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Abstract: Mounting concerns pertaining to energy efficiency have led to the research of load monitor-
ing. By Non-Intrusive Load Monitoring (NILM), detailed information regarding the electric energy
consumed by each appliance per day or per hour can be formed. The accuracy of the previous residen-
tial load monitoring approach relies heavily on the data acquisition frequency of the energy meters.
It brings high overall cost issues, and furthermore, the differentiating algorithm becomes much
more complicated. Based on this, we proposed a novel non-Intrusive residential load disaggregation
method that only depends on the regular data acquisition speed of active power measurements.
Additionally, this approach brings some novelties to the traditionally used denoising Auto-Encoder
(dAE), i.e., the reconfiguration of the overlapping parts of the sliding windows. The median filter is
used for the data processing of the overlapping window. Two datasets, i.e., the Reference Energy
Disaggregation Dataset (REDD) and TraceBase, are used for test and validation. By numerical testing
of the real residential data, it proves that the proposed method is superior to the traditional Factorial
Hidden Markov Model (FHMM)-based approach. Furthermore, the proposed method can be used
for energy data, disaggregation disregarding the brand and model of each appliance.

Keywords: load disaggregation; denoising auto-encoder; REDD dataset; TraceBase dataset;
machine learning

1. Introduction

At present, the household electric meter can only measure total electricity consumption,
and not the individual electric consumption of various loads. Energy disaggregation is the
computational process of distinguishing individual power consumptions of an electrical
appliance from the mixed measurement. The application of NILM can help households
reduce their cost of energy consumption. According to related studies, with the energy
consumption information of each appliance, users can realize energy conservation of
more than 12% [1]. In addition, with the increasing installation of renewable energy, the
distribution network needs faster and more accurate demand-side response capability. The
realization of this capability depends on load disaggregation [2,3].

The load disaggregation of residential electrical equipment is an important direction of
smart grid research. The user’s electrical equipment has the characteristics of wide variety,
large scale, and large differences in the load characteristics [4]. At present, with the pilot and
promotion of load disaggregation for residential users, many local load monitoring devices
have been deployed. In actual use, it is found that load monitoring devices generally
undergo sample data training or learning process in advance. The difficulties in field use
are threefold: firstly, due to the low efficiency of the algorithm, the real-time performance of
load disaggregation is difficult to guarantee; secondly, due to the wide variety of electrical
equipment and complex working conditions, it is difficult to find an algorithm to accurately
identify each electrical equipment, and thirdly, when users deploy new devices, they often
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cannot be identified correctly, which brings great limitations to field usage. Therefore, it
is necessary to consider adopting a method to solve the problem of online disaggregation
and synchronization of local load disaggregation equipment [5,6].

Load disaggregation can be divided into intrusive methods based on hardware devices
and non-intrusive methods based on software algorithms (Nonintrusive Load Monitoring—
NILM) [7–9]. In 1992, Hart addressed the energy data disaggregation problem for the
first time using Finite State Machine (FSM), which led to the new approaches based on
Hidden Markov Models (HMM), and Factorial Hidden Markov Models (FHMM) [10–13].
The essence of these methods is to model the specific electrical signatures or features
of each device, either manually or automatically. Ref. [14] proposed an intrusive load
disaggregation method based on distributed power Measurement and Actuation Units
(MAUs). MAUs are connected between the device plug and the power outlet. The MAU
device can measure the power consumption of a single device and control the power failure
of the device for demand-side response. Because the invasive method requires additional
installation of equipment, the user’s responsiveness is relatively low. More research on
load disaggregation focus on non-invasive methods. For example, [15] separates the
high frequency collected load current data to build a load feature library to realize non-
intrusive automatic load monitoring of adaptive users and [16] proposes a non-intrusive
load disaggregation method based on generalized regression neural network. This method
needs to obtain data such as power, harmonics, switching time, and so on. Ref. [17] proposes
separating the superimposed loads based on the transient reactive power characteristics of
the load at opening moment, and the coded Particle Swarm Algorithm (E-PSO) is deployed
for disaggregation. The above studies all have high load disaggregation accuracy; however,
all of them have high requirements for data measurement. Whether it is the high-frequency
load current data or the transient waveform when the load is turned on, the ordinary
electric meter needs to be transformed before these data can be obtained, adding additional
cost to the customers.

