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Abstract: Operation optimization for large-scale offshore wind farms can cause the fatigue loads
of single wind turbines to exceed their limits. This study aims to improve the economic profit of
offshore wind farms by conducting multi-objective optimization via decoupled group operations of
turbines. To do this, a large-scale wind farm is firstly divided into several decoupled subsets through
the parallel depth-first search (PDFS) and hyperlink-induced topic search (HITS) algorithms based on
the wake-based direction graph. Next, three optimization objectives are considered, including total
output power, total fatigue load, and fatigue load dispatch on a single wind turbine (WT) in a wind
farm. And then, the combined Monte Carlo and beetle swarm optimization (CMC-BSO) algorithms
are applied to solve the multi-objective non-convex optimization problem based on the decentralized
communication network topology. Finally, the simulation results demonstrate that the proposed
method balances the total power output, fatigue load, and single fatigue loads with fast convergence.

Keywords: multi-objective optimization; offshore wind farm; CMC-BSO algorithm; fatigue loads

1. Introduction

There are many studies on wind turbines of on-shore and offshore turbines [1–5].
However, in order to capture more power, various researchers have proposed a method to
construct wind farms by placing many turbines together, either onshore or offshore [6,7].
In recent years, offshore wind farms (OWFs) have been increased in popularity due to
the steadier and higher wind speeds, fewer land space limitations, and lower amounts of
noise pollution as compared with onshore wind farms [8]. However, the major challenge in
OWFs is their noticeably higher cost than their onshore counterparts, to which operation
and maintenance costs (O&M) contribute a considerable amount [9]. OWF owners take
advantage of large-scale economies by erecting many turbines together to save investment
costs. A large-scale OWF often consists of dozens or even hundreds of wind turbines
(WTs). In these cases, the wake effect cannot be ignored, as it significantly impacts the
economic performance of OWF in terms of decreasing the power output and increasing
fatigue loads [10]. To increase the economic profits, operating OWFs can be improved by
focusing on the following three aspects: (1) communication topology; (2) optimization
objective; (3) optimization solver.

It is particularly important to design the communication topology for a large-scale
OWF. There are various communication topologies, such as centralized, distributed, decen-
tralized, or a combination. For a centralized topology, the central controller deals with all
the information from the wind turbines and makes decisions for each wind turbine. The
traditional centralized controller has gradually encountered a heavy computational burden
due to the larger dimensions and higher complexity of the calculation [11]. For this reason,
a centralized framework may not be practical because of its high construction cost and
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communication costs [11]. Conversely, the non-centralized topology can relieve the commu-
nication burden as wind turbines are equipped with a controller that communicates solely
with the turbines in each subset and the supervisor. Various turbines are shared between
the subsets in the distributed topology, which creates a challenge for the optimization solver
in terms of dealing with information sharing related to the wake propagations [12,13]. On
this basis, the decentralized topology was proposed to divide a large-scale wind farm into
various decoupled subsets, making it easy to reach the global optimization value for each
controller. However, it is necessary to find a suitable method to design a decentralized
communication topology by dividing wind turbines into several decoupled subsets [14,15].
For example, Hankel singular values and selective modal analysis were studied in [16,17].
However, they did not consider the wake effect. Various researchers presented clustering
the WTs into several groups according to their wind profiles; thus, all turbines in the same
group can be treated as one single turbine. However, it is difficult to implement during the
actual operation because the wind profiles are time-varying [14]. Another nearest-neighbor
method was proposed to group the OWF into several clusters, in which a wind turbine
is only communicated with neighbor turbines [11,18]. However, the wind direction was
assumed to be constant, thus it is hard to utilize with varying wind directions. Motivated by
this, various researchers have proposed the concept of a wake effect digraph to characterize
the wake, and decoupling techniques were designed to decouple the wake digraph [15,19].
Although these algorithms can ease the computational workload to a certain extent, efficient
decentralized methods need to be explored based on the wake effect.

Increasing the performance of OWF by decreasing the wake effect was proposed
in [20], and the induction factor and yaw-offset angles were utilized as control variables
in [21]. Operation optimization can increase the total power output and fatigue loads for
an established wind farm [22]. Moreover, the high maintenance cost offsets the benefit
of higher power production due to the positive correlations between power generation
and fatigue load [10,23]. Therefore, it is necessary to optimize the tradeoff between the
two objectives [24–27]. While considering the total fatigue and output power, there is the
potential to produce a fatigue load that is bigger than the rated load on upstream turbines,
especially on the lead turbines. In this context, it is necessary to simultaneously decrease
the total fatigue load and the maximum fatigue load on upstream turbines. Increasing the
total power capture and mitigating total fatigue loads are the focus of the most advanced
contemporary research. However, fatigue loads that are evenly distributed on each turbine
are rarely mentioned.

For large-scale OWFs, it is very important to propose a novel algorithm that is efficient
and has a fast convergence rate. For the non-linear and non-convex characteristics of a wind
farm, nature-inspired optimizations have been proposed since they do not depend much
on the model. For instance, evolutionary algorithms (EAs) and sparrow search algorithms
(SSA) [28] were proposed to identify the optimal parameters. To solve different problems,
various intelligence algorithms have been developed. For example, the advantage of the
MC-BAS algorithm was verified for the OWF optimization problem [19], as compared with
the PSO and GA algorithms. However, the MC-BAS algorithm cannot assure the highest
accuracy and fastest convergence. So, objective of this study is to find a more suitable novel
algorithm to solve this problem.

Motivated by above mentioned, this paper presents a novel multi-objective optimiza-
tion approach based on a decentralized communication scheme to address the problem
mentioned above. Firstly, in order to address the data explosion problem and lower the
communication burden of the local controller, the communication scheme can be decentral-
ized based on the parallel depth-first search (PDFS) and hyperlink-induced topic search
(HITS) algorithms. Secondly, to increase reaction speed with the time-varying wind, a
novel CMC-BSO algorithm is proposed that combines the advantages of the BSA and PSO
algorithms. The most concerning problem is to increase economic profits and competitive-
ness in renewable energy. Next, this paper presents a multi-objective optimization problem
that increases the total power output, decreases the fatigue load, and even the fatigue load
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dispatch on each wind turbine. Our method increases the economic profits, decreases the
maintenance frequency, and reduces the maintenance cost. The main contributions can be
summarized as follows:

(1) We propose a decentralized communication construction scheme based on a wake-
based digraph that can divide a large-scale wind farm into decoupled groups. Every
local controller computes the data of turbines in the same group to reduce the com-
munication burden.

