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Abstract: Prices of oil and other commodities have fluctuated wildly since the outbreak of the 
COVID-19 pandemic. It is crucial to explore the causes of price fluctuations and understand the 
source and path of risk contagion to better mitigate systemic risk and maintain economic stability. 
The paper adopts the method of network topology to examine the path of risk contagion between 
China’s and foreign commodities, focusing on the dynamic evolution and transmission mechanism 
of risk contagion during the pandemic. This research found that among China’s commodities, en-
ergy, grain, and textiles are net recipients of risk contagion, while chemical products and metals are 
net risk exporters. Among international commodities, industries have positive risk spillover effects 
on metals and textiles. During the first phase of the pandemic, China’s commodities were the main 
exporters of risk contagion. However, international industries and metals became the main risk 
exporters and exerted risk spillover on China’s commodities in the second phase of the pandemic. 
Moreover, based on total volatility spillover index of commodities, the risk contagion among the 
commodities follows three paths: “interest rate → commodities → money supply”, “China’s eco-
nomic expectation → commodities → foreign economic expectation”, and “commodities → con-
sumer confidence”. 
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1. Introduction 
In recent years, global public emergencies and extreme events have erupted fre-

quently, causing serious impacts on the social stability of countries worldwide and global 
economic development. The resultant disturbances were often rapidly transmitted to 
financial markets, causing strong turbulence in financial markets [1,2]. The novel coro-
navirus pneumonia in 2020, also called COVID-19, ravaged the world, plunging the 
global economy into the worst recession since World War II and causing dramatic fluc-
tuations in global commodity markets, which triggered a sharply increased systemic risk 
within commodity markets. Since the beginning of 2020, the overall fluctuation of com-
modity prices has exhibited a large “V” shape, with sharp rises and falls. On 21 April 
2020, the US WTI crude oil futures contract fell to the first negative settlement price in 
history: −$37.63. On the other hand, commodity prices bottomed and rebounded, show-
ing an accelerated growth trend. From 1 May 2020 to 5 May 2021, the Commodity Re-
search Bureau (CRB) Composite Index rose by 51.84% from 354.23 to 537.88. The prices of 
crude oil, iron ore, copper, and some agricultural products repeatedly hit record highs, 
causing a great impact on the productions and operations of enterprises of downstream 
companies [3]. Since May 2021, the State Council of China has highlighted rising com-
modity prices three consecutive times, calling for strengthening market regulation and 
ensuring stabilization of the supply and prices. 

Citation: Shen, H.; Pan, Q.; Zhao, L.; 

Ng, P. Risk Contagion between 

Global Commodities from the  

Perspective of Volatility Spillover. 

Energies 2022, 15, 2492. 

https://doi.org/10.3390/en15072492 

Academic Editors: João Fernando 

Pereira Gomes and Sergio Ulgiati 

Received: 14 February 2022 

Accepted: 25 March 2022 

Published: 28 March 2022 

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional 

claims in published maps and insti-

tutional affiliations. 

 

Copyright: © 2022 by the authors. 

Licensee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and 

conditions of the Creative Commons 

Attribution (CC BY) license 

(https://creativecommons.org/license

s/by/4.0/). 



Energies 2022, 15, 2492 2 of 20 
 

 

The COVID-19 pandemic is the immediate cause of the abnormal fluctuation of 
commodity prices. Although most countries took extensive measures to prevent the 
spread of the pandemic, it still exerted a continuous impact on the global economy. With 
the sharp increase in systemic risk in commodity markets, it is urgently crucial to study 
the risk contagion path of the market to effectively monitor the sources of risk contagion 
and explore the underlying causes of price fluctuation to better help international inves-
tors and policymakers carry out risk management, asset allocation, and policy adjust-
ment in time. 

2. Literature Review 
The key to the study of financial risk contagion is the effective measure of risk 

spillover. The GARCH model proposed by Bollerslev in 1986 has been widely used to 
measure the volatility spillover effect; however, this approach does not consider the dis-
tribution of return under extreme risks. Since the G30 group put forward the VaR (value 
at risk) method to measure market risks in 1993, the VaR method has been widely used in 
risk measurement. The expected shortfall (ES) proposed by Acerbi and Tasche (2002, [4]) 
has been used to further measure the average loss of a portfolio in extreme cases based on 
VaR to offer a more complete characterization of the risk of extreme loss of a portfolio. 
Hong et al. (2004, [5]) studied the risk spillover effect between China’s stock market and 
other stock markets in the world through the stock market closing index, and Zhang et al. 
(2010, [6]) used the VaR method to measure the risk of the agricultural product market in 
China. However, the VaR method may underestimate the risk during the financial crisis, 
and it cannot accurately measure the risk spillover between financial institutions. Adrian 
and Brunnermeier (2008, [7]) constructed the CoVaR model of conditional risk value to 
attempt to measure the risk faced by the whole financial system during the crisis of cer-
tain financial markets that provided a new idea for risk measurement. Based on this 
method, Gao and Pan (2011, [8]) measured the contribution of 14 listed companies to 
systemic risk. Mao and Luo (2011, [9]) conducted an empirical study on the risk spillover 
between China’s banking and the securities industries and found that there was a strong 
two-way risk spillover. 

Although CoVaR solves the challenge of measuring risk overflow from the financial 
system under extreme risks, it was only applicable for measuring the risk spillover be-
tween two markets but was inappropriate for measuring risk contagion among multiple 
markets. Li et al. (2020, [10]) explored the systematic risk and risk contagion effect of 
Chinese banks and enterprises through the debt rating method. Baruník and Křehlík 
(2018, [11]) used the time–frequency connectedness approach to measure the frequency 
dynamics of financial connectedness and systemic risk. Additionally, a novel quantile 
spillover approach was introduced to measure the tail risk connectedness [12]. Diebold 
and Yilmaz [11–15] proposed and improved the method of constructing spillover index 
through generalized prediction error variance decomposition that investigated the cor-
relation of financial risks from the perspective of network topology. It has been applied to 
study the risk spillover between different financial markets, financial institutions, and 
economies [16–19]. This method can measure the direction, scale, and intensity of risk 
spillover and eliminate the effect of variable order on the orthogonal decomposition re-
sults, overcoming the shortcomings of the lack of power and direction in most complex 
networks and making the network more realistic [20]. 

The COVID-19 pandemic inspired a new stream of literature focusing on the impact 
of the global public emergency on financial markets. The pandemic has had a huge im-
pact on the global macroeconomic environment [21], and its impact on the financial op-
eration is mainly reflected in the three stages of expected shocks, entity conduction, and 
policy digestion [22]. At the same time, common risk exposure and asset allocation ad-
justment have further impacted the financial system [23]. In terms of risk contagion, Yang 
et al. (2020, [24]) adopted dynamic risk spillover methods to explore the dynamic risk 
transmission among various sectors of China’s financial market and major global finan-
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cial markets during the COVID-19 pandemic. Fang and Jia (2021, [25]) analyzed the risk 
changes in the global and Chinese foreign exchange markets under the influence of the 
COVID-19 pandemic using the LASSO method and explored the amplification or miti-
gation effects of financial markets, the real economy, and policies on this impact.  