In recent years, some scholars proposed to only use low-frequency single measurement
for load disaggregation [18–21]. Ref. [18] uses the effective value of current to identify the
load, and Ref. [19] only uses the steady-state time domain active and reactive power to
identify the turn-on or turn-off status of electrical equipment. A common defect of these
methods is that the disaggregation accuracy is poor when multiple loads with similar
steady-state waveforms are turned on at the same time.

In terms of disaggregation algorithms, load disaggregation based on machine learn-
ing methods is known as a research hotspot [22–28]. Various mature machine learning
algorithms are applied to load disaggregation, such as Factorial Hidden Markov Model
(FHMM), Artificial Neural Network (ANN), decision tree, etc. In these studies, Deep Neu-
ral Networks (DNNs) seem to have certain advantages in both the accuracy and handiness.
Ref. [27] proposed a Fully Convolutional Noise Reduction Encoder Algorithm (FCN-dAE)
for load disaggregation of non-residential large buildings. This algorithm can train the
weight coefficients more effectively in the process of time series modeling. It has a more
stable gradient, which simplifies and speeds up the training process. Three difference neu-
ral network architectures have been investigated and compared by Kelly and Knottenbelt
in [10].

This paper proposes a non-intrusive load disaggregation method that only relies on
a single active power measurement at a conventional data acquisition rate. This method
requires less measurement and does not require additional installation of hardware and
equipment or modification of existing electric energy meters. In terms of the algorithm, this
paper is based on the improved Denoising Auto-Encoder algorithm, which can better distin-
guish loads with similar steady-state power waveforms. Compared with the literature [28],
this paper obtains the adjacent maximum value through the maximum pooling operation in
the encoding stage, so that the activation function in the analysis window is more indepen-
dent, and the length of the feature map and the elements of the fully connected layer can
also be reduced. Two datasets, i.e., the Reference Energy Disaggregation Dataset (REDD)
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and TraceBase, are used for test and validation. By numerical test of the real residential
data, it proves that the proposed method is superior to the traditional Factorial Hidden
Markov Model (FHMM)-based approach. Besides, the proposed method can be used for
energy data disaggregation, disregarding the brand and model of each appliance.

This study is organized as follows: Section 2 briefly reviews the four mainstream
datasets for NILM, i.e., the REDD, TraceBase, UK-DALE, and Dataport. In Section 3,
the proposed disaggregation algorithm is introduced. It elaborates the improvements of
the dAE and the two-step procedure of implementing the modified algorithm. Section 4
discusses the test, results, and performance of the proposed method. The proposed DAE
network is trained on REDD and TraceBase datasets, and the test results are compared with
an FHMM-based approach. Section 5 presents the research conclusions.

2. Dataset Review and Comparison

There are many open-source datasets for non-invasive load disaggregation research
worldwide. The commonly used ones are as follows:

(1) REDD dataset [29]. Its full name is the Reference Energy Disaggregation Dataset,
developed by J. Kolter and M. Johnson of MIT, and is the first dataset for NILM
research. The REDD dataset provides high-frequency data sampled at 15 kHz and
low-frequency data sampled at 0.5 Hz and 1 Hz. A total of 10 households, 119 days,
268 devices, 1 T electricity consumption data were recorded. Figure 1 is an example of
the REDD dataset, showing the electricity usage of various devices in a household
over the course of a day. The REDD dataset can be processed with Excel, which is
easy to operate. The data download website is: http://redd.csail.mit.edu (accessed
on 25 November 2021).