(2) We propose a new multi-objective optimization framework for wind farm profits
points, which includes the total output power, the total fatigue load, and the dis-
patch of the fatigue load on each wind turbine. Our novel method can decrease the
maintenance frequency and lower the maintenance cost of the wind farm.

(3) We propose a decentralized CMC-BSO algorithm developed based on a decoupled
communication scheme in the wind farm, which combines the advantages of the BSA
and PSO algorithms. The algorithm is implemented with a wake steering control to
identify the optimized solution on the objectives by controlling the yaw angles and
axial factors.

The current paper is organized as follows: Section 2 introduces the wind farm model
with wake interactions and its communication system. Section 2 also presents the algorithm,
which divides the large-scale OWF into several decoupled subsets. Section 3 presents the
novel optimization control strategy utilized to achieve the multi-objects and the simulation
result. Finally, the discussion are given in Section 4, and the conclusion and our outline of
potential future projects are provided in Section 5.

2. Methodology

This section introduces the new technologies to increase the economic profits of OWF.
The road map of this section can be summarized as follows:

As shown in Figure 1, the wind effect wake digraph based on the wind farm model
was proposed. Then, a decentralized wake effect digraph and communication scheme is
constructed using various practical technologies. Lastly, the local controller for each subset
is designed to identify the optimum global value. The specific techniques are illustrated
as following:
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Figure 1. Decentralized multi-objective optimization framework in a large-scale wind farm [29,30].

2.1. Wind Farm Model with Wake Interactions
2.1.1. Wind Turbine Wake Model

This section presents the process of building an OWF power output and fatigue load
function based on the Jensen model [31]. To describe the wake effect properties of the
upstream turbine Ti, the downwind–crosswind coordinate frame (Xi, Yi) is more suitable
than the Cartesian coordinate frame

(
Xi, Yi

)
for the characteristic of accuracy with wind

variation. The detailed steps are shown as follows:
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Firstly, a uniform direction Φ of the free-stream inflow to the wind plant was assumed
and averaged the flow direction measurements at the hub of each turbine i ∈ F †, denoted
as Φmeasured

i :

Φ =
1
N

N

∑
i=1

Φmeasured
i (1)

Secondly, the downwind–crosswind coordinate frame (Xi, Yi) can be translated from
the Cartesian coordinates frame

(
Xi, Yi

)
as follows:[

Xi
Yi

]
=

[
cos(−Φ) −sin(−Φ)
sin(−Φ) cos(−Φ)

][
Xi
Yi

]
(2)

The FLORIS model combined with the Jensen model includes wake deficit, wake
deflection, and wake expansion model. The three wake zones are defined, each of which
has a unique velocity deficit rate, namely, “near wake” (q = 1), “far wake” (q = 2), and
“mixed zone” (q = 3). By combining the influence of each wake zone of the upstream turbine
Ti, the effective speed of the downstream turbine Tj can be expressed as:

Vj = V∞

1− 2

√√√√√ ∑
i∈F :Xi<Xj

[
αi

3

∑
q=1

ci,q
(
Xj, Yj

)
min

(
Aol

i,j,q

Aj
, 1

)]2
 (3)

where Vj is the effective inflow wind speed of the turbine Tj, V∞ is the undisturbed inflow
wind speed of the WF, αi is the axial induction factor of the upstream turbine Ti, ci,q

(
Xj
)

is
wake zone q velocity deficit factor for Tj, Aol

i,j,q is the overlapping areas of the q wake zone
of upstream Ti with downstream turbine Tj rotor area, Aj is the downstream turbine rotor
area. ci,q

(
Xj, Yj

)
is a piecewise wake decay coefficient as follows:

ci,q
(
Xi, Yj

)
=


ci,1
(
Xj
)

when |d| 6 Dw,i,1
(
Xj
)
/2

ci,2
(
Xj
)

when Dw,i,1
(
Xj
)
/2 < |d| 6 Dw,i,2

(
Xj
)
/2

ci,3
(
Xj
)

when Dw,i,2
(
Xj
)
/2 < |d| 6 Dw,i,3

(
Xj
)
/2

0 when |d|〉Dw,i,3
(
Xj
)
/2

(4)

d denotes the distance from the wake center to the downstream turbine Tj rotor center:

d = Yjyw,i
(
Xj
)

(5)

Yw,i
(
Xj
)

is the center dotted line of Yi as shown in Figure 2a, which combines the
yaw-induced and rotation-induced wake lateral offsets yw,rot,i

(
Xj
)
, yw,yaw,i

(
Xj, Vi, ai

)
of

turbine Tj as follow:

yw,i(Xi) = Yi + δyw,rot,i
(
Xj
)
+ δyw,yaw,i

(
Xj, Vi, ai

)
δyw,rot,i

(
Xj
)
= ad + bd

(
Xj − Xi

)
δyw,yaw,i

(
Xj, Vi, ai

)
=
∫ x−xi

0 tan
(
ξi
(
Xj
))

dx

ξi
(
Xj
)
= 2ai(1−ai) cos2(γi) sin(γi)(

1+2kd
Xj−Xi

Di

)2

(6)

In Equation (6), ad and bd denote wake deflection coefficients, ξi
(
Xj
)

denotes the angle
of the centerline of its wake at a downstream location when Xj > Xi, γi denotes the yaw
angle of the turbine Ti, kd denotes the wake deflection coefficients.
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The wake decay coefficient ci,q
(
Xi, Xj

)
can also be defined as

ci,q
(
Xi, Yj

)
=

[
Di

Di+2kemµ,q(γi)[Xj−Xi]

]2

mµ,q(γi) =
MU,q

cos(aµ+bµγi)

(7)

where Di is the rotor diameter of the turbine Ti, ke and mµ,q are the wake expansion
coefficients, γi is yaw angle of the upstream turbine Ti, and Xj − Xi is the relative distance
between the downstream turbine Tj and upstream turbine Ti, MU,q, aµ, and bµ are the wake
model constants.

The overlapping areas Aol
i,j,q, (q = 1, 2, 3) between turbines Ti and Tj rotors and the

different downstream zones of the wakes are calculated from the wake center of turbines Ti
and wake diameter predictions rq using basic geometry as described in Figure 1.

