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Abstract: In the face of anthropogenic global warming the design and synthesis of materials, which
enable energy transfer processes using sunlight as an energy source, are of high interest. Perylenedi-
imides are a highly absorbing class of chromophores suitable for sunlight absorption and conversion.
Therefore, metal–organic frameworks (MOFs) and coordination polymers (CPs) with incorporated or-
ganic perylene chromophores are highly interesting materials both for applied, but also fundamental,
photophysical research. MOFs/CPs have the advantage of a modular adjustability of interchro-
mophoric distances and angles, and the choice of metal nodes can be used to further tune the material
towards the desired photophysical properties. In the present paper, we present a study using a
reported organic perylenediimide (PDI) chromophore (H2tpdb) as a linker to be incorporated into
coordination polymer and test towards applicability within the photochemical 1O2 generation. In
detail, a novel zinc 2D -coordination polymer Zn(tpdb)(DMF)3 is reported, which is synthesized
using a solvothermal synthesis with Zn(NO3)2 and a ditopic organic perylene linker. Both the linker
and Zn-CP are fully characterized, including SC-XRD, showing a strong aggregation of tightly packed
chromophores in the solid state. The photophysical properties are examined and discussed, including
the observed shifts within the absorption spectra of the CP are compared to the linker in solution.
These shifts are mainly attributed to the for PDIs known H-type aggregation and an additional charge
transfer in the framework structure, causing a limited quantum yield of the emission. Finally, the
photosensitization of triplet oxygen to singlet oxygen using 1,3-diphenylisobenzofurane (DBPF) as
a trapping agent is investigated both for the free linker and the Zn-CP, showing that the perylene
chromophore is an efficient photosensitizer and its activity can, in principle, be retained after its
incorporation in the coordination polymer.

Keywords: perylene diimide; metal–organic framework; singlet oxygen; photosensitizer; H-type ag-
gregation

1. Introduction

In the light of anthropogenic global warming, a conversion of greenhouse gases (e.g.,
CO2 and NOx) into valuable chemicals is the focus of current research [1]. In nature,
light-absorbing dyes, such as chlorophyll, are utilized to convert light into energy-rich
organic compounds, primarily carbohydrates, from low-energy inorganic substances, such
as carbon dioxide and water [2,3].

Therefore, translating the fundamental reactions of natural photosynthesis into an
efficient, robust, and economic artificial leaf is a significant task [2,4,5]. In order to be able
to design and fabricate high-performance synthetic materials, a deep understanding of
related energy transfer processes inside these compounds is of utmost importance.

Metal–organic frameworks (MOFs) are a class of porous, polymeric, and multifunc-
tional hybrid materials. They consist of metal ions and organic bridging ligands, and
therefore the respective research is located at the interface between molecular coordination
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chemistry and materials science [6]. In the presented study, the metal ions serve as nodes of
a crystalline lattice. They govern the structure and topology of the material n combination
with the directionality of the organic linkers [7].

Additionally, the wide range of possible metal nodes as well as the different design
concepts of the organic linker molecules offer a variety of magnetic, electrical, optical,
and catalytic properties that can be incorporated into these materials. For instance, MOFs
have been applied in catalysis, gas storage, telecommunications, photovoltaics, or sensor
technology applications [8–13].

With respect to the photochemical properties of the material, MOF chemistry offers
a precise control of pore size and interchromophoric distances and angles, therefore, in
principle, providing synthetic tools to fundamentally study energy-transfer processes and
the reactivity of the material [9,14].

Concerning the choice of chromophore linkers, rylene dyes are a very prominent
class of organic dye molecules. Initially applied for industrial use as red dyes and as
pigments in automotive finishes [15], they became widely used in manifold industrial
applications as well as in modern research [16], due to their outstanding chemical, thermal,
and optical stability [17–19]. In addition, they exhibit remarkable optoelectronic properties,
e.g., as excellent light-harvesting materials, since they strongly absorb visible light with
high fluorescence quantum yields in solution [20]. Furthermore, they possess a large
conjugated π-system, as well as high molar absorption coefficients, which results in strong
intermolecular coupling [21].