A body of literature on the impact of the pandemic on the commodities market has 
also emerged. Kamdem et al. (2020, [26]) found that the number of confirmed cases and 
deaths caused by the pandemic had a great impact on the volatility of commodity prices. 
Dmytrów et al. (2021, [27]) used the dynamic time warping (DTW) method to assess the 
similarity between the time series of energy commodity prices and daily COVID-19 cases. 
Some studies confirmed that uncertainty related to a pandemic had a strong negative 
impact on the volatility of commodity markets, especially on crude oil, energy products, 
etc. [28,29], while the effect on gold and greenhouse gas emissions were not significant 
[28,30]. Liu et al. (2021, [31]) used the time-varying connectedness measurement to in-
vestigate the spillover effects among three commodity assets (oil, gold, and corn) and 
three financial assets in China and the US during the pandemic. Umar et al. (2021, [32]) 
constructed a coronavirus panic index and analyzed the interdependencies between the 
index and the movements of the prices of five traditional categories of commodities (en-
ergy, agriculture, livestock, precious metals, and nonprecious metals) to study how the 
COVID-19 pandemic influenced the volatility of commodities. Borgards et al. (2021, [33]) 
detected the overreaction behavior of 20 commodity futures in two separate periods 
(pre-COVID-19 pandemic and during COVID-19 pandemic).  

As can be seen above, the commodity markets have become a new research focus 
since the outbreak of the COVID-19 pandemic. The recent research is mostly focused on 
the dynamic connectedness between the pandemic and the price fluctuation of the 
commodity markets, and the markets involved are mainly metal, energy, agricultural 
futures [26–33]. Although some studies have investigated the risk spillovers within the 
commodity markets, the impact of the pandemic has not been systematically and com-
prehensively studied, especially the discussion on the risk contagion mechanism within 
the commodity markets and the risk transmission pathways. 

Hence, our research adopts the network topology analysis method and constructs 
the volatility spillover matrix to investigate the dynamic evolution of risk contagion in 
the commodities market. We focus on China and international commodity markets to 
compare the differences and similarities of volatility spillover within the two markets 
and explore the volatility spillover relationship between them. We also divide the full 
sample into different subsamples according to the important time points of the 
COVID-19 pandemic to explore its impact on the commodity markets during these 
phases. Moreover, our paper discusses the mechanism of risk contagion in the commod-
ity markets through nonlinear causality analysis and reveals the risk transmission 
pathways, which is another important novel contribution and complement to the exist-
ing studies. It also provides evidence on the internal relationship between commodity 
markets and monetary policy as well as economic expectation. The remainder of the pa-
per is organized as follows: Section 3 formalizes the research method and data descrip-
tion. Section 4 discusses the empirical analysis focusing on the dynamic evolution and 
paths of risk contagion in the commodities market, and Section 5 contains the conclu-
sions. 

3. Research Method and Data Description 
3.1. Construction of Risk Spillover Index 

In this paper, the volatility spillover index proposed by Diebold and Yilmaz (2009, 
[13]) is used to measure the risk spillover effect between different variables by variance 
decomposition. Following similar notations used in Diebold and Yilmaz (2014, [15]), the 
covariance stationary VAR (p) model of the N-dimensional variable Xt expressed in 
moving average form as shown below is considered: 
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where i, j = 1, … , N, ∑ is the variance matrix of the error vector ε, σjj is the standard de-
viation of the error term of the j-th equation, and ei is the N × 1 dimension unit vector. 
Since the elements in each row of the variance decomposition do not add to one, Diebold 
and Yilmaz (2014, [15]) normalize each entry by the row sum as:

  

1
/

N
H H H

i j i j i j
j

θ θ θ← ← ←
=

= ∑

 
(3) 

such that N
N

ji

H
ji

N

j

H
ji == ∑∑

=
←

=
←

1,1

~1~ θθ ， . 

Using the volatility contribution of the KPPS variance decomposition above, the to-
tal volatility spillover index is constructed as: 

100

~

100
~

~
1,

1,

1,

⋅=⋅=

∑

∑

∑
≠≠
=

←

=
←

=
←

N
S

N

ji

H
ji

N

ji

H
ji

N

ji

H
ji

H jiji

θ

θ

θ

 (4) 

to measure the total bidirectional impact contributions of the mutual spillover effects 
between all asset classes to the total volatility. 

Next, the total unidirectional contributions to volatility spillovers from different 
assets is measured using the unidirectional volatility spillover indexes received by mar-
ket i from all other markets j (j ≠ i) as: 
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In a similar way, the total unidirectional volatility spillover index transmitted by the 
market i to all other markets j (j ≠ i) is measured by 
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These total unidirectional volatility spillover indexes are seen as decompositions of 
the total spillover into either to or from a specific source.  

Further, the total net volatility spillover of market i to all other markets j (j ≠ i) is 
measured by the total net volatility spillover index:  

H H H
i i iNS S S•← ←•= −  (7) 

This total net volatility spillover measures the difference between the total volatility 
shocks delivered to all other markets and the shocks received from all other markets. 
Therefore, the net pairwise directional volatility spillover index from market j to market i 
can be calculated as: 
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which is the difference between the gross volatility shocks transmitted from market i to 
market j and those transmitted from market j to market i. This is used to measure the net 
volatility spillover contribution of market i to market j. 

Based on this, the total net volatility spillover that market i transfers to all other 
markets j for j ≠ i, H

iOUTTNS , , and the total net volatility spillover that market i receives 

from all other markets j for j ≠ i, ,
H
IN iTNS , can be computed as: 
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3.2. Data Description 
To examine the risk contagion between China’s and foreign commodities and explore 

the dynamic evolution of risk contagion under the public emergency of the COVID-19 
pandemic, the main commodities, which include energy, metals, grain, textiles, and chem-
ical products, traded on China’s commodity futures market are selected as the representa-
tives for China’s commodity markets. On the other hand, the daily logarithmic returns of 
the indexes compiled by the Commodity Research Bureau (CRB) serve as the representa-
tive indexes of global commodity markets [36]. Four indexes are selected: textiles, metals, 
food, and industrial. In this paper, CFCI and CRB are used to distinguish between China’s 
and foreign commodity indexes. We collected 3606 daily data points from 14 November 
2005 to 19 March 2021, from the Wind database. We also use the dynamic value at risk 
(VaR) of daily logarithmic return to test the robustness of the model used in this paper. The 
forecast period reported in this paper is 10 days. The results remain stable and qualitatively 
the same after changing the number of forecast periods. 
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The descriptive statistics of the logarithmic returns in the sample are shown in Table 1. 
The table shows that the sample average yield of all varieties of commodities is near 0 
and positive except CFCI Textiles and CFCI Chemical Products. The standard deviation 
of the Chinese varieties is significantly greater than that of the international varieties, 
indicating that the yield of Chinese varieties has much higher volatility. All varieties have 
leptokurtic distributions with fatter tails than a normal distribution. Most notably, the 
degree of skewness of CFCI Grain is much greater than that of other varieties and has the 
largest kurtosis coefficient, indicating that the yield of CFCI Grain has a thick-tail dis-
tribution that is skewed to the right with outliers in the upper tail. In general, the loga-
rithmic return of each variety passes the augmented Dickey–Fuller test for unit root, in-
dicating that the method used in this paper is appropriate. The Jarque–Bera test for 
normality also rejects the null hypothesis of a normal distribution, confirming that the 
distributions of all commodities deviate from the normal distribution. 