Aol
i,j = arccos

(
r2

q+d2−R2

2·rq ·d

)
·r2

q + arccos
(

R2+d2−r2
q

2·R·d

)
·R2

− sin
[

arccos
(

r2
q+d2−R2

2·rq ·d

)]
·rq·d

rq =
DW,i,q(Xj)

2 q = 1, 2, 3

Dw,i,q
(
Xj
)
= max

(
Di + 2kemµ,q(γi)

[
Xj − Xi

]
, 0
)

mµ,q(γi) =
MU,q

cos(aµ+bµγi)

(8)

In Equation (8), R denotes the radius of the downstream turbine Tj rotor, DW,i,q
(
Xj
)

denotes the diameters of the wake, Di is the diameter rotor of the turbine Ti, ke and mµ,q
are the wake expansion coefficients, γi is yaw angle of the upstream turbine Ti, and Xj − Xi
is the relative distance between the downstream turbine Tj and upstream turbine Ti. In
addition, MU,q, aµ, and bµ are the respective wake model constants.

A large OWF consists of N wind turbines, denoted a set L = {1, 2, . . . , N}. Combinate
Equations (1)–(8), the steady-state electrical power and fatigue loads of a turbine i ∈ L
denoted as Pi and Fi, are calculated as follows:

Pi(γi, αi; Vi) =
1
2

ηρAicos(γi)
1.88V3

i 4αi[1− αi]
2 (9)

Fi(γi, αi; Vi) =
1
2

ηρAicos(γi)
1.88V2

i 4αi[1− αi] (10)

where η denotes generator efficiency; ρ denotes the air density; Ai denotes the rotor swept
area; cos(γi)

1.88 represent the correction factor added to account for the effects of yaw
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misalignment [32]; γi denotes the yaw angle; Vi denotes the free-stream wind speed in the
front of turbine i; and αi denotes the axial induction factor. The power production and
fatigue loads function can be optimized by adjusting the yaw angles γi and axial inductions
αi, as shown in Equations (9) and (10).

2.1.2. Original Wake Effect Digraph of Offshore Wind Farm

The wake impact on the speed of wind faced by downstream turbines depends on the
free-stream wind speed direction Φ and the geographical disposition of turbines

(
Xi, Yi

)
within the farm. Therefore, the wake effect faced by some turbines can be either partial or
total, as shown in Figure 1. Furthermore, the effect over downstream turbines also depends
on the operational conditions of upstream turbines, as stated earlier and it is considered
with the induction factor. Nevertheless, the degree of coupling due to wake effects between
turbine Ti and Tj is a function of the wind speed direction as well as the wind farm layout
(location and distance among turbines).

As shown in Figure 2b, the wake effect digraph G = (ν, E) of an offshore wind farm
can be used to display the relationship between turbines, whereby ν denotes the turbine
and E denotes the weight value of the wake effect between every two turbines [19].

Eij =


Aol

i,j ∗ Vwake

x/D , shadowing

0, no shadowing
(11)

where the velocity downstream of the turbine deficit, Vwake =
V∞−Vj

V∞
and the wake overlap

effect area, Aol
i,j = ∑3

q=1
Aol

i,j,q
Aj

represents the area overlap ratio, which is the wake effect
area of the upstream turbine Ti to the downstream turbine j and the rotor area of the
downstream turbine Tj (Equation (8)), where x = xj − xi represents the physical distance
between the upstream turbine Ti and downstream turbine Tj; and D denotes the turbine
rotor diameter of all the turbines.

2.2. Decentralized Wake Effect Digraph of Offshore Wind Farm

To decrease the communication information burden, the wake effect digraph needs to
construct the decentralized communication topology based on large-scale OWF, as shown
in Figure 1. It is essential to identify and divide it into several decoupled groups. In other
words, all the wind turbines need to be divided into several decoupled groups based on
the wake effect of the OWF, which is performed by the PDFS and HITS algorithms. In this
study, in order to identify the network topology of the wake effect directional digraph,
the connected turbine with lead turbine Tn is found using the PDFS algorithm. It is a
clustering algorithm that searches all the node clusters that are centered at the lead turbines
by connected edges and then obtains the directed subgraph. However, certain shared
nodes inevitably belong to two or more subgraphs, resulting in more iterations and an
increased computation time. Therefore, to further decouple the shared turbines based
on the subgraph, the HITS algorithm is presented, which focuses on developing ranking
algorithms by calculating the authority αi of the input wind and the hub score hi of the
output wind based on the shared turbines. As a measure of the authority of shared nodes,
we set the value to be larger to correspond to the more important of the wake effect in the
subset; we then divided the shared turbine into the subset with the biggest value.

The wake effect digraph is defined as follows: ς = (ν, E) where nodes ν represent
the turbines and E represents the wake interaction strength between any two turbines.
Notably, in the wake-based digraph ς, we define the starting nodes (lead turbines) as
zero in-degree. The decoupled wake effect digraph is represented as ςd = (νd, Ed), where
νd and Ed represent the turbines and edges in each decoupled subgraph, respectively.
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2.2.1. Parallel of Depth-First Search Algorithm to Identify Subgraph

Depth-first Search (DFS) algorithm traversal of the rooted spanning tree τ starting
from any turbine r ∈ ν produces a spanning tree rooted denoted r, which is known as
a DFS tree [33]. The algorithm continue to work from the initial turbine to all reachable
turbines and edges.

For a large-scale computationally intensive process in OWF, it is necessary to use the
parallel depth-first search (PDFS) algorithm. Before we start the search process, the whole
wake digraph needs to be divided into N subsets SN with N local controllers, corresponding
to the lead turbines TL, L = {1, 2, . . . N} Moreover, each controller directs the turbines based
on PDFS in the search space. Two key components of the PDFS algorithm are the dividing
approach and cutoff depth η. In this paper, considering the relatively low splitting cost
factors, the dividing approach divides the whole wake effect digraph into N groups equal
to the number of lead turbines TL. In addition, the lead turbines TL are set as the root
nodes νL, and then, the other nodes near them are chosen, especially in situations where
the deep degree is huge. Moreover, the cutoff threshold depth η needs to be set as a
hyperparameter according to the experience. In this paper, the cutoff threshold depth η

was set as η = DOWF/2, with DOWF denoting the depth of the whole wind field.

