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Abstract: The current investigation shows a possible new pathway for more efficient and cost-effective
energy-harvesting photovoltaic devices. Our approach could permit all emerging technologies that
are currently used for indoors and smart buildings to go a step forward and could be used for
outdoor applications. The investigated architecture is a very promising geometry especially for
Dye-Sensitized Solar Cells (DSSCs). It turns their main drawback, the lowering of their efficiency
and lifetime when operating at high solar irradiation density, into an asset by increasing the total
active area per horizontal unit area for light harvesting, while preserving the active elements from
degradation and extending durable lifetime. The investigated architecture is based on a symmetric
“U” type geometry, which is constructed by a highly reflective material on the inner surface. Solar
irradiation is reflected internally at the bottom of the construction and splits towards two opposite
sided solar cells; the two cells form a cavity where the solar light multiplies and is successively
absorbed. Consequently, the vertically incoming irradiation is reduced when reaching the vertical
internal sides on which the DSSCs are mounted. Thus, the solar cells operate at low light intensities,
which provide significant lifetime extension and efficiency enhancement. Interestingly, the electrical
energy per effective surface unit, which is produced by the two vertical DSSCs, is at least equal
to that of a standalone, vertically irradiated cell. The advantage of the new architecture is that
protects DSSCs from their degradation and deterioration, although the entire system operates under
high illumination. This makes the cells more efficient outdoors, with a comparable performance to
indoor conditions.

Keywords: solar; photovoltaics; dye-sensitized solar cells; DSSCs; solar trap; vertical geometry;
outdoor applications

1. Introduction

In the global race to reduce greenhouse gas emissions, several renewable energy
technologies have been under intense investigation. These include hydropower [1], tide-
wave-ocean [2], geothermal [3], wind [4], solar photovoltaic [5], solar thermal devices [6],
ambient heat (heat pumps) [7], biofuels [8] and renewable municipal waste [9]. Solar
technologies constitute a sizable chunk given the abundance of solar energy (~1 h of solar
irradiation amounts for annual global energy needs [10,11]). Solar photovoltaics (PV),
which directly convert light into electricity, are well-suited for a variety of indoor and/or
outdoor applications and at different application scales, e.g., small-scale roof-top and
window installations or large-scale solar park facilities.

According to the primary light-absorbing material, photovoltaic technologies are
classified into wafer-based and thin-film technologies. The former consists of (i) crystalline
silicon (c-Si), (ii) gallium arsenide (GaAs) and (iii) III-V multijunction (MJ) solar cells.

Energies 2022, 15, 2486. https://doi.org/10.3390/en15072486 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en15072486
https://doi.org/10.3390/en15072486
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-5000-4312
https://orcid.org/0000-0003-0831-7566
https://doi.org/10.3390/en15072486
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en15072486?type=check_update&version=1


Energies 2022, 15, 2486 2 of 14

Thin film technologies are divided into commercial thin-film PVs and emerging thin-
film technologies [12]. Multijunction cells are the most efficient nowadays with power
conversion efficiencies up to 47.1% [13], followed by single-junction GaAs cells, which can
achieve up to 30.5% [14], c-Si cells that can reach 27.6% [15] and thin film technologies which
perform in the range of 14 to 23.35% [16]. Emerging PV are within 12 to 29.1% [17] with
monolithic perovskite tandem cells exhibiting the leading performance among them [18].

Despite their lower efficiency, emerging PV technologies, such as thin films, per-
ovskites (PPV), organic PVs (OPV) and dye sensitized solar cells (DSSC) have emerged in
recent years as attractive and promising alternatives due to their low cost, simple prepa-
ration methods, low toxicity, abundance of raw materials and easy production. They are
generally more stable and efficient under low light intensities due to their internal ther-
mal processes that can be damaging above one sun illumination, in contrast to c-Si solar
cells [19–22]. Efficient power generation under weak irradiation is essential for indoor
applications, enabling Internet of Things (IoT) devices and “smart” buildings and installa-
tions in cloudy places. More specifically, the power conversion efficiencies of DSSCs and
perovskite solar cells increase dramatically at low light intensities [19]. Cost-effective and
environmentally friendly graphene dotted Pt-free DSSC [23], ruthenium-based DSSCs with
graphene quantum dots [24], efficiently and stable quasi-solid-state dye-sensitized solar
cells (QS-DSSCs) based on N719 dye [25] or high-efficiency bifacial DSSCs [26] have been
considered as promising solutions for DSSCs applications at room light conditions. As a
matter of fact, DSSCs play a great role as indoor power sources [27] and are widely used in
wearable electronics and flexible energy production [28–33]. OPV technology has climbed
up to 26% [34,35], while perovskite technology has increased up to 30% [36] under low
light conditions.