Table 1. Descriptive statistics of the logarithmic yields. 

 

China International 

CFCI 
Textiles 

CFCI 
Metals 

CFCI 
Chemical 
Products 

CFCI 
Grain 

CFCI 
Energy 

CRB 
Textiles 

CRB  
Industrials 

CRB 
Metals 

CRB 
Food 

Average −0.008 0.015 −0.001 0.020 0.019 0.007 0.015 0.029 0.014 
Median  0.011 0.031 0.027 0.014 0.042 0.000 0.018 0.029 0.009 

Maximum  14.544 7.018 9.667 22.457 8.175 9.934 4.966 12.788 3.782 
Minimum  −12.850 −5.348 −8.574 −23.871 −8.597 −9.486 −4.459 −10.140 −9.434 

Standard devia-
tion 1.106 1.282 1.476 1.068 1.476 0.528 0.524 1.058 0.736 

Skewness 0.211 −0.115 −0.147 1.564 −0.300 0.175 −0.334 −0.110 −0.842 
Kurtosis 25.080 5.679 5.407 179.598 6.118 68.314 15.311 20.908 13.644 

JB 73,278 
*** 1086.6 *** 883.2 *** 4,687,304 

*** 1514.8 *** 640,965 
*** 22,840 *** 48,192 *** 17,448 *** 

ADF −42.3 *** −40.1 *** −39.6 *** −49.3 *** −41.3 *** −43.5 *** −38.6 *** −40.8 *** −39.5 *** 
Notes: (1) *** indicates significance at 1%; (2) JB is Jarque–Bera test; (3) ADF is augmented Dick-
ey–Fuller unit root test. 

4. Empirical Analysis 
4.1. Static Analysis of Volatility Spillover 

Using the volatility spillover indexes defined in Equations (1)–(10), we calculated 
the spillover effects of the nine categories of commodities and conducted the spillover 
effect analysis. The results are listed in Table 2. 

From the perspective of the “OUT” spillovers, the total outward volatility spillover 
of CRB Industrials to all other commodities is the largest with an index value of 75.6, 
followed by CFCI Chemical Products and CFCI Metals, at 65.34 and 59.93, respectively. 
The total outward volatility spillover of CFCI Grain and CRB Food is small, at only 15.71 
and 17.88, respectively. It can be seen from the unidirectional volatility spillover between 
any two varieties that the internal spillovers of commodities within China’s commodities 
or foreign commodities are almost always significantly greater than the volatility spillo-
vers between China’s and foreign commodities. Focusing on the internal impact, China’s 
commodities are almost most affected by the volatility spillovers from CFCI Chemical 
Products, followed by CFCI Metals; foreign commodities are most affected by CRB In-
dustrials. 
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Table 2. Volatility spillover matrix between commodities. 

Variety 
CFCI 

Textiles 
CFCI 

Metals 

CFCI 
Chemical 
Products 

CFCI 
Grain 

CFCI  
Energy 

CRB 
Textiles 

CRB  
Industrials 

CRB  
Metals 

CRB  
Food  IN 

CFCI Textiles 53.2 8.6 19.44 2.61 5.1 4.68 3.33 1.85 1.19 46.8 
CFCI Metals 7 43.56 16.92 2.65 12.48 1.43 6.79 7.54 1.63 56.44 

CFCI Chemical 
Products 15.71 16.76 43.01 3.15 10.82 1.61 3.95 3.76 1.23 56.99 

CFCI Grain 3.69 4.54 5.45 76.21 3.21 0.89 1.96 1.53 2.52 23.79 
CFCI Energy 5.05 15.65 13.43 2.37 53.31 1.16 3.56 3.61 1.87 46.69 
CRB Textiles 3.59 1.27 1.52 0.6 0.61 69.92 16.2 2.71 3.59 30.08 

CRB Industrials 2.04 5.26 3.39 1.12 2.35 9.74 42 30.64 3.46 58 
CRB Metals 1.3 6.44 3.71 0.94 2.66 1.83 34.16 46.57 2.39 53.43 
CRB Food  1.04 1.42 1.49 2.27 0.87 4.05 5.65 3.85 79.37 20.63 

OUT 39.43 59.93 65.34 15.71 38.09 25.37 75.6 55.5 17.88 392.85 
Column Total 92.63 103.48 108.34 91.93 91.4 95.29 117.6 102.07 97.25 43.70% 

Notes: (1) Table 2 reports the volatility spillover matrix with a forecast period of 10 days, as shown 
in Equation (3); the ij-th element measures the contribution to the forecast error variance of variety 
i coming from shocks in variety j; (2) the i-th element in the column of “IN” indicates the total vol-
atility spillover effect of other varieties on variety i measured from the perspective of total scale 
using Equation (5), and the j-th element in the row of “OUT” indicates the total volatility spillover 
effect of variety j on other markets measured from the perspective of total scale using Equation (6); 
the value in each row of the “IN” column is the sum of the off-diagonal elements of that row, 
likewise for the columns of the OUT row; (3) elements in the lower right corner measures the total 
effect of systemic volatility spillovers using Equation (4). 

From the perspective of “IN” spillovers, CRB Industrials, CFCI Chemical Products, 
and CFCI Metals are most affected by all other commodities, at 58, 56.99, and 56.44, re-
spectively. CFCI Grain and CRB Food are least affected by all other commodities, at 23.79 
and 20.63, respectively. 

The ratio of the total volatility spillover of all commodities to others excluding 
themselves to the total volatility spillover including themselves shows that 43.7% of the 
forecast error variance comes from the spillover effect between the commodities. 

Based on Table 2, we further compute the net pairwise spillover index between any 
two varieties using Equation (8) and the total net volatility spillover using Equations (9) 
and (10), and the results are presented in Table 3.  

Table 3. Net volatility spillover matrix between commodities. 