One of the potential photochemical applications of perylene dyes is the photosensitized
singlet-oxygen generation, e.g., within photodynamic therapy [22]. In this process, the
photosensitizer, in this case the perylene chromophore, is excited and transfers the absorbed
energy to a triplet oxygen 3O2 to generate singlet oxygen 1O2 [23]. As a consequence, the
generated 1O2 has a higher reactivity and electrophilicity than 3O2, which makes it more
applicable in photochemical and photobiological processes, since the singlet oxygen rapidly
reacts with nearby biomolecules leading to destructive reactions, which then causes, for
example, the death of cancer cells [24,25]. Such an incorporation of organic chromophores
into a rigid framework for photosensitization reactions is already successfully applied for
many porphyrin-based metal–organic frameworks [26–28].

Herein, we present the synthesis and characterization of a new 2D zinc coordination-
polymer Zn(tpbd)(DMF)3 with the already known perylenediimide (PDI)-based linker
molecule 1,6,7,12-tetrachloroperylenediimide-N,N’-di(benzoic acid) (H2tpdb). Similarly
Hupp et al. reported a crystalline PDI-zinc framework in 2009, with a different powder
pattern, and therefore crystal phase, to the material reported in the present work [29]. Single-
crystal X-ray diffraction analysis (SC-XRD) of the materials revealed parallel chromophore
packing featuring interchromophoric distances of 3.6 Å, showing a red and blue shifting of
the absorption band known indicating as head-to-head aggregation.

Finally, the material was tested in the photosensitization reaction of triplet oxygen to
generate singlet oxygen using 1,3-diphenylisobenzofurane as 1O2 trapper, proving that
Zn(tpdb)(DMF)3 can be used as an effective material in photochemical reactions. This
makes the herein presented material the first example of a PDI-based coordination polymer
that is used for photosensitized singlet-oxygen generation.

2. Experimental
2.1. Materials and Method

All utilized chemicals were received from common chemical suppliers and were used
without further purification. All air-sensitive reactions were carried out under argon at-
mosphere (Argon 4.6) using the standard Schlenk techniques. The determination of the
elemental composition was performed by the flash combustion method at 1800 ◦C, on-
ducted by the Microanalytical Lab at the Technical University of Munich. NMR spectra
were measured on a Bruker AV400 at ambient temperature at 400 MHz. UV/Vis spec-
troscopical measurements in solution were performed using a PerkinElmer Lambda 365
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UV/Vis spectrometer equipped with a xenon lamp. UV/Vis spectroscopical measurements
for solid-state samples were performed on a SHIMADZU UV-3600 Plus with Ba2SO4 as
blank. Solution as well as solid-state fluorescence measurements were carried out using
an Edinburgh Instruments FS5 spectrofluorometer equipped with a xenon lamp. BET
measurements were performed on a 3Flex Physisorption from Micromeritics Instrument
Corp. (Norcross, GA, USA). Single-crystal XRD measurements were conducted in the
SC-XRD laboratory of the Catalysis Research Center at the Technical University of Munich
(for details cf. Supplementary Materials).

2.2. Synthesis

1,6,7,12-tetrachloro-perylene-3,4,9,10-tetracarboxylic anhydride 1: the synthesis was
performed according to a literature-known synthesis [30]. In a 100 mL Schlenk flask, 1 g of
perylene-3,4,9,10-tetracarboxylic acid anhydride 1 (2.5 mmol, 1 eq.) and 0.17 g of iodine
(0.68 mmol, 0.27 eq.) in 6.55 mL of chlorosulfonic acid were stirred for 2 days at 70 ◦C
under argon atmosphere. After completion, the reaction mixture was slowly poured into
500 mL of ice water. Subsequently, the precipitating orange solid was filtered, washed with
water, and dried to produce a bright orange powder (1.32 g, 2.49 mmol, 99%). 1H-NMR
(400 mHz, CDCl3): δ (ppm) = 8.75 (s, 4H).

1,6,7,12-tetrachloroperylenediimide-N,N’-di-benzoic acid (H2tpbd) 2: the synthesis
was performed with a modified literature synthesis [31]. In a 100 mL round bottom flask,
1 g of 1 (1.89 mmol, 1 eq.) and 3.88 g of 4-aminobenzoic acid 3 (28.3 mmol, 15 eq.) were
dissolved in 25 mL of propionic acid and stirred for 2 days at 160 ◦C. After the completion
of the reaction, the reaction mixture was poured into 100 mL of water and subsequently
filtered off. The filtrate is washed with 100 mL of water/methanol (1:1), and afterwards the
orange solid was dried to constant weight (1.1 g, 1.89 mmol, 79%).