To increase the efficiency of PV cells, various techniques have been investigated, such
as tandem solar cells [37–42] where the light with a shorter wavelength is absorbed by
the outermost material with a wide band gap, while the light with a longer wavelength
is transmitted through and absorbed by the material with the narrower band gap. Many
efforts have been made to improve the performance of tandem thin films for geometric
light trapping [43,44], including combinations with materials in tandem technology [45–48].
Theoretical characterizations of organic solar cells from the literature have been realized
by various methods [49]. Furthermore, a materials-independent method for cell-efficiency
improvement is light trapping with parabolic concentrators [50,51].

In this research work we investigate an alternative geometry that enables the outdoor
usage of DSSCs while retaining their advantages under low light conditions; the proposed
geometry is generic and may be applied to any emerging PV with an optimized performance
at low light intensities. In particular, the proposed architecture splits internally the incoming
solar light and distributes it towards two individual vertical cells. This approach increases
the effective active area without changing the overall cell cross section and reduces the
illumination density. We report on a fill factor enhancement of the included cells of nearly
90% to 96% under direct sun illumination and an efficiency enhancement for each cell
as well.

Dye Sensitized Solar Cells

The first DSSC PV cell was introduced by Brian O’ Regan and Michael Grätzel in
1991 [52]. It is basically an electro-chemical cell with a mesoporous and spongy dye-coated
semiconductor. A DSSC consists mainly of five different parts: (i) a conductive thin film on
a soda lime glass substrate as a photoanode, (ii) a nanocrystalline semiconductor thin film,
(iii) a dye as a light-harvesting element, (iv) an electrolyte for liquid state devices or a hole
transport material for a solid state DSSC and (v) a platinum or carbon coated conductive
glass as a counter electrode. The two electrodes are sealed with a sealing gasket.

The operational process of DSSCs starts with the photon absorption by a dye sensitizer.
Excited electrons from the HOMO to the LUMO state of the dye are transferred to the
conduction band of the semiconductor creating a charge separation between the dye
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and TiO2. Oxidized dye is regenerated by electrons from the HOMO state of the redox
electrolyte, which in turn is regenerated by the initially produced electrons that have
travelled through the external circuit from the photoanode to the platinum hole transport
layer on the counter electrode. The LUMO of the dye must be higher than the conduction
band of TiO2, while the HOMO of the dye should be lower than the redox potential of the
electrolyte or the hole transport material for better dye regeneration.

DSSCs can be fabricated on a variety of substrates such as glass, flexible or polymer ma-
terials. Blade coating, spin coating, spray coating, electro-hydro-dynamic spray deposition,
dip coating, brush painting, screen printing and sputtering are various fabricating methods
of the semiconductors for emerging PV technologies. The semiconductor thin film [53] is
photosensitized by dies such as N719 [54], N749 (black dye) [55], N3 [56], CYC-B11 [57] and
C106 [58] that have been considered as the most suitable materials for DSSCs, while there
are many other types of organic and metal free dyes. Electrolytes could be liquid or solid
charge transport materials [59], while in relation to the hole transport layer of the counter
electrode, platinum [60] is the most suitable coating for achieving high power conversion
efficiencies due to its outstanding electrocatalytic properties.