2.2.2. Calculating the HITS Score of Shared Turbines

In this study, the classical HITS algorithm is used to calculate the HITS score of shared
turbines [34]. The main idea of this algorithm is to divide the shared turbines into the group
with the maximum authoritative score ai based on the wake effect in OWF.

For the model of the wake effect digraph in an OWF, ai can be defined as the value
of one turbine, which is affected by its upstream turbines, and the hubs hi, which can be
defined as the effect degree of this node on downstream turbines. However, if we want
to construct the decoupled subgraphs, dividing the shared turbines into only the subset
with the maximum authoritative value is necessary. Moreover, in this subsection, the HITS
algorithm is utilized to calculate the shared authority αi and hub scores hi of the shared
turbine and to determine which subgroups they belong to. Algorithm 1 is as follows:

Algorithm 1. The HITS algorithm is based on the wake diagram ς = (ν, E).

ν: a collection of v linked turbines
i, c: natural numbers
a0 = 1, h0 = 1
t = 1
do
for each v in ν

do a(n)i = ∑(ν, E)∈G hi−1(ν)

h(n)i = ∑(ν, E)∈G ai−1(ν)

Normalize: ai =
ai
‖ai‖

Normalize: hi =
hi
‖hi‖

Iteration: i = i + 1
Till ‖αi − αi−1‖+ ‖hi − hi−1‖ < ε

Return (ai, hi)
Report the nodes with the c largest coordinate in ai.
Report the nodes with the c largest coordinate in hi.

In this study, considering the directional wind effect, the turbines are grouped into the
subset with only the maximum authority ai. The original wake digraph ς has a relationship
with the wind farm layout (X, Y), wind speed V∞ and wind direction θ. Moreover, the
PDFS algorithm can construct the original wake digraph ς. If there are some shared turbines
in ς, we can calculate the authorities αi and distribute them into the subset with the largest
authority score and then cut off any other corresponding edges.



Energies 2022, 15, 2336 9 of 24

2.2.3. The Process of Decoupling Shared Turbines Based on the 12-Turbines

In this subsection, we present the process of turbine decoupling through the proposed
decoupling strategy. The number of subsets of the turbine groups is determined based on
the following: (1) The lead turbine is that whose node authority is zero. In other words,
it experiences freestream velocity V∞. (2) Each lead turbine’s corresponding sub-graph is
identified with the PDFS algorithm. (3) The scores of αj and hj in the shared turbines are
calculated and compared with each subgraph using the HITS computation algorithm.

From Figure 3, we can see that the original subgraph 1 concludes T1→T10→T5→T9
and subgraph 2 concludes T2→T6→T10→T11, which means turbine T10 is a shared turbine.
The reason for this is that the authority score of T10 is 0.0002052 in subset 1 in the subgraph
G1 and 0.0004305 in subset 2 in the subgraph G2, respectively, thus T10 is divided into
the subgraph G2. In addition, other shared turbines T11 ∈ {G2,G3} and T12 ∈ {G3,G4} as
shown in Figure 3(a_2) are also divided into the subgraph G3 and G4, respectively, as shown
in Figure 3d.
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2.3. Multi-Objective Optimization Based on Decoupled Groups

In this section, controller design method is presented. To do this, the optimization
objective for improving economic profits of the OWF is firstly suggested to increase total
power capture, mitigate total fatigue load, and to obtain a more even fatigue distribution
than other traditional algorithms. Secondly, the aim of the designer is not only to consider
the profits of the whole OWF but also to decrease the fatigue load of an individual turbine,
which can reduce the need for replacements and the maintenance cost. Furthermore, the
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control objectives are reached by identifying the optimization value of the control variables
of the axial factor α and yaw-misalignment γ. Finally, an improved CMC-BSO algorithm
with the embedded power and fatigue constraints of wind farms is suggested solve the
proposed optimization problem, which can guarantee the fast speed necessary for wind
farm control.

2.3.1. Formulation of Multi-Objective Optimization

Fatigue is the factor that sustains the stresses with periodical stress characteristics
during the process of component damage. The components will slowly deteriorate or even
break when there is a large margin of stress variation. This negatively impacts the practical
lifetime of the turbines. Therefore, the three-objective function is formulated as follows:

min
x

f (x) = ∑N
i=1 ∑K

j=1

(
−ξPj

(
γj, αj; Vj

)
+ (1− ξ)Fj

(
γj, αj; Vj

)
+ σ

(
Fj

(
γj, αj; Vj

)
− Ftj

(
γj, αj; Vj

)
− δ f Fmj

(
γj, αj; Vj

)))
s.t.

{
−γmin ≤ γj ≤ γmax

αP_min ≤ αPj ≤ αP_max

(12)

where Fj
(
γj, αj; Vj

)
are fatigue load over the whole OWF and Fmj

(
γj, αj; Vj

)
, Ftj

(
γj, αj; Vj

)
are the fatigue load of each WT from the greedy method and traditional multi-objective
optimization approaches [15]. Further, the first two objectives are balanced with hyper-
parameter weights ξ. There are also another two hyper-parameters σ and δF , σ is used to
balance the fluctuation fatigue of individual turbines, and δF is the tolerance fluctuation
coefficients ratio of the difference fatigue load of the proposed method using the greedy
approach [35].

In Equation (12), the three objectives of the optimizations can be summarized as follows:
(1) to maximize the available wind power of the OWF at the first part of −ξPj(γj, αj; Vj);
(2) to minimize the total fatigue loads of the OWF at the second part of (1− ξ)Fj

(
γj, αj; Vj

)
;

and (3) to keep the fluctuation of fatigue load within a tolerant value at the third part of
σ
(

Fj
(
γj, αj; Vj

)
− Ftj

(
γj, αj; Vj

)
− δ f Fmj

(
γj, αj; Vj

))
.

2.3.2. CMC-BSO Optimization Algorithm

In this section, the BAS algorithm is presented to provide less complexity in designing
tasks; however, it is not suitable for high-dimensional systems, as has been verified in many
experiments [36]. Therefore, to improve its performance, some researchers have proposed
the BSO algorithm, which incorporates the main advantage of the swarm optimization
algorithm. However, repetitive results have proven not to be stable experimentally because
it is more dependent on the initial values. If suitable values are not set, the result has a
sub-global optimization value. To solve this problem, the Monte Carlo (MC) law for BSO
was introduced to improve the repeatability and stability of the algorithm. This law is to
identify the optimized control variables αi and γi to achieve the multi-objective during the
search process. This can be achieved by simulating the annealing process with the random
variables in order to escape the local optimized solution.