Variety 
CFCI Tex-

tiles 
CFCI 

Metals 

CFCI 
Chemical 
Products 

CFCI 
Grain 

CFCI 
Energy 

CRB Tex-
tiles 

CRB  
Industrials 

CRB  
Metals 

CRB  
Food  TNSIN 

CFCI Textiles 0 1.6 3.73 −1.08 0.05 1.09 1.29 0.55 0.15 7.38 
CFCI Metals −1.6 0 0.16 −1.89 −3.17 0.16 1.53 1.1 0.21 −3.5 

CFCI Chemical 
Products 

−3.73 −0.16 0 −2.3 −2.61 0.09 0.56 0.05 −0.26 −8.36 

CFCI Grain 1.08 1.89 2.3 0 0.84 0.29 0.84 0.59 0.25 8.08 
CFCI Energy −0.05 3.17 2.61 −0.84 0 0.55 1.21 0.95 1 8.6 
CRB Textiles −1.09 −0.16 −0.09 −0.29 −0.55 0 6.46 0.88 −0.46 4.7 

CRB Industrials −1.29 −1.53 −0.56 −0.84 −1.21 −6.46 0 −3.52 −2.19 −17.6 
CRB Metals −0.55 −1.1 −0.05 −0.59 −0.95 −0.88 3.52 0 −1.46 −2.06 
CRB Food  −0.15 −0.21 0.26 −0.25 −1 0.46 2.19 1.46 0 2.76 

TNSOUT −7.38 3.5 8.36 −8.08 −8.6 −4.7 17.6 2.06 −2.76 0 
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Notice that the values of TNSIN are the exact opposite of TNSOUT in Table 3. From 
Table 3, we can see that during the period 2006 to 2020, the total net outward volatility 
spillover of CRB Industrials is the largest with an TNSIN index value of 17.6, followed by 
CFCI Chemical Products at 8.36. CFCI Textiles, Grain, and Energy are net recipients of 
volatility risk with TNSIN at 7.38, 8.08, and 8.6, respectively. From the perspective of the 
mutual spillover relationship among Chinese commodities, the net spillover indexes of 
CFCI Metals and CFCI Chemical Products to other commodities are positive, occupying 
the role of the risk exporter in the risk contagion among China’s commodities. CRB In-
dustrials is the main exporter of risk from the perspective of the mutual spillover rela-
tionship among foreign commodities. From the perspective of the spillover relationship 
between China’s and international commodities, the net risk spillovers of foreign com-
modities on Chinese commodities are generally positive, indicating that China’s com-
modity market is a recipient of international risk from foreign markets in general. 

4.2. Dynamic Analysis of Volatility Spillover 
We adopt the practice of a rolling window to calculate the dynamic change of the 

total volatility spillover index in the selected sample interval and analyze the time trend 
of the risk spillover. The results are shown in Figure 1. The horizontal axis date is the end 
date of the rolling window. 

 
Figure 1. The total volatility spillover of the rolling sample. Notes: (1) The top figure is based on 
the logarithmic yield and the bottom figure is based on VaR; the length of the forecast is 10 days 
and the rolling window is 200 days. (2) Event (1): In August 2008, the international financial crisis 
began to lose control, and many large financial institutions closed or were supervised by the gov-
ernment; Event (2): On 11 March 2011, a magnitude 9.0 earthquake and tsunami occurred in Japan; 
Event (3): On 10 February 2015, international metals prices plunged 7.2% during the flash crash of 
the stock markets; Event (4): In August 2015, a major stock market crash in China occurred; Event 
(5): In June 2016, UK Brexit referendum was approved; Event (6): On 31 August 2018, China’s do-
mestic food prices increased by 25.2% daily; Event (7): In March 2020, the World Health Organiza-
tion declared COVID-19 outbreak a pandemic. 

Figure 1 shows that the total spillover index calculated based on the logarithmic rate 
of return fluctuates in the range 38 to 70, while that calculated based on VaR fluctuates 
slightly more with a range between 35 and 80, but the overall trends are basically the 
same. It can be seen that major public events have varying degrees of impact on the risk 
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spillover of the commodities market. In 2008, the financial crisis swept the world and had 
a huge impact on the commodities market. Among the major varieties, energy, chemical 
products, and metals were the most severely impacted and shrank sharply, resulting in a 
sharp increase in the total volatility spillover index in the second half of 2008 that per-
sisted at a high level until 2013. Similarly, the Japanese earthquake in March 2011, the 
major flash crash of the stock markets in 2015, and Brexit in June 2016 also had an impact 
on the commodities market, albeit the impact was relatively short-term. 

At the beginning of 2020, impacted by the COVID-19 pandemic, China’s commodity 
prices fell sharply, and many varieties broke their daily limit. With the spread of the 
pandemic, the world economy suffered a heavy blow, and international commodity 
markets experienced huge fluctuations. Since the start of the COVID-19 pandemic, the 
total volatility spillover index of the commodities market has increased significantly, 
with an average total spillover index of about 60, which is second only to the financial 
crisis in 2008. The impact of the COVID-19 pandemic on the commodities market is sig-
nificant and lasting, and the systemic risk in the commodities market has increased sig-
nificantly. 

Next, we investigate the results of the total directional volatility spillover of each 
commodity to all other commodities through time (corresponding to the “OUT” row in 
Table 2); the results are shown in Figure 2. 

 
Figure 2. The “OUT” total directional volatility spillover of the rolling sample. 

As can be seen from Figure 2, the total directional volatility spillovers of CFCI Met-
als, CFCI Chemical Products, and CRB Industrials to all other varieties are relatively 
large. CFCI Grain was in a turbulent period from 2008 to 2013, and the directional vola-
tility spillover index fluctuated between 5 and 8. After 2013, it entered a relatively calm 
period, and the directional volatility spillover index hovered mostly below 4. However, 
due to the impact of trade conflict and adverse weather in 2018, the volatility spillover 
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index of CFCI Grain surged to 7.5 on 31 August 2018, in response to the expected reduc-
tion in yields on soybean, corn, and other crops and an obvious gap in grain crop supply. 
Affected by the relationship between supply and demand, the closing price of China’s 
grain futures rose from 151.52 to 189.67 on 31 August, an increase of 25.2%. Therefore, the 
volatility spillover of CFCI Grain to all other bulk commodities also increased by 5.16%. 

The directional volatility spillover of CRB Metals to other commodities is relatively 
stable, but reached a prominent peak in February 2015, an increase of 3.86%. This is due 
to the strong rebound of the US dollar exchange rate between January and February 2015. 
The exchange rate of the Euro against the US dollar fell, and the funds speculating in the 
commodities market withdrew after making their profits. The shortage of funds caused a 
sharp decline in the prices of international gold, silver, and copper. On February 10, the 
closing price of CRB Metals fell from 795.31 to 738.12, a decrease of 7.2%. 

Figure 3 shows the results of the directional volatility spillover of each commodity 
received from all other commodities through time (corresponding to the “IN” column in 
Table 2). It can be seen that except for CFCI Grain, CRB Textiles, and CRB Food, the di-
rectional volatility spillovers received from other varieties fluctuated gently over time, 
and the directional volatility spillovers received by CFCI Metals and Chemical Products 
was relatively large, with an average of about 7.5. 

 
Figure 3. The “IN” directional volatility spillover diagram of rolling samples. 

The results of the total net volatility spillover of each commodity to all other varie-
ties computed using Equation (7) with a rolling sample are presented in Figure 4. 
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Figure 4. The net volatility spillover diagram of rolling samples. 