1H-NMR (400 mHz, DMSO-d6): δ (ppm) = 13.20 (s, 2H, COOH), 8.64 (s, 4H), 8.16–8.12
(m, 4H), 7.61–7.56 (m, 4H).

Zn(tpdb)(DMF)3 3: in a 4 mL screw-cap vial, Zn(NO3)2 (15.0 mg, 0.05 mmol, 3.8 eq.)
and H2tpbd 2 (10.0 mg, 0.013 µmol. 1 eq.) were dissolved in 3 mL of DMF. Afterwards, the
solution was sonicated and placed for 96 h at 90 ◦C in an oven. The precipitated solid was
then filtered and dried to constant weight to produce orange needles of Zn(tpbd)(DMF)3 3
(4.13 mg, 0.0039 mmol, 30%).

Elemental analysis (%) calc. for Zn(tpdb)(DMF)3: C, 53.17; H, 3.17; N, 6.66; Zn, 6.22;
Cl, 13.49; found C, 53.57; H, 2.78; N, 6.03; Zn, 6.2; Cl, 13.0.

2.3. 1O2 Evolution Experiments

In a glovebox, a 20 mL phototube was filled with 1.25 mg (4.62 mmol, 1 eq.) of DBPF
and 1 eq. of the respective photosensitizer 2 or 3. A total of 5 mL of dried acetonitrile
was added with argon counter flow, and subsequently the suspension was stirred for
30 min in the dark to achieve the adsorption/desorption equilibrium under an oxygen
atmosphere. Afterwards, an LED with a wavelength of 512 nm was used and at defined
time intervals, aliquots of the reaction solution were obtained, diluted, and investigated
byUV/Vis-spectroscopy.

3. Results and Discussion
3.1. Linker and CP Synthesis

The PDI-based linker 2 was synthesized in a two-step synthesis procedure starting
from perylene-3,4,9,10-tetracarboxylic acid anhydride (Figure 1). In the first step, the bay
area positions of the perylene core were chlorinated to twist the aromatic system and later
enhance the solubility of the linker for CP synthesis [32]. Subsequently, 1 was reacted with
4-amino benzoic acid to obtain an orange powder of H2tpbd 2 in good yields of 79% and
excellent purity.
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Figure 1. Three-step synthesis procedure to obtain 3, starting from perylene-3,4,9,10-tetracarboxylic
acid anhydride.

Then, 10 mg of 2 were used in a solvothermal synthesis reaction towards novel
coordination polymers with 3.8 eq. of Zn(NO3)2 in 3 mL of DMF for 4 days at 90 ◦C in an
oven. Following this, orange single crystals of Zn(tpdb)(DMF)3 3 were obtained, which
were filtered off and washed with DMF.

In comparison to the other CPs or MOFs, the solvothermal synthesis applied here is
comparably uncomplicated (compare Table 1), as it requires no preformation of SBUs or
additional additives (e.g., MeOH, trifluoroacetic acid).

Table 1. Table of different literature-known MOF synthesis approaches.

MOF Name Linker Metal Salt Temperature Solvent Additives Refs.

MOF-5, IRMOF(2-20)
R1-7-BDC, 2,6-NDC,
BPDC, HPDC, PDC,

TPDC
Zn(NO3)2 85◦ to 105 ◦C (DMF/DEF),

chlorobenzene H2O2, NEt3 [6,33]

[Zn2(TPOM)(NDC)2] TPOM, H2NDC Zn(NO3)2 100 ◦C DMF H2O [34]
{[Zn(µ-4-

hzba)2]2·4(H2O)}n
4-hydrazinebenzoic

acid Zn(OAc)2 110 ◦C EtOH H2O [35]