First of all, various parameter notations are defined by the mathematical formu-
lation as follows: Xp =

(
Xp1, Xp2, · · · , Xpn

)T , Xg =
(
Xg1, Xg2, · · · , Xgn

)T denotes the

position of n beetles in each turbine and group turbines, Xpi =
(
Xpi1, Xpi2, · · · , XpiL

)T

and Xgi =
(
Xgi1, Xgi2, · · · , XgiL

)T denote each beetle with L-dimensional search space,

similar to the individual and group beetle speed Vpil =
(
Vpi1, Vpi2, · · · , VpiL

)T ;

Vgil =
(
Vgi1, Vgi2, · · · , VgiL

)T denotes the best position of each particle

Ppil =
(

Ppi1, Ppi2, · · · , PpiL
)T and the best position of the whole swarm

Pgil =
(

Pgi1, Pgi2, · · · , PgiL
)T [37].

In this study, the CMC-BSO algorithm is presented as follow:

(1) Update the position on the antennae of individual and group beetles.
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The position of beetle i can be represented as follows:

Xt+1
pil = Xt

pil + λξt
pil (13)

Xt+1
gil = Xt

gil + λξt
gil (14)

where i = 1, 2, · · · , n; l = 1, 2, · · · , L; The current number of iterations is t and ξpil ; ξgil
represents the beetle position movement, and λ is a positive constant weight value.

(2) Define the movement of beetles.

The ξ function can be calculated as follows:

ξt+1
pil = ξt

pil + δt ∗Vt
pil ∗ sign

(
f
(

Xt
prl

)
− f

(
Xt

pll

))
(15)

ξt+1
gil = ξt

gil + δt ∗Vt
gil∗ sign

(
f
(

Xt
grl

)
− f

(
Xt

gll

))
(16)

The step size δ, the beetles’ speed Vpil , Vgil and f
(

Xt
prl

)
, f
(

Xt
pll

)
, f
(

Xt
grl

)
, and

f
(

Xt
gll

)
are the fitness function of scent intensity at the right and left antennae Xt

prl , Xt
pll ,

Xt
grl , Xt

gll .

(3) Define the speed of beetles.

The speed of each beetle and group beetle can be defined according to [38]

Vt+1
pil = ωVt

pil + c1r1

(
Pt

pil − Xt
pil

)
(17)

Vt+1
gil = ωVt

gil + c1r1

(
Pt

pil − Xt
pil

)
+ c2r2

(
Pt

gil − Xt
gil

)
(18)

The second part in Equation (17) represents the private thinking of the beetle itself.
The third part in Equation (18) represents the collaboration among the beetles. The adaptive
inertia weight ω in Equation (18) varies with the current iterations:

(4) Define the adaptive inertia weight [39]:

ω = (ωmin −ωmax) ∗
t− T

T
+ ωmin (19)

The minimum and maximum values of ω are ωmin and ωmax, respectively; these values
are set by the respective mean fitness values for the 60 runs. In this study, ωmax = 0.9,
ωmin = 0.4, and c1 = 0.1, c2 = 0.15. The speed of the beetle has the maximum value when
t = T = 1000 and minimum one when t = 0. Therefore, this can improve the local search
speed as compared with the constant value in the traditional BSA method.

(5) Pre-update the right and left antenna beetles.

The process of updating the position of the right antenna and the left of the individual
and group antenna can be expressed by the L-dimension beetles as follows:

Xt+1
prl = Xt

prl + Vt
pil ∗ d/2

Xt+1
pll = Xt

pll −Vt
pil ∗ d/2

(20)

Xt+1
grl = Xt

grl + Vt
gil ∗ d/2

Xt+1
gll = Xt

gll −Vt
gil ∗ d/2

(21)

where d represents the searching distance which depends on the step size δ as explained
in [40].

(6) Implemented solution of the Monte Carlo law.
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The Monte Carlo law is proposed to be embedded into the BSO algorithm to escape
the local optimal solutions. The probability is used throughout the iterative process to
escape the poorer solutions of individual and group beetles:

Lp =


1, f

(
Xt+1

il

)
< f

(
Xt

il
)

exp
(
− f (Xt+1

il )− f (Xt
il)

MT

)
, f

(
Xt+1

il

)
≥ f

(
Xt

il
) (22)

where Xt+1
il denotes a pre-update position of beetle i; Xt

il denotes the best position of beetle
i in the last iteration; whereas exp (·) represents the exponential function and MT is the
higher temperature.

(7) Step size:

δt+1 = G ∗ δt

dt = G ∗ δt−1/c2
(23)

where G is a constant value that needs to be adjusted by the designer, and in the current
study, it was set as G = 0.91.

3. Simulation Results and Discussion

The simulations were carried out based on the OWF, the structure of which is shown
in Figure 4. It was implemented with 7 × 7 matrix of the National Renewable Energy
Laboratory’s 5 MW turbine in a wind farm with regular shapes.
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Figure 4. The framework for the decentralized optimization algorithm based on the wake effect
digraph of OWF; (a) wakefield and wake effect digraph; (b) decoupled groups (c) the local controller
for each subset; (d) the CMC-BSO algorithm.

3.1. Parameter Setup

The wind farm simulation and wake effect simulation data were computed using the
FLORIS platform [41]. The longitudinal distance was 5.5 × D, and the lateral distance was
also 5.5× D, as shown in Figure 5. In the present study, we discussed the performance of an
OWF with a wind direction range of ϕ ε [0◦, 90◦] with a 15◦ step size. The initial values in
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Equation (7) for the yaw angle γ and the axial factors α were set as 0, 1/3. In addition, the
initial value in Equations (15) and (16) for the initial antennae length Xt

prl , Xt
pl , Xt

grl , Xt
gll are

set as 0.4, 0.5, 0.45, 0.52, respectively. Further, the initial step size δ is set as 1.00, The balance
weight was supposed as ξ = 0.5, and some other hyper-parameters σ = 1.0, the coefficient
tolerant ratio of the fatigue load δF = 0.03. A series of simulations will be performed in the
following subsections.
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3.2. Process of Decoupling Groups

The wake field of an OWF with a 7 × 7 matrix is as shown in Figure 5a. The shared
turbines are represented as green plots as in Figure 5b. The subgraph of Figure 5b is
shown in Figure 6. Figure 6 shows the subgraph of the original wake effect. However,
there are shared turbines in each subparagraph. It was necessary to divide the shared
turbines into one group. The significant difference between Figures 6 and 7 lies in no shared
wind turbines. That is, the share turbine T6 is divided into group 1, and the share turbine
T3, T4, and T5 are divided into group 2. The partitioning is depended on the maximum
authority score as described in Section 2.2.2. More specific information is shown in Table A1
(Appendix A).
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3.3. Optimization Results

The performance of the three objectives under two conditions is examined in this
section. One scenario is involved by the wind direction remaining while the wind speed
is changed. The other scenario is involved by the wind speed changing while the wind
direction remains constant.