As can be seen from Figure 4, the total net volatility spillover index of global com-
modities generally fluctuates between −4 and 4. In general, the total net volatility spillo-
vers of CFCI Metals, CFCI Chemical Products, and CRB Industrials to all other varieties 
are mainly positive, signifying exportation of risk. The total net volatility spillover in-
dexes of CFCI Textiles, CFCI Grain, CFCI Energy, CRB Textiles, and CRB Food are gen-
erally negative, indicating importation of risk. While affected by the relationship between 
supply and demand, the total net volatility spillover index of CFCI Grain rose from −0.93 
to 5.19 on 31 August 2018, surging by 6.12. CFCI Textiles and Chemical Products were 
also affected, and the total net volatility spillovers fell significantly on the same day. Af-
fected by the surge in the US dollar exchange rate, the total net volatility spillover index 
of CRB Metals also increased from −0.53 to 2.7 on 10 February 2015, and there was a 
prominent peak in the net volatility spillover chart. 

Affected by the COVID-19 pandemic, the total net volatility spillovers of CFCI Met-
als and Chemical Products in early 2020 showed a significant peak and began to gradu-
ally decline in July and August 2020. It is worth noting that the total net volatility spill-
over of CFCI Textiles to all other varieties has been mostly negative. However, the un-
certainty of Sino–US trade friction and the outbreak of the COVID-19 pandemic repeat-
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edly frustrated the Chinese textiles industry, which influenced the total net volatility 
spillover of CFCI Textiles to change from negative to positive and remained at a sus-
tained high level since. 

Figure 5 is the heat map of the pairwise net volatility spillover index between 
commodities over the years based on Equation (8). Noting the symmetry of the pairwise 
net volatility spillover index, we can see that the color of CFCI Textiles_CFCI Chemical 
Products and CFCI Textiles_CFCI Metals is mostly red, and the color of CFCI Chemical 
Products/Metals_CFCI Energy/Grain is mostly green, indicating that CFCI Metals and 
Chemical Products were the main exporters of risk within China’s commodities market. 
On the other hand, the color of CRB Industrials_CRB Metals/Food is mostly green, and 
the color of CRB Textiles_CRB Industrials is mostly dark red, suggesting that CRB In-
dustrials had a positive volatility spillover on other international commodities and was 
the main exporter of risk within the international market. From the perspective of the 
interaction between China’s and foreign commodities, the color of CFCI Ener-
gy/Grain/Textiles_CRB Industrials is mostly red, indicating that CRB Industrials ex-
ported volatility to China’s commodities market. It is worth noting that the volatility 
spillovers of other China’s and foreign varieties to CFCI Grain are positive. We can also 
see the dark red color of CFCI Textiles_CRB Textiles for 2007–2008, suggesting that the 
CRB Textiles exported strong volatility risk to CFCI Textiles during the financial crisis 
period. However, during the COVID-19 pandemic period, the risk spillover of CFCI 
Textiles to CRB Textiles switched from negative to positive, and the color between CFCI 
Textiles and other commodities is also green, suggesting that CFCI Textiles had become 
the main exporter of risk during that period. 

 
Figure 5. Thermal diagram of the directional volatility spillover between commodities. Note: Take 
the variable “A_B” as an example, if the color is green, A is the risk exporter while B is the risk re-
cipient; if the color is red, B is the risk exporter and A is the risk recipient. 

4.3. Dynamic Evolution of Risk Contagion during the COVID-19 Pandemic 
In this section, we investigate the impact of the COVID-19 pandemic on China’s and 

foreign commodity markets and explore the dynamic evolution of risk contagion during 
this period. We compute the net volatility spillovers between commodities for Phase 1 (1 
January 2019–30 November 2019), Phase 2 (1 December 2019–26 April 2020), and Phase 3 
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of the pandemic (27 April 2020–19 March 2021). The results are presented in Table 4. On 1 
December 2019, The Lancet published the time of the first COVID-19 epidemic diagnosis; 
on 26 April 2020, the last confirmed case in Wuhan was eliminated, marking a success in 
China’s epidemic prevention and control. 

Table 4. The net volatility spillover between commodities over the three periods of the pandemic. 

Panel A: Phase 1. 