3.2. Crystal Structure Analysis of H2tpbd

Small single crystals of H2tpbd for single-crystal X-ray diffraction (SCXRD) analysis
were obtained by controlled crystal growth through the slow diffusion of pentane into a
linker solution of 2 (THF). In Figure 2a, the molecular structure, as well as the packing
alongside the crystallographic a and c axis, are depicted (Figure 2b,c).
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Figure 2. (a) ORTEP representation of the molecular structure of the linker molecule H2tpbd 2 in the
solid state, with displacement ellipsoids shown at the 50% probability level. (b) Parallel packing of 2
alongside the b-c plane showing a mean linker distance of 8.4 Å. (c) Packing of the 2 alongside the
a-b plane showing an alternating arrangement along the c-axis. Hydrogen atoms and co-crystallized
solvent are omitted for clarity. Color coding: gray = carbon, blue = nitrogen, red = oxygen, and green
= chlorine.

The chromophore molecule crystallizes in the monoclinic space group C 2/c with unit
cell lengths of a = 35.229(4) Å, b = 12.367(13) Å and c = 21.757(3) Å, and monoclinic angle β
= 119.954(6)◦. The asymmetric unit shows a single molecule of the PDI linker, accompanied
by two co-crystallized THF molecules. As expected, the substituted PDI core twists by
35◦, compared to the unsubstituted PDI chromophores, caused by the steric demand of
the chlorine atoms [32]. This also has an impact on the solubility, since π stacking of the
benzene rings is less favored, which makes the molecule more soluble. Interestingly, one
of the benzene rings of the benzoic acid group is rotated out of the PDI-imide moiety by
roughly 90◦, whereas the opposing one shows a respective torsion angle of 78◦. The view
along the a-axis shows the parallel packing of the linker molecules (Figure 2b), with a
center-to-center chromophore distance of 8.4 Å. Additionally, in Figure 2c, the alternating
packing of the PDI along the a-b plane is depicted.

3.3. Crystal Structure Analysis of Zn(tpbd)(DMF)3

The SC-XRD analysis of the synthesized coordination polymer revealed that the
material crystallizes in the monoclinic space group C 2/c with unit cell parameters of
a = 50.894(3) Å, b = 19.971(12) Å and c = 16.31(10) Å, as well as monoclinic angle
β = 91.825(2)◦. Two linker molecules and two zinc atoms are present in the asymmet-
ric unit.

In Figure 3a,b the 2D crystalline network is depicted along the c-axis and the b-axis,
showing the linker molecules being arranged as parallel, as well as head-to-tail oriented,
to each other. This can also be seen from the topology analysis shown in Figure 3c,d,
revealing a four-connecting uninodal net, with an alternating packing that is similar to the
linker in the solid state. Additionally, each zinc atom bridges two linkers and additionally
coordinates two dimethylformamide molecules, forming a tetrahedral zinc-oxo cluster
(Figure 3e). In Figure 3f, the head-to-head chromophore packing of the chromophore is
depicted, with a distance of 3.6 Å, and a head-to-tail center of gravity distance of 27.3 Å,
which has a great influence on the photophysical behavior of the material.
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blue), and the representation of the two-connecting linkers. (f) Depiction of the head-to-head and 
head-to-tail arrangement of the linker molecule inside the framework. Hydrogen atoms are omitted 
for clarity. Color coding: gray = carbon, blue = nitrogen, red = oxygen, green = chlorine, and light 
gray = zinc. 

The powder X-ray diffractogram of the coordination polymer is depicted in Figure 4, 
which shows high crystallinity and pronounced reflections at 3.59°, 7.01°, and 10.75°, 
compared to the already-known literature compound presented by Hupp et al., showing 
reflections at 7°, 21°, and 39°. Furthermore, the previously published material showed a 
high surface area, whereas Zn(tpdb) shows no porosity (cf. Figure S8), proving that the 
reported material in the present study is a novel framework. Pawley fitting on this data 
revealed only a small deviation of the fitted curve and measured data, and an Rwp of 2.59 
% and a GoF of 1.92, which supports the determined structure model. 

