the parameter for the signal approximation [20]:

E =
I

∑
i=3

(ηsLP_i + sLP_i−1 + ηsLP_i−2)
2 (3)
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Besides, the transfer function of the second-order autoregressive prediction model can
be given by:

ηΩ2 + Ω + η = 0 (4)

To minimize the approximation error, the relationship of Equation (5) shall be met:

dE
dη

= 2
I

∑
i=3

(ηsLP_i + sLP_i−1 + ηsLP_i−2)(sLP_i + sLP_i−2) = 0 (5)

Then, η can be solved in Equation (6):

η =

−
I

∑
i=3

sLP_i−1(sLP_i + sLP_i−2)

I
∑

i=3
(sLP_i + sLP_i−2)

2
(6)

By substituting Equation (6) into Equation (4) and solving Ω, the fundamental fre-
quency, f, can be calculated adaptively based on the sliding window of I samples, as listed
in Equation (7):

f = fs × cos−1


I

∑
i=3

(sLP_i + sLP_i−2)
2

2
I

∑
i=3

sLP_i−1(sLP_i + sLP_i−2)

 (7)

In this way, the deviated fundamental frequency can be easily obtained with the
above-mentioned IEC-based synchronizer to regulate the image matrix.

2.3. Image Regulation (IR)

In this section, the PQD signal is divided into multiple cycles, where the obtained
fundamental frequency from the IEC-based synchronizer in Equation (7) was utilized to
determine the regulated cycle duration according to the variation of fundamental frequency.
The signals of divided cycles were transformed into the submatrices, and these submatrices
were then merged to form a regulated matrix. Finally, the regulated matrix was converted to
the 2D grayscale image. The advantages of this approach are that the image resolution can
be reduced, and the image matrix can be correctly regulated when the frequency variation
is present. The main steps of the proposed approach are as follows:

Step 1. Determine the submatrix dimension.

The square submatrix (number of the rows (Nrow) is equal to the number of the columns
(Ncol)) is chosen. Ncol is determined by Equation (8),

Ncol =

⌈
fs

f

⌉
(8)

where f is the regulated fundamental frequency obtained in Equation (7).

Step 2. Divide the PQD signal into multiple cycles.

The PQD signal is divided into Nc cycles according to the value of f.

Step 3. Transform the divided cycles into submatrices.

(1) Initialize all the elements of the lth submatrix Ml_x,y with Equation (9),
where x and y are the row and column indices, respectively.

Ml_x,y = 0, l = 1, 2, 3, . . . , Nc (9)

(2) Determine the column index y of the lth submatrix Ml_x,y.
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The discrete-time index of the divided cycle is assigned as the column
index to the submatrix, as listed in Equation (10), where y is the remainder
of division between i and Ncol:

y = i−
⌊

i
Ncol

⌋
× Ncol (10)

(3) Determine the row index x of the lth submatrix Ml_x,y.
The process of row determination for each sampling point is displayed in
Figure 3. The sampling values of the PQD signal are arranged into different
levels. The number of levels should be the same as the number of rows,
and the width of the level interval should be the same as well. The width
of the level interval (LInt) is calculated with Equation (11):

LInt =
Hs − Ls

Nrow
(11)

where Hs represents the highest sampling value and Ls represents the
lowest sampling value from all the sampling values. In addition, the lower
(BL) and upper (BU) boundaries are used to define the limits of levels,
which can be obtained through the process in Figure 3. The order of levels
is started from the highest sampling value as the first level, while the lowest
sampling value is in the final level. According to the level arrangement in
Figure 3, the row index, x, of each sampling point, si, can be obtained in
Equation (12) by comparing the sampling value to all the levels:

x = m (12)

(4) Insert the sampling values of a divided cycle as the matrix elements with
the obtained row and column indices.

(5) Repeat the process to transform the rest of the cycles into the submatrices.
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Step 4. Merge the submatrices to form a regulated matrix.

All the corresponding elements in each submatrix are summed, as shown in Equa-
tion (13), where M is the element of the combined matrix, Ml is the element of the submatrix,
and x and y are the matrix indices. The combined matrix has the same dimensions as the
submatrices.

Mx,y =
Nc

∑
l=1

Ml_x,y , x ≤ Nrow, y ≤ Ncol (13)

Step 5. Convert the regulated matrix to the 2D grayscale image.

The elements of the matrix are converted to the grayscale color (0–255) to create the
grayscale image. The resulted image resolution is Nrow × Ncol pixels.