(2) TraceBase dataset [14]. The TraceBase dataset was developed by A. Reinhardt of
Darmstadt University in Germany. It monitors and records more than ten homes and
offices, 31 different types of equipment, 122 devices, and 1270 pieces of load electricity
data. Figure 2 shows the electricity consumption of a dishwasher over a period. The
entry on the left is time, and the two numbers on the far right represent the average
active power consumption within 1 s and 8 s, respectively. The TraceBase dataset is
also stored in the form of an Excel table. The format of the data entry is shown in
Figure 2. The data download website is: http://www.TraceBase.org (accessed on
25 November 2021).

(3) UK-DALE dataset [30]. Developed by J. Kelly and W. Knottenbelt of Imperial College
London, the UK-DALE dataset provides 16 kHz energy consumption data for the
whole house and 1/6 Hz energy consumption data for a single device. It is the
first dataset for load disaggregation in the UK. This dataset recorded the electricity
consumption data of five households, one of which was monitored for up to 655 days.
The monitoring equipment recorded the active power of a single device as well as the
apparent power of the entire house every 6 s, with the voltage and current of three
households sampled at 44.1 kHz but reduced to 16 kHz when stored. In addition,
the active power, apparent power, and voltage RMS were calculated according to
the measured voltage and current, and the calculation frequency was 1 Hz. This
dataset is a file in HDF5 (Hierarchical Data Format) format, which needs to be read
and analyzed with NILMTK, a non-intrusive load monitoring tool. However, the
NILMTK package needs to be loaded and configured with Anaconda software, which
is relatively complicated to use.

(4) Dataport dataset [31]. The Dataport dataset was developed by Pecan Street company
and is the most comprehensive dataset for NILM research. In total, it contains up to
722 households’ power consumption data and individual device’s power consumption
data. Its data sampling rate is low, sampling once a minute. The Dataport dataset is
free for member universities, but a paid download is required for commercial use.
Like the UK-DALE dataset, this dataset also requires the use of the NILMTK tool for
data analysis and statistics.

http://redd.csail.mit.edu
http://www.TraceBase.org
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Figure 1. The power waveform of each load in a household in one day.

Figure 2. The data format of the TraceBase dataset.

This paper only uses low-frequency active power data. Considering that the REDD
dataset and the TraceBase dataset are relatively simple to use, and the data volume is
sufficient for machine learning training, the REDD dataset and the TraceBase dataset are
used for sample training and method verification.

3. The Proposed Load Disaggregation Algorithm

Usually, a household has multiple electrical devices turned on at the same time, so its
total active power is composed of the sub-power of each electrical device. What we need
to do is to extract the power characteristics of each electrical device and use it to separate
the individual power consumption from the total power mixture. This separation process
can be regarded as noise reduction in image processing or speech recognition. Typical
noise reduction treatments include removing noise from old photos, or removing noise
from a piece of sound, or even filling in the unclear parts of an image. The essence of
load disaggregation is load decomposition. The total mixed power can be regarded as
the picture or recording that needs to be processed, and the power generated by other
unconcerned equipment can be regarded as “noise”.

3.1. Improved Denoising Auto-Encoder Algorithm

The Auto-Encoder algorithm (AE) belongs to unsupervised learning and does not
require labeling of training samples. AE consists of a three-layer network. First, the input
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layer is encoded and compressed, stored in the intermediate layer (or called the encoding
layer), and then the intermediate layer is decoded, and a reconstructed new vector is output
in the output layer. So, in essence, AE consists of two processes: encoding and decoding.
In the encoding process, the deterministic mapping fθ maps the input vector x to a hidden
agent y, and fθ is the encoder. A typical encoder adopts the nonlinear affine mapping model
shown in Equation (1).

fθ(x) = s(Wx + b) (1)

where θ = {W, b} represents the parameter set, W is the weight matrix of d′ × d, and b is
the offset vector of d’. In the decoding process, the previously obtained hidden agent y is
mapped back to reconstruct a d-dimensional vector z in the input space, z = gθ′(y). gθ′

is the decoder. A typical decoder adopts the squeezed nonlinear radial mapping model
shown in Equation (2).