3.3.1. Simulation Results with a Constant Wind Speed

In this subsection, the constant windspeed was set V0 = 8 m/s and the range of wind
direction was ϕ ε [0◦, 90◦]. The total power output P, fatigue load F, the rate of total power
output ∆P, and the rate of total fatigue output ∆F are as shown below:

As shown in Figure 8, there is a proportional relationship between Figure 8a,b, and
the negative fluctuation of fatigue load ∆Fproposed < ∆Ftraditionlal verify the advantage of the
proposed algorithm as compared with the traditional algorithm. In addition, the minimum
value and the maximum values of the output power were ϕ = 90◦ and ϕ = 75◦, respectively.
This is because the wake effect has the biggest at ϕ = 90◦ and the smallest at ϕ = 75◦. In
addition to the optimization performance of total output power and fatigue load, our novel
method results in a more even distribution of fatigue load than the traditional method,
which is discussed in the following:
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The decoupled subsets at wind direction ϕ = 0◦ and ϕ = 90◦ with a wind speed of
V0 ε [8 m/s, 11 m/s] are shown in Tables A2 and A3 (Appendix A). The total output power
and fatigue load were optimized, as shown in Figure 8. In the following, we verify the
distribution of fatigue load on individual turbines.

OWF can be divided into seven decoupled subsets corresponding to the lead turbines
as T1, T8, T15, T22, T29, T36, and T43. For Fmax_greedy = 0.5 MN, Fmax_traditional = 0.35 MN,
Fmax_proposed = 0.35 MN, as shown in Figure 9a, it is clear that Fmax_proposed < Fmax_traditional
< Fmax_greedy. In order to explain the improved even distribution of the individual fatigue,
the fatigue decrease rate of lead turbine ∆Fproposed = −30% > ∆Ftraditional = +10%, as
shown in Figure 9b. Therefore, the superior performance of the even distribution of the
fatigue load is well verified. In addition, when wind direction ϕ = 90◦, as shown in
Figure 9d, the same conclusion was reached, i.e., ∆Fproposed = −40% < ∆Ftraditional = 0%
can be deduced. To achieve the objectives, the control variables of each turbine can identify
the optimization value based on the controller, for example, the control. For example,
Figure 10 shows the scenario V0 = 8 m/s ϕ = 0◦. As mentioned above, the proposed CMC-
BSO algorithm is faster than the MC-BSA algorithm [19]. In this subsection, the reduced
computation time and accuracy were verified by comparing other algorithms as shown
in the following Tables 1–3: Table 1 denotes the computation time, and ∆T denotes the
percentage rate of computation time of the other algorithms using the centralized baseline
method. In Tables 2 and 3, P/F denotes the total output power/fatigue load, and ∆P/∆F
denotes the increased rate of output power/fatigue load of the other algorithms using the
greedy baseline method.
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Figure 10. The control variables with wind speed V0 = 8 m/s and wind direction ϕ = 0◦: (a) the axial
induction factors ai of each turbines; (b) the yaw angles γi of each turbines.

As shown in Tables 1–3, various conclusions can be obtained: (1) The proposed
algorithm is practical at improving the control speed, i.e., the computation time is the
shortest among the four algorithms. (2) For the proposed algorithm, the increase in
the output power was not as effective as that of traditional algorithms and centralized
algorithms, which means there is a low power cost. (3) For the proposed algorithm, the
decrease in the fatigue load was more effective than the other algorithms, as shown in
Table 2.
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Table 1. Comparison of the computation time with V0 = 8 m/s, ϕ ε [0◦, 90◦].

ϕ
T Algorithm (s) ∆T of Decentralized Algorithm

Centralized CMBSA Proposed Traditional

0◦ 4129.41 7.69% 7.22% 7.39%
15◦ 3678.35 8.32% 7.57% 7.92%
30◦ 3195.16 9.06% 8.41% 8.61%
45◦ 3579.48 7.69% 6.93% 7.02%
60◦ 2889.57 9.06% 8.02% 8.59%
75◦ 2849.79 8.29% 7.08% 7.71%
90◦ 2708.91 7.67% 7.11% 7.37%

Average 23,030.67 8.23% 7.47% 7.78%

Table 2. Comparison of the total fatigue load of several algorithms with V0 = 8 m/s, ϕ ε [0◦, 90◦].

F Baseline ∆F of Algorithm (s) ∆F of Decentralized Algorithm

Greedy Centralized Proposed Traditional

0◦ 10.6224 7.43% 1.36% 3.86%
15◦ 15.7124 6.42% 1.16% 4.97%
30◦ 16.0009 5.40% 0.66% 3.39%
45◦ 14.1718 5.94% 1.40% 4.10%
60◦ 14.7316 5.36% 1.31% 3.87%
75◦ 16.3864 5.54% 1.30% 3.89%
90◦ 10.0034 8.90% 1.75% 4.26%

Average 97.6289 6.24% 1.24% 4.04%

Table 3. Comparison of the total output power of several algorithms with V0 = 8 m/s, ϕ ε [0◦, 90◦].

P Baseline ∆P of the Centralized (s) ∆P of Decentralized Algorithm

Greedy Algorithm Proposed Traditional

0◦ 48.877 4.50% 1.68% 2.70%
15◦ 83.7846 1.58% 0.01% 0.88%
30◦ 84.1432 1.43% 0.07% 0.79%
45◦ 72.6399 1.86% 0.41% 1.42%
60◦ 76.4526 1.82% 0.10% 0.88%
75◦ 87.5558 1.03% 0.19% 0.79%
90◦ 45.3892 3.51% 2.06% 3.10%

Average 71.263186 2.00% 0.47% 1.31%

3.3.2. Simulation Results with Constant Wind Directions

As described in the previous subsection, the superior control performance with a con-
stant wind speed of V0 = 8 m/s is well verified. Furthermore, in this subsection, the control
performance is discussed for a scenario of a varying free wind speed of V0 ε [8 m/s, 16 m/s]
and a constant wind direction of ϕ = 45◦.