2.4. Disturbance Classification (DC)

The 2D deep CNN methods were employed to perform the classification of PQD. As
depicted in Figure 4, the applied deep CNN structure is composed of six convolution layers,
three max pooling layers, a dropout layer, and two dense or fully connected layers. The
details of these compositions are presented in Table 2.
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Figure 4. Architecture of the applied deep CNN model.

Table 2. Details of model architecture.

Layer Parameters

Convolution 1 Number of kernal filters = 32, Kernal size = 5 × 5, Activation function: ReLU
Convolution 2 Number of kernal filters = 32, Kernal size = 5 × 5, Activation function: ReLU

Pooling 1 Max pooling, Size = 2 × 2, Step: 2
Convolution 3 Number of kernal filters = 32, Kernal size = 5 × 5, Activation function: ReLU
Convolution 4 Number of kernal filters = 32, Kernal size = 5 × 5, Activation function: ReLU

Pooling 2 Max pooling, Size = 2 × 2, Step: 2
Convolution 5 Number of kernal filters = 32, Kernal size = 5 × 5, Activation function: ReLU
Convolution 6 Number of kernal filters = 32, Kernal size = 5 × 5, Activation function: ReLU

Pooling 3 Max pooling, Size = 2 × 2, Step: 2
Dense 1 Number of neurons: 128, Activation function: ReLU
Dense 2 Number of neurons: 14, Activation function: softmax

2.5. Indices of Performance Evaluation

To evaluate the performance of the proposed PQD classifier, the confusion matrix was
applied to measure the indices such as accuracy, recall, precision, and f1-score, as listed
in Equations (14)–(17) [21–23]. The four kinds of outputs from the confusion matrix, such
as true positive (TP), false positive (FP), true negative (TN), and false negative (FP), were
calculated to obtain the values of the indices.

accuracy =
TP + TN

TP + TN + FP + FN
(14)

recall =
TP

TP + FN
(15)
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precision =
TP

TP + FP
(16)

f 1− score =
(2× precision× recall)
(precision + recall)

(17)

3. Results

To provide sufficient and diverse PQD data for the training of the power quality
classifier, the generation of 14 types of datasets is performed in this section. Then, the PQD
datasets used in this work are transformed to the regulated 2D grayscale images according
to the procedure proposed in this paper. Furthermore, the results of the training and testing
are analyzed to evaluate the performance of the proposed model and the models in the
literature. Finally, the field verification is implemented based on a microgrid in the campus
of National Central University, Taiwan, to examine the PQD classification.

3.1. Generation of Datasets and Regulated 2D Grayscale Image

The 14 synthetic PQD types were generated with the mathematical models from Table 1.
Then, the PQD signal was converted to the regulated 2D grayscale image based on the
proposed procedure, as shown in Table 3. It was found that the information of the original
PQD signal can be preserved in the image, even though the values of sampling points were
converted into the grayscale color. To realize the performance of the proposed regulated
2D transformation, the existing conversion methods in [15–17] were also implemented to
obtain two 2D image datasets for comparison. For the training and validation purposes,
9000 and 1000 samples of each PQD category were utilized in the training and evaluation
phases, respectively.

Table 3. Representation of the PQD signal and the regulated 2D grayscale image.

PQD Type PQD Signal 2D Grayscale
Image PQD Type PQD Signal 2D Grayscale

Image

Normal
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3.2. Results of Training and Evaluation Phases

The model structure in Table 2 was utilized for the training phase, where the 2D
grayscale images obtained with the proposed approach and the methods in [15–17] were
fed as the inputs. In the deep CNN model, an Adam optimizer with a learning rate of
0.001 was adopted and a categorical cross-entropy was applied for the loss function. The
hardware for model training is based on a Nvidia Tesla T4 Graphics Processing Unit (GPU)
accelerator with 16 GB of memory and an Intel Xeon (R) Central Processing Unit (CPU)
at 2.20 GHz. All the algorithms of power quality classifiers were implemented with Go
language, which is an open-source software developed by Google.

The fitting graphs between the training and validation of models are displayed in
Figure 5. It was found that the models were trained at 50 epochs since the accuracy and
loss values of training and validation after the 50 epochs were unstable for the compared
models. In addition, the values in the dropout layer were adjusted to achieve the fitting
accuracy and loss values between training and validation for each method. In this way, the
dropout values were selected as 0.36 for the proposed method, 0.46 for Karasu’s method
in [15,16], and 0.55 for Zheng’s method in [17], respectively. The performance evaluation
for the compared models is listed in Table 4. It was realized that the performance of the
proposed approach in the conversion task was better than the previous approaches.

Table 4. Performance comparison of models.

Models Training Accuracy (%) Validation Accuracy (%)

Proposed Method 99.25 99.46
Karasu’s Method in [15,16] 98.69 98.94

Zheng’s Method in [17] 97.98 98.43
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method in [15,16], and (c) Zheng’s method in [17].