2. Experimental Section
2.1. Materials and Fabrication Methods

Medium scale (1.9 cm × 1.4 cm in size) nanostructured TiO2 films were deposited
on soda-lime glass substrates with FTO (fluorine doped tin oxide) as a conductive layer
(Greatcell solar TEC 7 glass plates, 3 mm thickness with a sheet resistance of 7 Ω/sq and
75–80% transmittance in visible light). FTO glasses were cleaned with a soft detergent
followed by ultrasound treatment first in acetone (about 10 min), then rinsed with ethanol
and immediately immersed in ethanol for a 10 min ultrasound. The FTO glasses rinsed
with DI water were then heat treated [61] on a hot plate for 10 min at 125 ◦C for drying,
then at 450 ◦C for 30 min. The TiO2 paste was ground in a mortar for at least 30 min
by adding it into 7 gr TiO2 nano-powder (Aeroxide TiO2 P25, 20–25 nm particle size) in
HNO3 [62–64] aqueous solution 1.5M in 1 mL increments while it was ground for the
mechanical separation of the aggregated TiO2 particles until a uniform paste was achieved.
The uniform paste was put in an ultrasonic bath for 5 min to breakdown any agglomerates
of TiO2 nanoparticles that were not broken up. Finally, three drops of a non-ionic surfactant
Triton-X were added as a modifier of the paste to facilitate the spreading of the paste,
reducing the surface tension and the formation of cracks. Photoanode electrodes were
pre-treated in a TiCl4 aqueous solution (Acros Organics, Titanium (IV) chloride, 99.9%, MW
189.71 g/mol). For the TiCl4 treatment, the working electrodes were immersed in a 40 mM
aqueous TiCl4 solution at 70 ◦C for 30 min, rinsed with DI water after cooling, cleaned with
acetone on the opposite side of the FTO glass to take away any remaining particles, then
dried for 5 min on a hot plate at 50 ◦C [65–67]. The TiO2 paste was deposited on the working
electrode by screen printing that results in more uniform coatings [68–70]. A screen mask of
1.4 cm × 1.9 cm was developed on a mesh T-100 (Saatilene hi-tex) polyester screen printing
fabric with a mesh count of 100 T mesh/cm, a mesh opening of 55 µm, a nominal thread
diameter of 40 µm, a 31% open area, a fabric thickness of 63 µm, a theoretical past volume
of 20 cm3/m2 and a specific cross section of 0.126 mm2/cm. The distance between the
pre-treated FTO glass and the mesh T-100 was adjusted to 3 mm. The paste was deposited in
a single step on the working electrode by a spatula. A second layer of paste was deposited
after 5 min since the first layer had to be calm and dry. The final electrodes were annealed
at 500 ◦C for 45 min by increasing the temperature stepwise (5 min at 125 ◦C, 5 min at
250 ◦C, 5 min at 350 ◦C, 15 min at 450 ◦C, 15 min at 500 ◦C). The “double layer” TiO2 film
was treated again by immersion in a 40 mM TiCl4 solution (post treated photoanode) as
described in the pre-treatment procedure and then sintered at 500 ◦C for 45 min as in the
previous step. The nanocrystalline TiO2 photo electrodes were warmed at 80 ◦C and they
were immediately immersed in a 0.5 mM N719 dye ethanol solution (Greatcell Solar CAS
No 207347-46-4, powder) at room temperature for 24 h to ensure complete sensitizer uptake.
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Upon extraction from the solution, the samples were thoroughly rinsed with methanol
to remove excess dye. Counter electrodes with a size of 2.5 cm × 2.5 cm were drilled
with a 3 mm diameter drill and heat treated as the photoanode electrode. Two drops of
Greatcell Solar Counter Electrode Solution—Isopropanol, Dihydrogen hexachloroplatinic
(IV) hydrate with a charge transfer resistance (Rct) 6.08 Ω × cm2 were spread on the FTO
surface and then annealed at 400 ◦C for 15 min. For the assembly of the electrodes, a low
temperature thermoplastic sealant (Greatcell Solar) with a melting point at 93 ◦C and a
thickness of 50 µm was used. The sealant was cut into 2.0 cm × 2.5 cm pieces with an inner
hole of 1.4 cm × 1.9 cm that was placed between two electrodes on a hot plate at 110 ◦C for
sealing. A high-performance solution of acetonitrile, 1-Butyl-3-methylimidazolium iodide,
valeronitrile, 4-tert-butylpyridine and lithium iodide, iodide (Greatcell Solar EL-HPE) was
used as the electrolyte. The electrolyte was filled into the cell through the counter electrode
holes using a pipette. The holes were sealed at the back of the counter electrode with small
pieces of low thermoplastic sealant and a microscope glass (2.0 cm × 2.5 cm) using a hot
iron bar.