As shown in Figure 11, with the wind speed of Vi < 11.4 m/s, there is a positive
correlation between the total output power and the wind speed. When Vi > 11.4 m/s
nearly all wind farm turbines produce the rated power, and there are no significant wake
losses [42]. However, the fatigue load F increases with the wind speed, as shown in
Figure 11b. In this paper, the wake effect is the basic component of an OWF, thus we
focused on the performance with Vi < 11.4 m/s. The total fatigue load decreased with the
proposed algorithm to a greater extent than the traditional algorithms at the cost of a small
amount of output power with ∆F.
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Figure 11. Total output power and fatigue load with varying wind speed: (a) total power output
with wind direction; (b) total fatigue load with wind direction.

3.3.3. Simulation Results with Different Hyperparameters

This subsection addresses the tuning result with three main hyperparameters: ξ, σ,
and δF . The wind speed is set at ϕ = 0◦, V0 = 9 m/s by tuning different hyperparameters,
and the impaction on the output result can be summarized as follows.

1. The weight value ξ can decide the relationship between P, F, ∆P, and ∆F.

When ξ varies greater, P and F increase to a greater extent, as is demonstrated in the
following tables:

2. The F, ∆F with a varying hyperparameters value σ.
3. The F, ∆F with a varying hyperparameters value δF .

As shown in Tables 6 and 7, if σ and δF increase, the fatigue load decrease rate will
also increase so that the fatigue load will decrease, which takes the fatigue load decrease
ratio of subset 1 ∆Fs1.

From the results in Tables 4–7, the effects of the four hyperparameters can be summa-
rized as follows:

(1) Weight value ξ is an important weight factor and can be used to adjust the important
degree of P or F, and a larger ξ means it is more important to optimize P. If ξ = 0.5,
P and F are optimized at the same degree.

(2) Hyperparameters values σ and δF can affect the fatigue load of each turbine, The
greater σ or δF , the more the fatigue loads of each subset will decrease (and vice
versa). The difference is that hyperparameters δF are more sensitive than σ.

Table 4. The total power output with a varying weight value ξ.

Weight Value ξ P_Greedy (W) P_Novel Algorithm (W) ∆P

0.2 69,070,174.64 72,914,910.21 6%
0.3 69,768,511.93 77,803,254.87 12%
0.4 69,913,115.76 78,815,630.65 13%
0.5 67,947,711 79,137,971.2 16%
0.6 67,947,711 79,137,971.2 17%
0.7 67,947,711 79,922,278.4 18%
0.8 68,429,385.3 82,338,785.5 20%
0.9 68,429,385.3 84,357,546.7 23%
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Table 5. The F, ∆F with varying weight value ξ.

Weight Value ξ F_Greedy (N) F_Novel Algorithm (N) ∆F

0.2 13,884,399.2 10,530,049.5 −24%
0.3 14,443,457.5 12,042,756.6 −17%
0.4 14,443,457.5 12,518,335.6 −13%
0.5 14,443,457.5 12,822,310.3 −11%
0.6 14,232,568.4 12,967,260.6 −10%
0.7 14,443,457.5 13,050,097.4 −9%
0.8 14,253,567.5 13,948,030.2 −2%
0.9 13,167,647.1 13,113,747.1 0%

Table 6. Subset 1 of each turbine fatigue fluctuation rate with varying σ.

σ ∆FT1 ∆FT2 ∆FT3 ∆FT4 ∆FT5 ∆FT6 ∆FT7 ∆FS1

0 0% −14% −9% −12% −11% −8% 23% −11%
0.1 −32% −15% −9% −13% −12% −8% 22% −12%
0.2 −32% −15% −10% −13% −12% −9% 22% −13%
0.3 −33% −16% −11% −14% −13% −10% 21% −13%
0.4 −34% −17% −12% −15% −14% −11% 20% −14%
0.5 −35% −18% −13% −16% −15% −12% 20% −15%
0.6 −36% −19% −14% −17% −16% −12% 19% −16%
0.7 −37% −20% −15% −18% −17% −13% 18% −17%
0.8 −38% −21% −16% −19% −18% −15% 17% −18%
0.9 −39% −22% −17% −20% −19% −16% 16% −19%

Table 7. Subset 1 of each turbine fatigue fluctuation rate with varying δF.

δF ∆FT1 ∆FT2 ∆FT3 ∆FT4 ∆FT5 ∆FT6 ∆FT7 ∆FS1

0.04 −21% −8% −7% −3% −6% −2% 21% −6%
0.05 −24% −9% −7% −3% −6% −4% 19% −7%
0.06 −25% −10% −9% −4% −8% −9% 18% −9%
0.07 −27% −12% −10% −8% −9% −9% 18% −10%
0.08 −33% −16% −11% −14% −13% −10% 21% −13%
0.09 −34% −17% −11% −15% −14% −11% 22% −14%
0.1 −34% −17% −11% −15% −17% −14% 21% −14%
0.12 −35% −18% −15% −18% −21% −14% 21% −16%
0.13 −35% −19% −15% −19% −21% −14% 21% −17%
0.14 −36% −20% −16% −19% −22% −15% 19% −18%
0.15 −36% −24% −23% −22% −24% −17% 19% −20%

4. Discussion

In this section, the effectiveness of the proposed algorithm is discussed compared with
different examples:

(1) The accuracy and control speed of the proposed algorithm. The reaction speed of
the proposed algorithm is faster than other methods, and the control time of the
CMC-BSO algorithm has been reduced by 9.23% compared to the MC-BAS method
in [17] and decreased by 3.98% compared to the traditional multi-objective algorithm
in [13] owing to the novel decentralized communication topology.
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(2) The performance of the proposed multi-objective function. With different wind speeds
and directions, the implementation of the proposed algorithm compared with the
other two methods:

(a) Compared with the greedy method, the average power output of the proposed
algorithm increased by approximately 0.47%. The proposed algorithm demon-
strated superior performance regarding fatigue distribution, with an average
fatigue decrease rate for the lead turbine of approximately 13.5%. This means
the output power has increased, and the fatigue load has decreased.