For the model evaluation phase, the testing results are represented in the confusion
matrices of Tables 5–7. Then, the values of indices such as the recall, the precision, and the
f1-score were obtained, as presented in Table 8 and Figure 6.
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Table 5. Confusion matrix of the proposed method.

Category C01 C02 C03 C04 C05 C06 C07 C08 C09 C10 C11 C12 C13 C14

C01 998 0 0 2 0 0 0 0 0 0 0 0 0 0
C02 0 988 0 12 0 0 0 0 0 0 0 0 0 0
C03 0 0 998 0 0 0 2 0 0 0 0 0 0 0
C04 0 2 0 998 0 0 0 0 0 0 0 0 0 0
C05 0 0 0 0 1000 0 0 0 0 0 0 0 0 0
C06 0 0 0 0 0 1000 0 0 0 0 0 0 0 0
C07 0 0 0 0 0 0 1000 0 0 0 0 0 0 0
C08 0 0 0 0 0 0 0 1000 0 0 0 0 0 0
C09 0 0 0 0 0 0 0 0 992 0 8 0 0 0
C10 0 0 0 0 0 0 0 0 0 1000 0 0 0 0
C11 0 0 0 0 0 0 0 0 0 0 1000 0 0 0
C12 0 0 0 0 0 0 0 0 0 0 0 1000 0 0
C13 0 0 0 0 0 0 0 0 0 0 0 0 1000 0
C14 0 0 0 0 0 0 0 0 0 0 0 0 0 1000

Table 6. Confusion matrix of Karasu’s method in [15,16].

Category C01 C02 C03 C04 C05 C06 C07 C08 C09 C10 C11 C12 C13 C14

C01 994 0 0 0 0 0 6 0 0 0 0 0 0 0
C02 28 960 0 12 0 0 0 0 0 0 0 0 0 0
C03 0 0 998 0 0 0 2 0 0 0 0 0 0 0
C04 0 20 0 980 0 0 0 0 0 0 0 0 0 0
C05 0 0 0 0 1000 0 0 0 0 0 0 0 0 0
C06 0 0 0 0 0 1000 0 0 0 0 0 0 0 0
C07 4 4 4 0 0 0 986 2 0 0 0 0 0 0
C08 2 0 0 0 0 0 0 998 0 0 0 0 0 0
C09 0 0 0 0 0 0 0 0 980 0 20 0 0 0
C10 0 0 0 0 0 0 0 0 0 1000 0 0 0 0
C11 0 0 0 0 0 0 0 0 8 0 992 0 0 0
C12 0 0 0 0 0 0 0 0 0 0 0 1000 0 0
C13 0 0 0 0 0 0 0 0 0 0 0 0 1000 0
C14 0 0 0 0 0 0 0 0 0 0 0 0 2 998

Table 7. Confusion matrix of Zheng’s method in [17].

Category C01 C02 C03 C04 C05 C06 C07 C08 C09 C10 C11 C12 C13 C14

C01 998 0 0 0 0 0 0 2 0 0 0 0 0 0
C02 32 926 0 42 0 0 0 0 0 0 0 0 0 0
C03 0 0 1000 0 0 0 0 0 0 0 0 0 0 0
C04 0 10 0 990 0 0 0 0 0 0 0 0 0 0
C05 0 0 0 0 1000 0 0 0 0 0 0 0 0 0
C06 0 0 0 0 0 1000 0 0 0 0 0 0 0 0
C07 16 4 0 2 0 0 974 4 0 0 0 0 0 0
C08 4 0 0 0 0 0 0 996 0 0 0 0 0 0
C09 0 0 0 0 0 0 0 0 958 0 42 0 0 0
C10 0 0 0 0 0 0 0 0 0 1000 0 0 0 0
C11 0 0 0 0 0 0 0 0 6 0 994 0 0 0
C12 0 0 0 0 0 0 0 0 2 0 0 998 0 0
C13 0 0 0 0 0 0 0 0 0 0 0 0 1000 0
C14 0 0 0 0 0 0 0 0 0 0 0 0 2 998

The experimental results revealed that Karasu’s method in [15,16] obtained 99.88% for
accuracy, 99.19% for precision, 99.18% for recall, and 99.18% for f1-score. Zheng’s method
in [17] reached 99.74% for accuracy, 98.80% for precision, 97.81% for recall, and 98.30% for
f1-score. It can be seen that the proposed approach outperformed the other methods, with
99.97% for accuracy, 99.81% for precision, 99.80% for recall, and 99.80% for f1-score. From
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the results in the confusion matrix, the capability of the proposed regulated model to detect
only the PQD of interest in the dataset was also higher than the previous methods. It was
indicated that the synchronization process of fundamental frequency is important to the 2D
image transformation, which can effectively and correctly split the PQD signal to regulate
the 2D image matrix. However, the computational time of the proposed approach was
higher compared with the other methods since the larger 2D image size was utilized in the
training phase.