2.2. Electrical Characterization

An adjustable solar simulator power supply (Sciencetech Inc. 550-200-PS, London,
ON, Canada) was used for the electrical characterization of the fabricated DSSCs with an
internal xenon lamp (Osram xbo 150 w/cr, Berlin, Germany) for irradiance densities of up
to 100 mW/cm2 (the equivalent of one sun at air mass AM1.5). The incident photon energy
power was measured by a DeltaOhm HD2302.0 light meter with an LP471 RAD probe with
a resolution of 0.1 mW/m2 in the spectral range of 400–1050 nm. A source measurement
unit (Keithley 2601 SMU, Cleveland, OH, USA) was used for conducting measurements in
the 2-wire mode. Keithleys’ extracted data were processed by a program in Labview where
the appropriate parameters were calculated.

2.3. Experimental Procedure

DSSCs were implemented in ambient conditions. The aim was to find an easy way
to implement cells on a larger active surface area as usual (medium scale DSSCs). A
total of 170 DSSCs were developed and successfully characterized with various TiO2
coating techniques (doctor blade, spin coating, screen printing) to achieve the construction
of medium-sized cells, with the best performance, reproducibility, and stability. The
efficiencies of the cells that were fabricated with the doctor blade and spin coating methods
were up to 2.6% and 3.1%, respectively. The screen printing method proved to be the best in
relation to their stability, efficiency (up to 3.06%) and active surface uniformity, regardless
of their size. The TiO2 paste coating was deposited in one, two or three steps successively
to fine tune the screen-printing procedure. The method with the double-layered film was
more efficient.

A total of 53 screen printed cells were fabricated in two different processes of the
thin nanocrystalline TiO2 layer for photoanode preparation. In the first one, titanium
isopropoxide-TTIP (C12H28O4Ti) was used (24-cells) for TiO2 post-treatment, while in the
second method titanium (IV) chloride (TiCl4) was used as a post-treatment process (29-cells).
The photoanodes of all cells were pre-treated with TiCl4 solution.

The TTIP method results did not have the proper stability with low efficiencies and
had problems in both the TiO2 post-treatment and TiO2 dye adhesion. On the contrary, the
TiCl4 method was more stable. The XRD analysis of the final nanocrystalline TiO2 layer
showed that it was mainly constituted from TiO2 anatase with a few rutile and brookite
(Bruker Advance8 system). Optical profilometry aimed to find an appropriate average
thickness of the TiO2 layer of about 20 µm (Polytec TMS—1200 TopMap). Transmittance
of the fabricated photoanodes, cells and dye absorber were also taken by FRMonitor-
ThetaMetrisis (Peristeri, Greece). Irradiation cycles of the fabricated final cells were made
to improve their stability at different power intensities over time.
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For our research purposes, a fine reflective surface had to be implemented. Important
parameters for the selection of this material were the capability of producing different
shapes by an easily scalable process, as well as the total cost per surface unit. We ended up
selecting Silver Plated Brass (SPB) instead of pure silver as a low cost and more obtainable
solution in the case of larger DSSC arrays. The purpose of this surface was to reflect the
remaining solar irradiation that passes through a semitransparent DSSC, not only back to
the cell itself for producing additional free charge carriers but also towards the opposing
cell in order to exploit the entire energy of the light beam via multiple reflections. At
the same time, the SPB surface acts as a UV absorber that protects certain elements of
the DSSCs.

Figure 1a depicts a medium scale (1.9 cm × 1.4 cm) DSSC cross section.
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Figure 1. (a) Cross section of a dye sensitized solar cell, (b) Light path into the proposed PV case; the
golden arrows depict schematically the light path of the vertically incoming solar beam, its splitting
and the multiple reflections.