Figure 3. (a) Depiction of the crystal structure of the Zn(tpbd)(DMF)3 network along the c-axis.
(b) Parallel packing of chromophore linkers in the 2D framework along the a-c plane. (c) Underlying
network topology of the 4-c uninodal net alongside the c-axis (color coding cf. Figure 3e). (d) Depic-
tion of the parallel packing of the underlying network along the b-axis (color coding cf. Figure 3e).
(e) Zn2+-containing tetrahedral SBU (zinc = gray, carbon = dark gray, oxygen = red, and nitrogen =
blue), and the representation of the two-connecting linkers. (f) Depiction of the head-to-head and
head-to-tail arrangement of the linker molecule inside the framework. Hydrogen atoms are omitted
for clarity. Color coding: gray = carbon, blue = nitrogen, red = oxygen, green = chlorine, and light
gray = zinc.

The powder X-ray diffractogram of the coordination polymer is depicted in Figure 4,
which shows high crystallinity and pronounced reflections at 3.59◦, 7.01◦, and 10.75◦,
compared to the already-known literature compound presented by Hupp et al., showing
reflections at 7◦, 21◦, and 39◦. Furthermore, the previously published material showed a
high surface area, whereas Zn(tpdb) shows no porosity (cf. Figure S8), proving that the
reported material in the present study is a novel framework. Pawley fitting on this data
revealed only a small deviation of the fitted curve and measured data, and an Rwp of 2.59%
and a GoF of 1.92, which supports the determined structure model.
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Figure 4. Experimental powder X-ray diffractogram of the Zn(tpdb)-CP (gray), the simulated Pawley
fit on the measured data (green), the difference plot (blue), and the Bragg positions (orange).

3.4. Photophysical Characterization of H2tpdb and Zn(tpdb)(DMF)3

Following the structural investigation of Zn(tpdb)(DMF)3 and H2tpdb, the photophys-
ical properties of both compounds were examined. The UV/Vis spectrum of 2 shows an
absorption band with a maximum absorption at 516 nm, which is comparable to other
common perylene chromophores [32]. In contrast, the absorption properties of the CP are
different (cf. Figure 5). The respective UV/Vis spectrum shows additional absorption bands
with bathochromic and hypochromic shifts. Therefore, the light absorption improved upon
the incorporation of the chromophore into the MOF, thus covering a broader spectral range
of the electromagnetic spectrum.
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Figure 5. Solid state UV/Vis spectrum of 3 (blue) in comparison to 2 (orange) in the DMF solution.
This shows a shift in the spectra of the absorption band of 3, compared to the absorption band of 2.
Additional to the original absorption band of 2, 3 shows absorption bands at 760 nm, 260 nm, and
440 nm, which are shifting hypsochromic and bathochromic.
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The two mainly discussed aggregation types are the head-to-tail (J-type) and head-to-
head (H-type) aggregates (Figure 6) [21].

H-type aggregates promote n-type mobility, which is helpful in electronic devices,
while J-type aggregates elevate exciton mobility for optical devices and applications [22].
Furthermore, H-type aggregates are associated with a hypsochromic shift of the bands in
the spectrum and J-type aggregates with a bathochromic shift (cf. Figure 6) [23].

Thus, the UV/Vis spectrum of Zn(tpdb)(DMF)3 points towards H-type aggregation
behavior, as the absorption band at 516 nm shifts hypsochromic (cf. Figure 5). Further-
more, bathochromic shifting compared to the absorption band of 2 can be observed in the
absorption bands of 3. This shift in the spectrum can be most likely attributed to a charge
transfer in the head-to-tail direction of the chromophores (along the crystallographic c-axis),
since the transition dipole moments of the chromophores are aligned longitudinally to each
other (Figure 3f). Additionally, J-type aggregates might be a possible explanation, but are
supposed to be unlikely for PDI dyes in extended MOF structures [36,37].
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type aggregates [38].

These attributions are supported by an inspection of the emission spectra of 2 and
coordination polymer 3 (Figure S4). The CP shows a low-emission intensity when com-
pared to 2, which can be explained by the high contribution of H-type aggregates, as
observed in the UV/Vis spectrum. In general, H-type aggregates quench the emission of
the chromophores and promote radiationless energy decay after an internal conversion to
the lowest excited state following Kasha’s rule (Figure 6) [39]. The remaining emission of 3,
despite the presence of H-type aggregates, might be explained by the defects or emission
from the surface of the CP, as in both cases, the H-type aggregation might be disturbed.