Table 8. Summary of the models’ performance between the proposed and existing methods.

Index Karasu’s
Method [15,16]

Zheng’s
Method [17]

Proposed
Approach

Accuracy (%) 99.88 99.74 99.97
Precision (%) 99.19 98.80 99.81

Recall (%) 99.18 97.81 99.80
F1-score (%) 99.18 98.30 99.80

Training time per epoch (seconds) 15 16 28
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3.3. Field Verification

To examine the practical performance of the proposed regulated 2D deep CNN-based
method in the field PQD classification, the microgrid system at National Central University,
Taiwan, was tested. The system information and photo are displayed in Table 9 and Figure 7,
respectively.

According to numerous experimental tests, the proposed method can deal with most
PQD classification accurately, compared with the threshold method (TM) in [24], the
traditional fuzzy analysis (FA) in [25], the traditional back-propagation neural network
(BPNN) in [26], the wavelet energy fuzzy neural network-based technique (WEFNNBT)
in [27], Karasu’s method in [16,17], and Zheng’s method in [18], as listed in Table 10.

Table 9. System information of the microgrid at National Central University, Taiwan.

Building Size four 20-foot containers
Load Demand 10 kWh/day

Solar Generation The total power generation per day is 7.4 kW × 3.9 h = 28.86 kWh
3.9 h is the average sunshine hours at National Central University, Taiwan

Storage System Lithium-ion Battery 21.6 kWh
Fuel Cell 5 kW

Power Inverter Three-phase 15 kW, AC output voltage is 220 V
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Table 10. Comparison of classification accuracy between the proposed and existing methods.

PQD TM FA BPNN WEFNNBT Karasu’s
Method

Zheng’s
Method

Proposed
Approach

Normal 97.51% 98.15% 67.81% 99.26% 99.92% 99.75% 99.98%
Sag 97.12% 16.18% 97.85% 98.83% 99.45% 98.97% 99.79%

Swell 96.84% 17.57% 97.61% 98.66% 99.69% 99.48% 99.93%
Harmonic 13.72% 96.42% 97.15% 99.17% 99.91% 99.81% 99.97%
Transient 86.34% 95.83% 96.92% 98.22% 99.88% 99.76% 99.97%

Flicker 83.62% 94.45% 96.83% 97.84% 99.74% 99.68% 99.96%
Interruption 12.86% 15.29% 97.72% 98.93% 99.51% 99.13% 99.86%

From Table 10, it can easily be found that the TM and FA could not recognize some
PQD accurately (accuracy lower than 90%) due to the short-time duration and waveform
distortion of PQD. The incorrect classification would be obtained in BPNN since the
noisy interference is present in the solution process of discrete wavelet transform. The
classification of the proposed approach was superior to WEFNNBT in [27], Karasu’s method
in [15,16], and Zheng’s method in [17]. It was realized that the proposed method can
effectively provide PQD classification and a protection strategy for the microgrid system.

4. Conclusions

A regulated 2D deep CNN-based power quality classifier for the microgrid was
presented in this paper. For the traditional 2D CNN power quality classifier (Karasu’s
method and Zheng’s method), the signal-to-image transformation is based on the nominal
fundamental frequency. Once the deviation is present in the fundamental frequency
due to the power imbalance between the generation and the load demand, the image
transformation would be deteriorated. To enhance the classification performance, the
IEC-based synchronizer was proposed to detect the deviation of fundamental frequency
and regulate the image matrix. In this way, the information and waveform characteristics of
the signal can be preserved in the regulated 2D grayscale image. Through the testing results
and field measurement, it was demonstrated that the proposed approach can improve the
efficacy of the PQD classification with accuracy higher than 99.79%, and was superior to
the previous existing approaches. In addition, the total computational burden of SS and
IR stages was very low due to the simple calculation of Equation (7) and rearrangement
of images, which takes approximately 0.53 ms. Even though the training phase of the
proposed method takes longer than the compared methods, the validation phase only
takes approximately 20 ms. As a result, the total computational time for the power quality
classification is 20.53 ms, which is shorter than the data duration of 200 ms (12 cycles under
a 60 Hz system). Therefore, it was found that the proposed solution procedure meets the
real-time requirement for the power quality classification.
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