The cell consisted of a 3 mm glass substrate with an FTO layer as a conductive surface,
a thin nanocrystalline TiO2 layer that was pre/post treated by the TiCl4 aqueous solution, a
dye for energy absorption, a 50 µm sealant as a spacer between the electrodes into which
its inner gap the electrolyte I−/I3− had to be injected and a thin Pt layer as a hole transport
layer on the FTO-treated back contact electrode. Finally, two pieces of the same sealant
were used for cell sealing with a microscope glass (1 mm thickness) as a cover glass. The
method by which the liquid electrolyte was injected into the inner gap of the cell as well as
the Pt deposition on the counter electrode by drop casting was one of the reasons why the
the poor quality of the constructed cells was reinforced.

Figure 1b depicts a cross section of the geometry as an alternative light trap for the
improvement of DSSCs such as dye sensitized solar cells. This kind of cell case (DSSC-
case/PV case) was designed and sketched by a CAD program and built by a 3D printer
with ABS material as well. SPB was stretched into the same design geometry and was
integrated inside the PV case. Two prominences were designed to the left and to the right
of the PV case to support the DSSCs. Photoanodes were exposed to radiation through two
internal windows with the same surface area, while appropriate pieces of SPB were placed
at the back of the DSSC cells as a light surface reflection. The light path of the radiation into
the PV case is also shown in Figure 1b. As the distance (a) between the cells was 1.4 cm
(upper area 2.52 cm2) and the vertical length (b) was at 2 cm equal to the cells’ height and
they were kept constant, the internal angles θo and ϕo as well as the (c) length (Figure 1b)
were calculated for the maximum light path before the photons escaped from the PV case.
The main objective was the absorption of the energy from each cell gradually every time
photons impinged on them.
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The PV case was designed with a floor plan surface equal to the active area of each cell
for a better and easier comparison of the results. Accordingly, the incident photon energies
were equal in the three cases of the electrical characterization.

The electrical characterization of the DSSCs was performed under 1.5 AM at different
intensities of irradiation in all steps. At first, the DSSCs were characterized as alone cells
under 1 sun illumination (standalone cell—Figure 2a). As a second step, a piece of SPB
(2 cm × 2.5 cm) was placed at the back of each cell mounted with binder clips and the same
measurements were taken (SPB cell, Figure 2b). Finally, both cells were placed vertically
into the support “ears” of the PV case with SPB pieces at the back of the counter electrodes
(double cell architecture, Figure 2c). SPB pieces had the same dimensions (2 cm× 2.5 cm) as
above with a larger surface than the active area of the cells, thus minimizing any irradiation
leaks due to the scattering of light through the glass substrate.
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(e) experimental architecture (PV case) with mounted DSSCs.

At first, cells alone and SPB cells were characterized under 500, 750 and 1000 W/m2

power densities to investigate the effect of silver-plated brass on the characteristic param-
eters of the cells. In addition, the cells were measured under 200, 500 and 1000 W/m2

power densities as standalone cells (without SPB at the back of them), as well as into the
current PV case under the same variable illumination (Figure 2a,c). Moreover, silver-plated
brasses were placed to the left and to the right of the double cell architecture to reduce
irradiation loses and to promote multiple reflections between the two sides of the PV case,
thus producing more charge carriers in the cells.