fθ(x) = s(Wx + b) (2)

where θ′ = {W′, b′}. The meanings of W′ and b′ are similar to those of W and b in
Formula (1). It should be noted that the d-dimensional vector z obtained after decoding is
not a reconstruction of the input vector x in the full sense, but a reconstruction of probability
theory, because the probability distribution parameters of p(X|Z = z) (especially its mean)
may increase the probability of x. One of the simplest compression methods is to reduce
the dimensionality of the input vector, so linear AE with only a single hidden layer can be
regarded as a special principal component analysis method (PCA). But unlike PCA, AE can
contain multiple layers and the network function can be nonlinear.

Denoising Auto-encoder (dAE) is a special autoencoder whose purpose is to separate
a “clean” target signal from a noisy input, proposed by P. Vencent et al. in 2008 [32].
The dAE algorithm first artificially adds a random “noise” signal x̃( x̃ ∼ qD(

~
x |x )) to the

input vector x. Similar to an auto-encoder, dAE maps the noisy input signal x̃ to a hidden
agent y = fθ(x̃) = s(Wx̃ + b), which constructs a decoded output vector z = gθ′(y). The
structure of the denoising autoencoder is shown in Figure 3. The parameters θ and θ’ are
trained to minimize the average reconstruction error during training, i.e., to make the
output z as close as possible to the original uncontaminated input vector x, so that z is
now a deterministic function of

~
x. It is worth noting that although dAE is still to minimize

the reconstruction loss between the original input x and the reconstructed agent y, it still
needs to maximize the lower bound of mutual information between the original input x
and the reconstructed agent y. However, at this time y is obtained by using deterministic
mapping for “polluted” input, so its feature extraction and learning ability is stronger than
traditional autoencoders.

Figure 3. The structure of Denoising Autoencoder (the signal obtained by adding random noise to
the original input x, fθ is the encoder, y is the intermediate proxy after encoding and mapping, gθ′ is
the decoder, z is the reconstruction input, and LH(x, z) is the reconstruction loss, which is used to
measure the reconstruction error).

In the load separation stage, the load identification method based on dAE generally
uses a sliding window to analyze the input mixed power signal y(t), and the length of the
sliding window is determined by the use time of the corresponding electrical equipment.
Therefore, for a mixed power obtained by turning on multiple devices at the same time,
the sliding windows will be overlapped. Traditional denoising autoencoder-based load
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decomposition methods use the average value of the overlapping parts to reconstruct
this overlapping window [10]. A problem with this approach is that when a device’s
on-time is only included in this overlapping window for a small fraction of time, the
load identification results can be significantly higher than the actual power usage. As the
window slides, the identified error will further increase. Here we use the median filter to
process the overlapping part, that is, the output signal of the overlapping part is the result
of y(t) after median filtering. Specifically, because the power change of the overlapping
window is relatively small, the output value of the overlapping window can be replaced by
the statistical median of all values in a neighborhood of a certain size. This neighborhood
is called a window. The wider the window, the smoother the output will be, but it may also
wipe out useful signal features. Therefore, the size of the window should be determined
according to the actual hybrid power characteristics.

3.2. Decomposition Steps Based on Improved DAE

The problem of non-intrusive load identification can be expressed by Equation (3).

y(t) =
N

∑
i=1

yi(t) + e(t) (3)

where yi(t) represents the electrical quantity of a single electrical device, and this electrical
quantity may be power, voltage, or current. Without loss of generality, we consider it the
active power value. y(t) indicates the total electricity consumption of this household. e(t)
represents the total measurement error, where we consider the measurement error to be 0.
N represents the number of electrical appliances in this household. Therefore, according to
Formula (3), the NILM problem is to use the algorithm to obtain the power consumption
value of a single electrical device when only the total load power is known. We transform
the load decomposition into a noise reduction problem, as shown in Equation (4).

y(t) = yk(t) + ck(t), k = 1, 2, . . . , N (4)

ck(t) =
N

∑
i=1,i 6=k

yi(t) (5)

where ck(t) represents the sum of the power of all other devices except device k, and yk(t)
represents the load k that needs to be separated. Therefore, to obtain the value of the active
power consumed by the load k of interest, one only needs to separate ck(t) from the total
load yk(t).