Variety  
CFCI 

Textiles 
CFCI 

Metals 

CFCI 
Chemi-

cal 
Products 

CFCI 
Grain 

CFCI 
Energy 

CRB 
Tex-
tiles 

CRB  
Industrials 

CRB  
Metals 

CRB  
Food  TNSIN 

CFCI Textiles VaR 
Return  

0.00  
0.00 

−2.01  
−1.57 

−17.7  
0.77 

2.07  
0.32 

−12.93  
−1.23 

13.61  
1.18 

6.27  
1.17 

2.76  
0.45 

−0.41  
−0.45 

−8.34  
0.64 

CFCI Metals VaR 
Return  

2.01  
1.57 

0.00  
0.00 

9.67  
2.38 

−0.21  
1.30 

−1.99  
0.35 

1.93  
0.34 

1.00  
0.92 

−0.31  
0.21 

−1.50  
0.97 

10.6  
8.04 

CFCI Chem-
ical Products 

VaR 
Return  

17.70  
−0.77 

−9.67  
−2.38 

0.00  
0.00 

−0.33  
−0.59 

−6.58  
−1.33 

1.54  
−1.47 

0.14  
−0.82 

0.04  
−1.69 

−3.50  
0.43 

−0.66  
−8.62 

CFCI Grain VaR 
Return  

−2.07  
−0.32 

0.21  
−1.30 

0.33  
0.59 

0.00  
0.00 

−0.69  
−1.31 

−1.30  
1.19 

−1.02  
0.24 

3.88  
2.79 

−9.24  
−2.84 

−9.9  
−0.96 

CFCI Energy 
VaR 

Return  
12.93  
1.23 

1.99  
−0.35 

6.58  
1.33 

0.69  
1.31 

0.00  
0.00 

6.23  
−0.13 

3.76  
1.16 

−4.78  
0.20 

−6.13  
1.83 

21.27  
6.58 

CRB Textiles VaR 
Return  

−13.61  
−1.18 

−1.93  
−0.34 

−1.54 
1.47 

1.30  
−1.19 

−6.23  
0.13 

0.00  
0.00 

5.12  
7.05 

−3.71  
1.58 

−4.61  
−0.54 

−25.21  
6.98 

CRB Indus-
trials 

VaR 
Return  

−6.27  
−1.17 

−1.00  
−0.92 

−0.14  
0.82 

1.02  
−0.24 

−3.76  
−1.16 

−5.12  
−7.05 

0.00  
0.00 

5.51  
−3.96 

0.84  
−0.18 

−8.92  
−13.86 

CRB Metals 
VaR 

Return  
−2.76  
−0.45 

0.31  
−0.21 

−0.04  
1.69 

−3.88  
−2.79 

4.78  
−0.20 

3.71  
−1.58 

−5.51  
3.96 

0.00  
0.00 

9.39  
0.53 

6.00  
0.95 

CRB Food  VaR 
Return  

0.41  
0.45 

1.5  
−0.97 

3.5  
−0.43 

9.24  
2.84 

6.13  
−1.83 

4.61  
0.54 

−0.84  
0.18 

−9.39  
−0.53 

0.00  
0.00 

15.16  
0.25 

TNSOUT VaR 
Return  

8.34  
−0.64 

−10.6  
−8.04 

0.66  
8.62 

9.90  
0.96 

−21.27  
−6.58 

25.21  
−6.98 

8.92  
13.86 

−6.00  
−0.95 

−15.16  
−0.25 

0.00  
0.00 

Panel B: Phase 2 

Variety  CFCI 
Textiles 

CFCI 
Metals 

CFCI 
Chemi-

cal 
Products  

CFCI 
Grain 

CFCI 
Energy 

CRB 
Textiles 

CRB  
Industrials 

CRB  
Metals 

CRB  
Food  

TNSIN 

CFCI Textiles VaR 
Return  

0.00  
0.00 

−9.90  
−3.23 

−6.95  
−1.25 

−4.21  
−4.06 

−16.13  
−6.37 

0.90  
−0.37 

−16.08  
1.12 

−8.90  
−0.40 

−10.18  
−2.33 

−71.45  
−17.99 

CFCI Metals 
VaR 

Return  
9.90  
3.23 

0.00  
0.00 

3.66  
2.28 

−10.94  
−4.40 

−8.30  
−1.99 

−4.74  
−2.74 

−8.70  
1.05 

−8.21  
0.02 

1.79  
−9.77 

−25.54  
−12.32 

CFCI Chem-
ical Products 

VaR 
Return  

6.95  
1.25 

−3.66 
−2.28 

0.00  
0.00 

−3.13  
−4.43 

−7.56  
−4.87 

1.44 
−0.90 

−14.77  
−0.90 

−9.79  
−1.17 

−6.47  
−1.34 

−36.99  
−14.64 

CFCI Grain 
VaR 

Return  
4.21  
4.06 

10.94  
4.40 

3.13  
4.43 

0.00  
0.00 

−0.20  
2.93 

0.70  
3.58 

4.89  
5.62 

4.27  
6.43 

1.08  
−3.35 

29.02  
28.10 

CFCI Energy VaR 
Return  

16.13  
6.37 

8.30  
1.99 

7.56  
4.87 

0.20  
−2.93 

0.00  
0.00 

−0.98  
0.64 

2.29  
0.58 

−0.71  
−0.34 

5.92  
−4.72 

38.71  
6.46 

CRB Textiles VaR 
Return  

−0.9  
0.37 

4.74  
2.74 

−1.44  
0.90 

−0.70  
−3.58 

0.98  
−0.64 

0.00  
0.00 

2.13  
2.59 

−0.91  
1.13 

11.62  
−6.57 

15.52  
−3.06 

CRB Indus-
trials 

VaR 
Return  

16.08  
−0.02 

8.70  
−1.05 

14.77 
0.90 

−4.89  
−5.62 

−2.29  
−0.58 

−2.13  
−2.59 

0.00  
0.00 

−13.85  
0.44 

8.66  
−2.92 

25.05  
−11.44 
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CRB Metals VaR 
Return  

8.90  
0.40 

8.21  
−0.02 

9.79  
1.17 

−4.27  
−6.43 

0.71  
0.34 

0.91  
−1.13 

13.85  
−0.44 

0.00  
0.00 

5.70  
−1.11 

43.8  
−7.22 

CRB Food  
VaR 

Return  
10.18  
2.33 

−1.79  
9.77 

6.47  
1.34 

−1.08  
3.35 

−5.92  
4.72 

−11.62 
6.57 

−8.66  
2.92 

−5.70  
1.11 

0.00  
0.00 

−18.12  
32.11 

TNSOUT VaR 
Return  

71.45  
17.99 

25.54  
12.32 

36.99  
14.64 

−29.02  
−28.10 

−38.71  
−6.46 

−15.52  
3.06 

−25.05  
11.44 

−43.8  
7.22 

18.12  
−32.11 

0.00  
0.00 

Panel C: Phase 3 

Variety  
CFCI 

Textiles 
CFCI 

Metals 

CFCI 
Chemi-

cal 
Products 

CFCI 
Grain 

CFCI 
Energy 

CRB 
Textiles 

CRB  
Industrials 

CRB  
Metals 

CRB  
Food  

TNSIN 

CFCI Textiles VaR 
Return  

0.00  
0.00 

4.17  
−1.26 

2.86  
0.57 

−0.89  
−2.75 

−6.36  
−2.46 

1.03  
−0.38 

10.14  
2.54 

9.66  
2.04 

−4.53  
1.00 

16.08  
−0.70 

CFCI Metals 
VaR 

Return  
−4.17  
1.26 

0.00  
0.00 

−4.77  
0.69 

−4.67  
−1.75 

−3.19  
0.36 

5.54  
2.29 

8.25  
3.01 

0.87  
2.76 

−2.19  
−1.07 

−4.33  
7.55 

CFCI Chem-
ical Products 

VaR 
Return 

−2.86 
−0.57 

4.77  
−0.69 

0.00  
0.00 

−0.67  
−2.99 

−5.64  
−1.24 

0.23  
−0.98 

7.69  
0.63 

6.95  
0.78 

−4.05  
0.15 

6.42  
−4.91 

CFCI Grain VaR 
Return 

0.89  
2.75 

4.67  
1.75 

0.67  
2.99 

0.00  
0.00 

1.02  
1.82 

1.25  
0.54 

−2.44  
2.12 

−1.01  
0.63 

1.56  
1.41 

6.61  
14.01 

CFCI Energy 
VaR 

Return 
6.36  
2.46 

3.19  
−0.36 

5.64  
1.24 

−1.02  
−1.82 

0.00  
0.00 

−6.16  
−4.82 

0.84  
−0.90 

2.01  
−0.73 

1.84  
−2.68 

12.7  
−7.61 

CRB Textiles VaR 
Return 

−1.03  
0.38 

−5.54  
−2.29 

−0.23  
0.98 

−1.25  
−0.52 

6.16  
4.82 

0.00  
0.00 

1.16  
2.44 

−4.55  
3.40 

14.41  
−0.44 

9.13  
8.75 

CRB Indus-
trials 

VaR 
Return 

−10.14  
−2.54 

−8.25  
−3.10 

−7.69  
−0.63 

2.44  
−2.12 

−0.84  
0.90 

−1.16 
−2.44 

0.00  
0.00 

−4.00  
−4.59 

−3.77  
0.47 

−33.41  
−13.96 

CRB Metals 
VaR 

Return 
−9.66  
−2.04 

−0.87  
−2.76 

−6.95  
−0.78 

1.01  
−0.63 

−2.01  
0.73 

4.55  
−3.40 

4.00  
4.59 

0.00  
0.00 

−2.84  
−0.38 

−12.77  
−4.67 

CRB Food  VaR 
Return 

4.53  
−1.00 

2.19  
1.07 

4.05  
−0.15 

−1.56  
−1.41 

−1.84  
2.68 

−14.41  
0.44 

3.77  
−0.47 

2.84  
0.38 

0.00  
0.00 

−0.43  
1.54 

TNSOUT 
VaR 

Return 
−16.08  
0.70 

4.33  
−7.55 

−6.42  
4.91 

−6.61  
−14.01 

−12.7  
7.61 

−9.13  
−8.75 

33.41  
13.96 

12.77  
4.67 

0.43  
−1.54 

0.00  
0.00 

As shown in Table 4, during Phase 1 of the pandemic (Panel A), the net volatility 
spillovers between the varieties were relatively small, and CRB Industrials and CFCI 
Chemical Products were the main exporters of the risk with TNSOUT reaching 8.62 and 
13.86, respectively, based on the Return variable, while CFCI Metals, CRB Textiles, and 
CRB Energy were the main recipients of the risk with TNSOUT reaching −8.04, −6.98, and 
−6.58, respectively. 