3. Results and Discussion

SPB reflectivity was measured by an FR Monitor device (ThetaMetrisis SA) in the
range of 200–900 nm. (Figure 3a). It came out that at low wavelengths SPB absorbed
more radiation, while for wavelengths above 350 nm the absorption was less and the
reflection increased, thus rendering the SPB suitable for the cells’ absorption. This was an
SPB advantage since UVA exposure plays a critical role and DSSC cells degrade quickly
under UV illumination. The authors think that the cells’ performance degradation occurred
because of the TiO2-photocatalyzed attack on the electrolyte which led to the consumption
of the triiodide in the electrolyte, while wavelengths below 390 nm cause direct band
gap excitation of the TiO2 semiconductor [71,72]. Moreover, N719 that was used as a dye
absorbed photons in the range of 350 to 600 nm as shown in Figure 3b, suggesting that
silver-plated brass is an appropriate material for the reflected irradiance.
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A total of 46 DSSC devices were fabricated using the screen-printing method by
different photoanode treatments with N719 dye as a sensitizer while 7 DSSCs were with
fabricated with N749 dye (Table 1). They were measured as standalone cells at an incident
power of 1000 W/m2. Their power conversion efficiency (PCE) and fill factor (FF) were
measured to be up to 3.06% and 0.33 for the N719 sensitized cells, while cells with N749 dye
were measured up to 2.23% and 0.36, respectively. Although the devices were sensitized
with either N719 or N749 dyes they had the same electrical response, while their results
were similar.

Table 1. DSSC screen-printed fabricated devices.

Dye Number
of Cells

Active
Area (cm2)

Pin
(watt/m2)

Best Performance

FF PCE (%) Jsc (Max)
(mA/cm2)

N719 46 2.52 1000 0.33 3.06 9.9
N749 7 2.52 1000 0.36 2.23 13.4

In this work we present the electrical measurements of two DSSCs with N719 in the
role of the absorber. Figure 4 depicts the enhancement of the characteristics of a successfully
fabricated cell with N719 as the dye sensitizer. An improvement of 0.4% to 0.48% to
PCE and 0.02 to 0.05 to FF (20% to 25% and 9% to 14% increase, respectively) at variable
irradiation densities was observed when SPB was added at the back side of the cell (Table 2).

Table 2. Results of the effect of SPB on the cells’ performance.

DSSC Pin (watt) Active Area (cm2) PCE (%) FF Isc (mA) Voc (V) Jsc (mA/cm2)

Cell
(N719)

500 2.52 2.51 0.38 12.98 0.64 5.15
750 2.52 1.92 0.32 17.23 0.65 6.84
1000 2.52 1.60 0.29 20.44 0.66 8.11

SPB cell
(N719)

500 2.52 2.99 0.44 13.41 0.64 5.32
750 2.52 2.37 0.37 18.55 0.66 7.36
1000 2.52 2.00 0.32 23.21 0.67 9.21
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SPB addition caused an improvement of 3% to 13% (500 to 1000 W/m2) in current
density (Figure 4c) while an increase of 0.8 to 2.7 µA per watt (Figure 4d) was observed. This
demonstrates that part of the incident light that was not absorbed in the first pass through
the cell was reflected back to the cell from the SPB mirror leading an extra generation of
charge carriers and thus photocurrent.

The greatest improvement, however, was observed when these devices were illumi-
nated at a lower power. Figure 4a,b depict the effect of the illumination power (500, 750
and 1000 W/m2) in devices with and without SPB, demonstrating in both cases the severe
performance drop upon increasing the input power. Specifically, PCE dropped by 36%
between 500 and 1000 W/m2, FF dropped by 22%, while Voc marginally increased by 4%.

The stability of the devices and measurements was verified by performing thirteen
consecutive measurement cycles within the power density range 200–1000 W/m2, with
full reproducibility of results observed. The errors estimated from these measurements
were less than the point sizes in the curves; in particular, the errors were of the order of
10−3 for all parameters. These results directly point to DCSSs being suitable for utilization
in indoor applications only. Due to the mechanical stress of the DSSCs during the electrical
characterization in different ways as standalone cells, or SPB cells and also into the PV case,
it was not possible for each cell to complete a whole measurement cycle. Therefore, other
fabricated cells, with the same recipe, were characterized for the rest of our research. At
the final step of our research, cells were characterized as standalone cells under one sun
variable illumination and then placed into the investigated architecture (PV case) to be
measured under the same variable power densities too.