3.5. Photosensitization Studies

Since we observed the dominant influence of H-type aggregation in 3 within the
photophysical studies, the evolution of singlet oxygen under visible light irradiation was
tested as the aggregation behavior was shown to be advantageous, compared to unaggre-
gated chromophores in MOFs in the evolution of 1O2 [40]. This reaction has already been
reported for different kinds of PDI assemblies, for example, polymers and metal–organic
polyhedrons [41,42]. It has also been successfully transferred into MOFs [43], and we
present the first example of a PDI linker-based CP within this application.
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The activity of the photosensitizer is monitored with 1,3-diphenylisobenzofurane
(DBPF), as it is a known 1O2-trapping agent and the reaction can be monitored via UV/Vis
spectroscopy following the decrease in the absorption intensity of the aromatic band of
DBPF at 416 nm (Figure 7) [44].
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First, 2 was studied to observe if the chromophore shows any activity. Using a 1:1 
molar ratio of linker DBPF in MeCN under argon, an oxygen atmosphere was applied 
after measuring the first data point, and, subsequently, further data points were recorded 
after fixed time intervals. Then, 2 was observed to show a high activity towards singlet-
oxygen generation, as can be observed in the UV/Vis spectrum (Figures 8a and S5). After 
six minutes, DBPF is completely consumed by 1O2 generated by the dispersed linker in 
MeCN. To check if this activity is retained in the coordination polymer, the performance 
of 3 was tested using the same conditions described for 2. To our delight, we were able to 
observe that 3 also successfully generates 1O2 upon light irradiation, as the absorption 
band of DBPF completely seizes (Figure 8b). We checked that 3 was still stable after the 
reaction and it remained in a crystalline state (Figure S10). Additionally, control experi-
ments were carried out to test the stability of DBPF under light irradiation and in the pres-
ence of 3 without light. These show the stability of DBPF under the chosen conditions 
(Figures 8a, S7, and S8). In direct comparison, the photosensitization process using 3 is 
approximately three times slower compared to the 2 (Figure 8a), potentially caused by 
diffusion limitations within the dispersed CP particles. This is in accordance with previ-
ous studies, which also compared the homogenous catalysis of PDI chromophores to a 
heterogenous catalyst incorporating the same PDIs, showing a decreased 1O2-evolution 

Figure 7. Schematic representation of the photosensitized oxygen activation process applied in this
work: (a) reaction of 1O2 with 1,3-Diphenylisobenzofuran (DBPF) to obtain the peroxide bridged
UV/Vis inactive species. (b) Jablonski diagram of the excitation from the 3O2-to-1O2 trough inter-
system crossing enhanced by H-type aggregates adapted from [45].

First, 2 was studied to observe if the chromophore shows any activity. Using a 1:1
molar ratio of linker DBPF in MeCN under argon, an oxygen atmosphere was applied after
measuring the first data point, and, subsequently, further data points were recorded after
fixed time intervals. Then, 2 was observed to show a high activity towards singlet-oxygen
generation, as can be observed in the UV/Vis spectrum (Figure 8a and Figure S5). After six
minutes, DBPF is completely consumed by 1O2 generated by the dispersed linker in MeCN.
To check if this activity is retained in the coordination polymer, the performance of 3 was
tested using the same conditions described for 2. To our delight, we were able to observe
that 3 also successfully generates 1O2 upon light irradiation, as the absorption band of DBPF
completely seizes (Figure 8b). We checked that 3 was still stable after the reaction and it
remained in a crystalline state (Figure S10). Additionally, control experiments were carried
out to test the stability of DBPF under light irradiation and in the presence of 3 without light.
These show the stability of DBPF under the chosen conditions (Figure 8a, Figures S7 and S8).
In direct comparison, the photosensitization process using 3 is approximately three times
slower compared to the 2 (Figure 8a), potentially caused by diffusion limitations within the
dispersed CP particles. This is in accordance with previous studies, which also compared
the homogenous catalysis of PDI chromophores to a heterogenous catalyst incorporating
the same PDIs, showing a decreased 1O2-evolution activity upon incorporation [42]. This
is also consistent with several other studies, which show that the use of solid materials
decelerates the 1O2 exciation [46]. However, to the best of our knowledge, this is the first
example of a PDI-based CP being successfully used as a photosensitizer for singlet-oxygen
generation. In general, the incorporation into CPs or MOFs offers key advantages towards
future material development, including the modulation of chromophore alignment and
material porosity, to specifically address the aggregation and potential diffusion limitations.
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Figure 8. UV/Vis spectroscopic data monitoring the photosensitized 1O2 evolution using linker 2
and CP 3: (a) stacked UV/Vis spectra of 1,3-diphenylisobenzofurane (DBPF) showing the decrease
in absorption over time for the reaction with the 3 used as a photosensitizer with a 512 nm LED.
(b) Decrease in the absorption maxima of DBPF at 416 nm measured from the share of starting
absorption at t = 0 min. The decrease in the absorption of DBPF with 3 and linker 2 under light
irradiation are presented. In comparison, the control experiments of the DBPF solution with only
3 (black) or only light irradiated (blue) are shown over the duration of 40 min. (a) Stacked UV/Vis
spectra of DBPF showing the decrease in absorption over time for the reaction with 3 used as a
photosensitizer.