During Phase 2 (Panel B), in addition to the sharp increase in risk contagion among 
the Chinese varieties, the volatility spillovers from China’s to the foreign varieties also 
increased significantly. CFCI Textiles, CFCI Metals, and CFCI Chemical Products became 
the main exporters of the risk with TNSOUT reaching 17.99, 12.32, and 14.64, respectively 
(71.45, 25.54, and 36.99, respectively, based on the VaR). That is an increase of 18.63, 
20.36, and 6.02, respectively, from Phase 1 (an increase of 63.11, 36.14, and 36.33, respec-
tively, based on VaR). CRB Food and CFCI Grain became the net recipients of risk from 
almost all varieties with TNSOUT reaching −32.11 and −28.1, respectively, based on the 
Return variable. During Phase 2, the systemic risk was significantly intensified and Chi-
na’s commodities became the main source of risk exporters in the global commodities 
market. 

During Phase 3 of the pandemic (Panel C), the volatility spillover between Chinese 
varieties subsided significantly. However, TNSOUT of CRB Industrials reached 13.96 (33.41 
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based on the VaR variable), becoming the main source of risk contagion. The dynamic 
evolution of risk contagion under the impact of the COVID-19 pandemic is obvious. 

Next, we draw the network topology of variance decompositions suggested by 
Diebold and Yilmaz [13] for the net volatility spillovers between China’s and foreign 
commodities during the three different periods. The results are presented in Figure 6. As 
can be seen from Figure 6, the volatility spillover network diagrams based on Return are 
qualitatively the same as those based on VaR. The lines of the network before the pan-
demic are relatively sparse, indicating that the risk contagion between commodity mar-
kets is not prevalent. We can see in Figure 6b,e that the number of blue lines in the net-
work diagrams increases sharply, and the nodes of CFCI Textiles, CFCI Chemical prod-
ucts, and CFCI metals are larger in Phase 2 compared to those in Phase 1, suggesting that 
they are the main risk exporters during this period, consistent with the results from Table 4. 
Meanwhile, the increased incidence rate of workers, supply chain disruption, and eco-
nomic embargo measures adopted by many countries had a strong negative impact on 
the global food supply. As a result, the price index of CRB Food plummeted from 324.26 
to 275.91, which significantly accelerated the risk spillover of CRB Food. Therefore, the 
node of CRB Food in Figure 6e became significantly larger. 

 
Figure 6. Net volatility spillover network diagrams for the three periods. Notes: (1) The larger the 
node, the greater the “out-degree” of the variety in risk contagion; (2) the orange line represents 
that the international variety is the risk exporter, and the blue line represents that the Chinese va-
riety is the risk exporter; (3) return’s net volatility spillover network is based on the part where the 
net volatility spillover index is greater than 2; the net volatility spillover network diagram of VaR 
is based on the part where the net volatility spillover index is greater than 5; (4) Panels (a)–(c) are 
the network diagrams based on Return while (d)–(f) are based on VaR. 

In Figure 6c,f, the nodes of the Chinese varieties are significantly reduced while the 
nodes of the foreign varieties become larger, and CRB Industrials and Metals became the 
main risk exporters during the third period. With the worldwide spread of the COVID-19 
pandemic, the main sources of risk spillover were transferred from China’s commodities 
market to the foreign commodities market. 
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4.4. Analysis of the Risk Contagion Mechanism 
To explore the reasons behind the evolution of the volatility spillovers in global 

commodity markets, the economic climate index, interest rate index, money supply, and 
consumer confidence index are considered in the analysis framework. The US manufac-
turing Purchasing Managers Index (APMI) and China PMI index (CPMI), respectively, 
are selected as the representative variables of the economic climate index; London In-
terBank Offered Rate (LIBOR), US Federal Fund Rates (FFR), and Shanghai Interbank 
Offered Rate (SHIBOR) are selected as representative variables of interest rates; China 
M2 growth rate (CM2) and US M2 growth rate (AM2) are selected as representative var-
iables of money supply; China Consumer Confidence Index (CCCI) and the University of 
Michigan Consumer Confidence Index (ACCI) are selected as representative variables of 
the consumer confidence index. 

Table 5 lists the relevant variables and their descriptive summaries. As can be seen 
from the table, the average values of the total volatility spillover index based on yield 
(Index–Return) and VaR (Index–VaR) are about 50, and the standard deviations are 7.21 
and 9.47, respectively. 

Table 5. Descriptive statistics of the related variables. 

 
Index 

–Return 
Index 
–VaR LIBOR FFR SHIBOR AM2 CM2 CPMI APMI CCCI ACCI 

Average 51.07 49.49 1.07 1.02 2.33 0.07 0.14 50.47 52.98 109.68 82.45 
Median  49.15 46.91 0.24 0.18 2.28 0.06 0.13 50.50 52.90 107.80 82.50 

Maximum  67.65 77.46 6.88 5.41 13.83 0.27 0.30 52.30 64.70 127.00 101.40 
Minimum  38.84 34.37 0.05 0.04 0.68 0.02 0.08 42.50 33.10 97.00 55.30 

Standard de-
viation 7.21 9.47 1.50 1.46 0.91 0.05 0.05 1.21 5.22 8.15 12.33 

Skewness 0.49 1.04 1.79 1.81 2.07 2.68 1.17 −3.36 −1.20 0.59 −0.30 
Kurtosis 2.09 3.50 5.24 5.36 16.90 10.04 4.34 22.10 5.60 2.19 2.05 

In addition, the traditional ADF method is used for the unit root test. In order to 
avoid sample deviation and low test efficacy, the DF–GLS method is also used to check 
the stationarity of the variables. The test results show that the variables above are stable 
after taking the first-order difference (still using the names of the original variables), ex-
cept for the interest rate indexes, which are already stable in their original form. 