Figure 5 provides the comparison of the I-V curve performance at 1000 W/m2 illumina-
tion, in between cell1 and cell2 as standalone cells (without SPB behind them) and the same
cells as cell1/PV case and cell2/PV case after their placement into the new architecture (PV
case). The corresponding parallel shunt resistance Rsh, which is shown with the slope of the
I/V near the short circuit current point, was calculated according to the literature [73–75]
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and it was significantly lowered in the case of standalone cells compared to the case of the
new architecture (cell1/PV case, cell2/PV case) where a higher shunt resistance (lower
1/Rsh factor) was observed.
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Equations (1) and (2) show the way the shunt and series resistance affected the fill
factor (FF) of the DSSCs and gave a new value to it (FF′). It came out that the higher shunt
resistance is, the lower the influence on the fill factor of the cells, while the higher series
resistance is, the greater the effect of the fill factor is. This improvement of Rsh meant that
less electron-hole recombination took place in the photoanode layer with a reduction in
charge carriers’ loss. The increased value of Rsh resulted in an improved fill factor (1), while
the series resistance (Rs) was not affected.

FF′ = FF (1− 1
Rsh

) (1)

FF′ = FF(1− Rs) (2)

FF =
Jmp×Vmp

Jsc×Voc
(3)

PCE =
Pmp
Pin

× 100% =
Jsc×Voc× FF

Pin
× 100% (4)

The increase in the fill factor (3) caused higher efficiencies (4) only in the case where Jsc
and Voc remained unchanged. However, in our case (Figure 5) when the cells were placed
into the PV case, Voc was nearly the same, while the current density (Jsc) was reduced
noticeably due to the lowering of the power density inside the PV case. Jsc was reduced
from 12.3 and 13.3 mA/cm2 for cell1 and cell2, to 3.4 and 3.3 mA/cm2, respectively i.e., a
reduction of about 72% and 75%, respectively. The power density at the internal windows
of the PV case was measured with the pyranometer and it was found to be nearly 240 W/m2.
This improvement in the fill factor caused an enhancement in the PCE due to the power
density reduction.

The results of the electrical characterization under variable power densities (200, 500,
1000 W/m2) of the cells as standalone and in the PV case are also presented in Figure 6.
The values of the corresponding parameters are shown in Table 3.
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Figure 6. Characterization results of alone-cells and in the PV case also. The PV cases’ impact on the
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Table 3. Electrical characterization results for alone-cells/cells in the PV case.

DSSC Pin
(watt)

Active Area
(cm2)

Voc
(V)

Jsc
(mA/cm2)

PCE
(%) FF Pmax

(mW)

cell 1
200 2.52 0.64 3.50 6.38 0.57 3.22
500 2.52 0.67 6.90 3.67 0.40 4.62

1000 2.52 0.68 12.31 2.48 0.30 6.26

cell 2
200 2.52 0.64 3.37 6.14 0.57 3.09
500 2.52 0.66 7.52 4.27 0.43 5.39

1000 2.52 0.67 13.27 2.59 0.29 6.53
cell 1 PV case 1000 2.52 0.65 3.38 6.30 0.57 3.18
cell 2 PV case 1000 2.52 0.64 3.27 5.90 0.56 2.97

In the measurements of stand-alone cells (cell_1_PCE, cell_2_PCE) the efficiency was
improved from 2.48% and 2.59% under 1000 W/m2 to 6.38% and 6.14% under 200 W/m2,
while the corresponding fill factor (cell_1_FF, cell_2_FF) was improved from 0.30 and
0.29 to 0.57 for both cells, respectively (similar to indoor applications). After their placement
into the PV case, with the power density of the irradiation of the hole device at 1000 W/m2

and at the internal windows of PV case at 240 W/m2, the final efficiency of each cell
(cell-1-case-PCE, cell-2-case-PCE) reached the values of 6.30% and 5.9%, while the fill factor
(cell-1-case-FF, cell-2-case-FF) attained the values of 0.56 and 0.57, respectively (Figure 6a
and Table 3). Although the whole geometry was under 1000 W/m2, the efficiencies of both
cells that were placed inside were increased due to the redundancy of the power irradiation
at nearly the same values that were measured in the case of 200 W/m2 as standalone cells.
The efficiency of each cell was enhanced by nearly 137% to 157% under one sun direct
illumination, respectively.