4. Conclusions

We synthesized and structurally characterized a new 2D-coordination polymer Zn
(tpdb)(DMF)3 3 based on a PDI-based ditopic linker H2tpdb 2. The photophysical prop-
erties of the linker and the CP were investigated, revealing a low quantum yield of the
luminescence of the CP compared to that of the linker, most likely being caused by H-type
aggregation associated with radiationless energy decay within the CP. However, the CP
shows desirable absorption properties, since the material covers a broad range of the elec-
tromagnetic spectrum desired in mimicking the photosynthesis. Therefore, both the linker
and CP were investigated concerning their activity in the photosensitized 1O2 evolution,
which is known to be promoted by the aggregation of chromophores. Ultimately, the
linker shows activity, which can be retained upon its incorporation into the PDI-based CP,
although it is slowed down by a factor of approximately three. Nevertheless, to the best
of our knowledge, this is the first example of a PDI-based CP successfully employed for
singlet-oxygen generation.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/en15072437/s1, Figure S1: Thermal gravimetric analysis of Zn(tpdb)
from 25 ◦C to 800 ◦C with a rate of 10 K min−1. The weight loss of 10% starting at 150 ◦C indicates the
loss of weight the in the structure included water. The subsequent weight loss of 5% starting at 300 ◦C
corresponds to the stored DMF in the structure. The CP structure is then stable until 400 ◦C. At this
temperature, the CP starts to decompose. Figure S2: 1H-NMR of 1,6,7,12-tetrachloro-perylene-3,4,9,10-
tetracarboxylic anhydride (1) in CDCl3 showing a single singulett, according to the H atoms in the
bay area of the perylene. Figure S3: 1H-NMR of 1,6,7,12-tetrachloroperylenediimide-N,N’-di-benzoic
acid (2) in DMSO-d6 showing a singlet at 13.2 ppm for the carboxylic acid groups and an additional
singlet at 8.64 ppm for the H atoms in the bay area of the perylene. Additionally, two multipletts
can be observed, accounting for the aromatic H atoms of the benzoic acid at 8.15 ppm and 7.59 ppm.
Figure S4: Comparison of the emission behavior of 2 and 3. The linker shows a much stronger
emission than the CP (compare QY(H2tpbd) = 0.9 vs. QY(Zn(tpbd)) = < 0.01), suggesting H-type
aggregated perylenes, which show a high n-type mobility and quenching of the absorbed light energy,
not allowing for directed energy transfer. Figure S5: UV/Vis of the decrease in absorption intensity
of DBPF during the reaction with 1O2 produced by linker 2. Figure S6: Control experiment of DBPF

https://www.mdpi.com/article/10.3390/en15072437/s1
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with CP 3 and without light irradiation over the duration of 40 min. Figure S7: Control experiment of
DBPF without CP 3 and with light irradiation over the duration of 40 min. Figure S8: BET data of
Zn(tpdb)(DMF)3 showing the low surface area of it because of missing pores and the layer structure
of the 2D coordination polymer. (a) Semi-log plot of the nitrogen isotherm at 77 K of Zn(tpdb)(DMF)3.
(b) BET plot with linear-fit control parameters and calculated monolayer capacity (Qm). Figure S9: IR
data of (a) linker 2 and (b) CP 3. Figure S10: PXRD of the CP after catalysis.
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