Using the stable variables, the optimal bivariate VAR models are first used to esti-
mate the interaction between variables to filter their linear interdependence. Then, the 
BDS test is performed in the residual series of the VAR models to test the nonlinear trend. 
As we can see from Table 6, most of the z-statistic results reject the null hypothesis of a 
linear relationship between variables. Thus, the linear causality test is not appropriate for 
these variables. The nonlinear Granger causality test [37] is conducted on the residual 
series using the bandwidth parameter, where ε = k · n−α, k ≈ 7, α = 0.28, and n is the length 
of time series. In this paper, we use ε = 1.6 for the monthly series and ε = 0.7 for the daily 
series. Combining with the BDS test results, we perform a nonlinear Granger causality 
test on these residual variables, which have nonlinear trends, and perform a linear 
Granger causality test on Index–Return (Index–VaR) and APMI. The results are pre-
sented in Table 7.  
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Table 6. BDS test on the residual series of the bivariate VAR models. 

Variables 
Based on Index–Return 

z-Statistic 
Based on Index–Risk 

z-Statistic 
LIBOR 48.65 *** 5.82 *** 48.72 *** 15.13 *** 

FFR 33.83 *** 5.77 *** 32.48 *** 15.26 *** 
SHIBOR 30.7 *** 5.68 *** 30.62 *** 15.37 *** 

AM2 3.92 *** 5.30 *** 4.96 *** 2.20 ** 
CM2 2.01 ** 5.06 *** 1.38 2.11 ** 
CPMI 7.89 *** 1.9 * 7.59 *** 1.72 * 
APMI 1.52 1.65 1.9 * 1.56 
CCCI 0.19 4.84 *** −0.31 2.19 ** 
ACCI 0.17 4.69 *** −0.11 2.09 ** 

Notes: (1) The optimal lag order of each bivariate VAR model is determined based on AIC and SIC 
information criteria; (2) “based on Index–Return” means the bivariate VAR model is constructed 
by Index–Return and other variables, and the numbers are the z-statistics of the residual series; (3) 
***, **, and * indicate the rejection of the hypothesis of “linear relationship “ at the significance lev-
el of 1%, 5%, and 10%, respectively. 

Table 7. Causality test of risk contagion. 

Interest Rate and  
Risk Spillover 

Monetary Supply and 
Risk Spillover 

Economic Expectations and 
Risk Spillover 

Investor Confidence and 
Risk Spillover 

Index(Return)
***

**
 FFR Index(Return)

**
→ CM2 Index(Return)

*
→ APMI Index(Return)

**
→ ACCI 

Index(VaR)
**
← FFR Index(VaR)

*
→ CM2 Index(VaR)

**
→ APMI Index(VaR)

*
→ ACCI 

Index(Return)
*

**
 LIBOR Index(Return)

***
→ AM2 Index(Return)

*

**
 CPMI Index(Return)

***
→ CCCI 

Index(VaR)
*
←  LIBOR Index(VaR)

**
→ AM2 Index(VaR)

***

**
 CPMI Index(VaR)

**
→ CCCI 

Note: ***, **, and * indicate the rejection of the hypothesis that “there is no Granger causality” at the 
significance level of 1%, 5%, and 10%, respectively. 

The Granger causality test results show that the results based on Return are gener-
ally consistent with those based on VaR, which further confirms the stability of the 
models and methods adopted in this paper. According to the causal relationship between 
interest rate and risk spillover, FFR and LIBOR have a one-way causal relationship on the 
spillover index; that is, the change of interest rate will affect the change of risk spillover in 
global bulk commodity markets. In addition, based on Return, there is a two-way causal 
relationship between them; that is, the change of risk spillover in the commodity markets 
also causes the change of interest rate levels of FFR and LIBOR. However, there is no 
Granger causality between the spillover index and SHIBOR. This conclusion shows that 
the changes of FFR and LIBOR have an impact on the commodities market and then 
cause the flow of international capital while SHIBOR does not produce such an effect. 

Combined with the causality results in Table 7, the risk contagion mechanism dia-
gram is summarized in Figure 7. We found that when the volatility spillover level of the 
commodity markets changes under the impact of interest rate level, it will have an impact 
on the money supply of China and the United States; that is, the path of risk contagion is 
“interest rate → commodities → money supply”. From the perspective of economic ex-
pectations, the causality of “China’s economic expectation → commodities → foreign 
economic expectation” shows that China’s economic expectations will have an impact on 
the risk contagion of commodity markets, and then affect the economic expectations of 
foreign manufacturing. This result may be related to China’s status as a world factory 
and manufacturing power. In addition, the risk contagion of commodity markets will 
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also have an impact on the global consumer confidence index, with a one-way causal re-
lationship of “commodity → consumer confidence”. 

 
Figure 7. The risk contagion mechanism. 

5. Conclusions 
Using the network topological analysis of Diebold and Yilmaz [15], this paper ex-

amines the risk contagion effect between China’s and foreign commodity markets by 
constructing the volatility spillover index, focusing on the impact of the COVID-19 pan-
demic on the commodities market, and discussing the risk contagion mechanism through 
nonlinear Granger causality test. 

It is found that energy, grain, and textiles are net risk recipients, and chemical 
products and metals are net exporters of risk contagion in China’s commodities market. 
The industrials sector has significant positive risk spillover to the metal and textile sec-
tors in the international commodities market. On the interaction between China’s and 
foreign commodities, the international market usually transmits risk to China’s market. 
However, during the COVID-19 pandemic, with the sharp increase in the risk contagion 
among Chinese varieties, the metal and textile sectors became the main sources of the risk 
exportation to the international commodity markets. In the third period of the pandemic, 
the volatility spillover of Chinese varieties was significantly weakened; CRB industrials 
and metals became the main exporters of the risk. 

The causality results show that the risk contagion in the commodities market follows 
three paths: “interest rate → commodities → money supply”, “China’s economic expec-
tation → commodities → foreign economic expectation”, and “commodities → consumer 
confidence”. 

These conclusions offer a detailed description of pathways of the risk contagion 
mechanism among global bulk commodities and have great implications for investors 
and policymakers in terms of understanding the transmission of volatility spillovers over 
to money supply, consumer confidence, and economic expectations of foreign manufac-
turing. Because of the risk spillover effects, the occurrence of the COVID-19 pandemic 
sharply increases the scale and intensity of risk contagion in the commodities market, 
and multiple pathways of risk contagion are formed in the global economic system. For 
investors, they should give close attention to the dynamic evolution of these events and 
adopt prudent investment strategies to avoid risk accumulation. Since the commodities 
market is located in a key position in the chains of risk contagion, policymakers should 
attempt to stabilize the supply and demand of bulk commodities and provide active 
guidance on the price expectation of bulk commodities to reduce the risk from shocks in 
external output. At the same time, our results show that interest rate and economic ex-
pectation are the important factors that can accelerate and amplify risk spillover in the 
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commodities market and also cause a wider spread of risk. This also needs the attention 
of policymakers. 

Just as in any market-specific and country-specific study, drawing any conclusion 
from the results in this study to other financial markets and countries should be done 
with care. Because of the limitation of space, this paper has not incorporated more eco-
nomic and financial factors in the analytical framework of risk contagion between the 
commodity markets. The spillovers into other financial markets are also meaningful 
studies to help us realize the services provided by the financial sector to the global 
economy. Time–frequency connectedness and quantile spillovers approaches can also 
shed additional light on the risk contagion mechanism. These are all potential directions 
for future studies. 
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