(b) Compared with the traditional multi-objective optimization method, the im-
proved performance of the proposed algorithm has also been verified. Al-
though the total output power rate is decreased at 1.5%, the average fatigue
decrease rate is 12.3%. Therefore, it can be economically profitable at a low
power cost.

(3) The tuning factors. The different tuning factors of the proposed multi-objective
function were analyzed. In this case, the tuning factor ranges from 0.4 to 0.9, and the
specific value needs to consider the balance between calculation accuracy and speed.

In the above description, the performance of the proposed method to reach the antici-
pated objective bears the characteristics of faster speed, increased robustness, and greater
accuracy than other methods.

5. Conclusions

This study have proposed a novel three-objective optimization algorithm that utilizes
a decentralized framework to address the OWF optimization problem. The performance
of the submitted novel algorithm has been verified using a simulation with varying wind
speeds and directions. The maximum fatigue load value on the lead turbines can be
reduced with the proposed methods. In addition, fatigue load declined to a certain extent
for downstream turbines due to wake effect control, and the decrease rate has been lower
than that of the traditional method. From a cost point of view, the proposed novel algorithm
has been performed well by balancing multiples, although there were some active power
losses. The main results of the paper can be summarized as follows:

(1) The PDFS implemented with the HITS algorithm has been newly proposed in the
wake effect digraph of a large-scale OWF, which can be useful for splitting the OWF
into decoupled groups. It is of significance and practical importance for us to control
the wake effect digraph with a modular and flexible structure.

(2) A novel multi-objective algorithm has been submitted in this study to increase the
economic profits of OWF owners. The importance of this algorithm is of good perfor-
mance on balancing fatigue load dispatch of each wind turbine on the whole OWF.
A quantitative analysis has been conducted comparing the result data of the novel
algorithm and the traditional algorithm, and its good performance was well verified.

(3) It is a non-negligible key technology to design a solver of controllers. The CMC-BSO
algorithm has been proposed first in this paper. The practical importance of this paper
is to develop a novel control technique by presenting the CMC-BSO algorithm. We
have confirmed that it can decrease the probabilities of the suboptimal solution and
improve the active speed, which has been verified by comparing the computation
time of the MC-BAS algorithm as in Section 3.

However, this paper did not consider wind turbulence and Pareto optimal points,
which will be further focused on in future research. In addition, with the growth of
large-scale OWF, it is worth developing decoupled group technology to further decrease
communication burdens in the field. Moreover, a more accurate high-fidelity CFD model is
needed to design the well-optimized performance of the OWF control algorithm [33].
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Appendix A

Table A1. Turbine decoupling results and a maximum HITS authority score of shared turbines. (bold
font shows the highest score).

Scheme Authority Score Decoupled Subsets

S1:{T7|T6, T5, T4, T3, T2, T1} T6 = 0.013756 SD1:{T2|T6, T5, T4, T3, T2}

S2:{T14|T13, T5, T4, T3, T12, T2, T1, T11,
T10, T9, T8}

T4 = 0.8660
T5 = 0.0019
T13 = 0.0028
T3 = 0.1134

SD2:{T14|T13, T3, T4, T5}

S3:{T21|T20, T19, T10, T9, T8, T18, T17, T16,
T15, T11, T1, T12, T3, T2}

T1 = 0.0656
T9 = 0.0138
T10 = 0.1049
T11 = 0.8008

SD3:{T21|T12, T11, T10, T1, T20, T9}

S4:{T28|T27, T26, T25, T24, T23, T22, T17,
T16, T15, T18, T8, T9, T1, T10, T19}

T19 = 0.0018
T18 = 0.8008
T17 = 0.1049
T16 = 0.0138
T8 = 0.0656

SD4:{T28|T19, T18, T17, T16, T27, T8}

S5:{T35|T34, T33, T24, T23, T22, T32, T31,
T30, T29, T25, T15, T16, T17, T8, T26}

T15 = 0.065594
T23 = 0.013756
T24 = 0.104902
T25 = 0.800807
T26 = 0.001768

SD5:{T35|T26, T25, T24, T23, T34, T15}

S6:{T42|T41, T40, T31, T30, T29, T39, T38,
T37, T36, T32, T22, T23, T33, T24, T15}

T33 = 0.001768
T32 = 0.800808
T22 = 0.065594
T30 = 0.013756
T31 = 0.104902

SD6:{T42|T33, T32, T22, T31, T41, T30}

S7:{T49|T48, T47, T38, T37, T36, T46, T45,
T44, T43, T39, T46, T45, T44, T43, T39}

T40 = 0.001758
T39 = 0.796475
T38 = 0.104887
T37 = 0.017292
T29 = 0.065226
T36 = 0.00192

SD7:{T49|T48, T40, T39, T47, T38, T37, T29,
T46, T45, T44, T43, T36}
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Table A2. Subsets of turbines in a 7 × 7 matrix OWF when the wind direction is ϕ = 0◦,
V0 ε [8 m/s, 11 m/s].

No. of Subsets Lead Turbines in Subset

N1 T1 {T1|T2, T3, T4, T5, T6, T7}
N2 T8 {T8|T9, T10, T11, T12, T13, T14}
N3 T15 {T15|T16, T17, T18, T19, T20, T21}
N4 T22 {T22|T23, T24, T25, T26, T27, T28}
N5 T29 {T29|T30, T31, T32, T33, T34, T35}
N6 T36 {T36|T37, T38, T39, T40, T41, T42}
N7 T43 {T43|T44, T45, T46, T47, T48, T49}

Table A3. Subsets of turbines in a 7 × 7 matrix OWF when the wind direction is ϕ = 90◦,
V0 ε [8 m/s, 11 m/s].

No. of Subsets Lead Turbines in Subset

N1 T1 {T1|T8, T15, T22, T29, T36, T43}
N2 T2 {T2|T9, T16, T23, T30, T37, T44}
N3 T3 {T3|T10, T17, T24, T31, T38, T45}
N4 T4 {T4|T11, T18, T25, T32, T39, T46}
N5 T5 {T5|T12, T19, T26, T33, T40, T47}
N6 T6 {T6|T13, T20, T27, T34, T41, T48}
N7 T7 {T7|T14, T21, T28, T35, T42, T49}
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