Figure 6b presents the open circuit voltage (Voc) and maximum power (Pmax) fluctu-
ation of each cell before and after their placement into the PV case. Voc did not change
significantly in and out of the PV case. The difference in the Voc values was about 30 mV
for each of them. The cells’ maximum power (cell_1_Pmax, cell_2_ Pmax) was reduced
under variable power densities of 1000–200 W/m2 from 6.26 mW and 6.53 mW to 3.22 mW
and 3.09 mW, respectively (similar to indoor applications). After their placement into the
PV case with the density of the power devices below 1000 W/m2, they behaved as if they
were standalone at about 200 W/m2 with the values of the maximum power point (Pmax) of
3.18 mW and 2.97 mW, respectively. As mentioned above, the power density at the internal
windows of the PV case was found to be about 240 W/m2. Consequently, the behavior of
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the in the PV case was the same as they were directly under a cloudy sun with a power
of density of 200 W/m2 despite the fact that the whole device was illuminated with one
sun irradiation.

It is noteworthy that while both cells were placed into the PV case, the maximum
power produced by them reached the value of 6.15 mW (3.18 mW + 2.97 mW), which was
nearly the same as the maximum power of each cell alone under a 1000 W/m2 power
density (6.26 mW for cell1 or 6.53 mW for cell2).

In addition, calculating the total efficiency of the devices with the two sub-cells placed
into Equation (4) with a total power generation of (3.18 + 2.97) mW = 6.15 mW, an active
area of 2.52 cm2 and an incident power of 1000 W/m2, we ended up with an efficiency
of 2.44% which was nearly the same as in the occasion of a standalone DSSC under one
sun. The impact of the SPB was limited only to the implementation of a solar trap that
reflected the incoming solar radiation density on the active areas of the cells resulting in
solar density degradation as well.

One might wonder about the reason why the investigated architecture is useful, since
the total energy production per unit area was equal to the case of a standalone DSSC
under one sun illumination. What is the benefit of the PV cases? For this question, the
answer is simple. The effect of the new architecture was the improvement in the fill factor
at high values ensuring the stability of the solar cells, while the whole device remained
under one Sun illumination. Therefore, instead of using a simple dye sensitized solar
cell outdoors, it is possible, via this architecture (with an equal horizontal surface area
under one sun), to produce equal energy, thus extending their lifespan and protecting
them from their degradation under high density illumination. This means that the current
investigated architecture protects DSSCs when they are exposed to high solar densities
outdoors and could be an important step for more green energy on the rooftops of buildings.
Another important issue is that current investigated architecture in the future will follow
any improvements in DSSC technology that degrades at high solar densities.

Additionally, masks with different apertures could also be placed on the top of stan-
dalone cells and the PV case to investigate more efficient alternative solutions with the
specific architecture.

4. Conclusions

In this study, an alternative vertical PV architecture that can achieve low-light illumi-
nation conditions in outdoor applications, and the full implementation of solar energy was
proposed. This architecture is of particular relevance to DSSCs’, which operate better under
low light illumination. Therefore, trivial DSSCs were used as a demonstration and proof of
concept. The used DSSCs were electrically characterized as standalone cells under one sun
illumination, as well as components in the vertical architecture (DSSC-case/PV case). The
design of this architecture was adjusted for optimum light reflection toward the active areas
of the cells, while scalable Silver-Plated Brass (SPB) back-reflectors were placed behind the
cells in order to exploit the entire incident solar energy as well as UV-protection absorbers.

The present architecture converts the horizontal surface exposed to solar irradiation
into vertical surfaces in which the incident irradiation intensity onto the vertical cells is
substantially reduced, resulting in the cells’ outdoor performance to achieve an increased
indoor efficiency. This architecture converts DSSC’s disadvantages, including their low
efficiency, into an advantage for their outdoor usage. Their efficiency more than doubles,
and the fill factors’ enhancement is substantial. This results in more efficient DSSCs with an
extended lifespan and protection for outdoor applications, protecting them from the sun’s
high irradiation and preventing their degradation and deterioration. It is very important
that the total electrical power that is produced using this architecture is almost equal to the
corresponding power energy generated by a standalone cell that simultaneously benefits
from the aforementioned advantages.
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