The separation steps based on the improved dAE algorithm are as follows:
Stage 1: Encoding the network:

1. One or more one-dimensional convolutional layers process the original total input
power value to generate a set of feature maps;

2. Each convolutional layer sequentially goes through a linear activation function, a
maximum pooling layer, an additional convolutional layer, and a pooling layer, and
finally forms a fully connected multilayer perceptron;

3. The fully connected layer is processed by the modified linear unit (ReLU) activation
function to end the entire encoding process.

Stage 2: Decoding the network:

4. Upsampling the fully connected multilayer perceptron through deconvolution;
5. Up-pooling the results in 4 (the inverse process of max-pooling);
6. Continue to upsample the results in 5 through deconvolution;
7. Obtain the decoded and reconstructed noise reduction signal.

In stage 1 and step 2, the adjacent maxima are obtained through the maximum pool-
ing operation, so that the activation function positions in the analysis window are more
independent, and the length of the feature map and the number of fully connected layer
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elements can also be reduced. The modified linear unit (ReLU) activation function com-
pares the magnitude of the input with zero and outputs a larger value, thereby avoiding
negative values of the load power after decomposition. The goal of this modified dAE
training network is to minimize the mean squared error (MSE) between the output and
the activation function of the device to be separated, using a stochastic gradient descent
(SGD) method for training parameter optimization. Unlike traditional dAE, which requires
artificially adding noise data to the input data, in NILM research, only the power of non-
research objects is used as noise. It can be seen that the noise reduction automatic coding
for NILM research is not equivalent to the traditional image or sound noise reduction but
uses noise reduction as a training standard to better learn how to extract useful features, so
as to better construct high-level acting.

4. Performance Evaluation

In this section, the proposed improved dAE network is trained on the measured
data of REDD and TraceBase, and the test results are compared with the factorial Hidden
Markov Model (FHMM) algorithm [28]. All codes are in Python language, and NILMTK
and Pandas tools are used to analyze the data. The neural network training environment is
Win10 Home Edition, Intel i5-10210U processor, 8 G memory, and NVIDIA GeForce MX110
graphics card.

4.1. Performance Metrics

The evaluation of the NILM algorithm can be divided into two aspects: the accuracy of
energy decomposition and the correctness of equipment state detection. In terms of energy
decomposition, the evaluation indicators are authenticity, accuracy, and F1 index, which
are represented by R(E)

i , P(E)
i , and F(E)

1 , respectively. The specific calculation formulas of
the first two indicators are shown in Formulas (6) and (7).

R(E)
i =

∑T
t=1 min(ŷi(t), yi(t))

∑T
t=1 yi(t)

(6)

P(E)
i =

∑T
t=1 min(ŷi(t), yi(t))

∑T
t=1 ŷi(t)

(7)

where ŷi(t) represents the separated energy signal, yi(t) represents the real energy con-
sumption of the device, and T represents the total number of samples. In order to analyze
the overall performance of the load disaggregation algorithm, we analyze the average
authenticity and accuracy of all equipment, and calculate as follows:

R(E) =
1
N

N

∑
i=1

R(E)
i (8)

P(E) =
1
N

N

∑
i=1

P(E)
i (9)

where R(E) and P(E) represent the average value obtained by considering the authenticity
and accuracy of all equipment load resolution, respectively, reflecting the overall perfor-
mance of the NILM algorithm. The metric F(E)

1 is the geometric mean of authenticity and
accuracy, calculated as follows:

F(E)
1 = 2

R(E)P(E)

R(E) + P(E)
(10)

In addition, we also define the standard error NEP of load identification, which is
used to represent the sum of the deviation between the equipment energy consumption
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obtained after decomposition and the standard energy consumption. This deviation sum is
normalized by the total real equipment energy consumption, and its calculation formula is:

NEPi =
∑T

i=1|yi(t)− ŷi(t)|
∑T

t=1 yi(t)
(11)

The detection of equipment status refers to the detection of the on/off status of
the equipment, which can be decomposed into four indicators, true positive (TP), false
positive (FP), false negative (FN), and true negative (TN). The specific definitions of the
four indicators are as follows:

TPi =
T

∑
t=1

(si(t) = on, ŝi(t) = on) (12)

FPi =
T

∑
t=1

(si(t) = o f f , ŝi(t) = on) (13)

FNi =
T

∑
t=1

(si(t) = on, ŝi(t) = o f f ) (14)

TNi =
T

∑
t=1

(si(t) = o f f , ŝi(t) = o f f ) (15)

In Equations (12)–(15), si(t) and ŝi(t) represent the real state and identification state
of the device i at time t, respectively, and on and off represent the two states of the device.
The authenticity and accuracy of identification based on device status are defined as:

R(S)
i =

TPi
TPi + FNi

, P(S)
i =

TPi
TPi + FPi

(16)

Similarly, considering the authenticity and accuracy of all equipment status detection
and identification, the indicators are obtained:

R(S) =
1
N

N

∑
i=1

R(S)
i , P(S) =

1
N

N

∑
i=1

P(S)
i (17)

Thus, the index F(S)
1 based on the device state is obtained:

F(S)
1 =

2R(S)P(S)

R(S) + P(S)
(18)

In addition, we also use the Matthews Correlation Coefficient (MCC) as the identifica-
tion accuracy index, which is defined as:

MCCi =
TPiTNi − FPiFNi√

(TPi + FPi)(TPi + FNi)(TNi + FPi)(TNi + FNi)
(19)

The overall Matthews Correlation Coefficient is

MCC =
1
N

N

∑
i=1

MCCi (20)

The value of MCC is in the range of [−1, 1]. The larger the value is, the more accurate
the identification is, and the value of 0 is a random prediction.
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4.2. Test Result
4.2.1. Performance Test Using REDD Dataset

In this REDD dataset, Household 1 and Household 2 data were selected as test subjects.
The data is updated every 3 s, so it contains a total of 28,800 pieces of data in one day.
In order to verify the effectiveness of the proposed dAE-based algorithm, we tested and
compared the load decomposition effects of 10 kinds of electrical equipment in Household 1
and 8 kinds of electrical equipment in Household 2, respectively. Among them, the 10 kinds
of electrical equipment in family 1 are oven, refrigerator, dishwasher, sterilizer, lamp, dryer,
microwave oven, bathroom heater, electric heater, stove. The 8 kinds of electrical equipment
in Household 2 are kitchen appliance 1, kitchen appliances 2, lamp, stove, microwave,
dryer, refrigerator, dishwasher.

In the process of data training, considering that the device may show different power
waveforms in different time periods, for each device, 10 days of data are selected for
training, and the other 10 days of data are used for testing and verification. Therefore, a
total of 576,000 pieces of data are used. In the REDD dataset, the power consumption data
of all 10 electrical devices exceeds 600,000.

To keep it concise, only the power decomposition results of three electrical appli-
ances in Household 1 are presented, namely dishwasher, refrigerator, and lamp (shown in
Figure 4). The abscissa in the figure is the time, and the unit is seconds. Because we hope
to better observe the load disaggregation effect of the improved dAE algorithm and the
FHMM algorithm, only the power waveform during the time when the device is turned on
is selected, so the abscissa time only lasts for 6000 s, that is 2000 data points. In Figure 4,
the waveform of line 1 represents the actual power curve of the load, the waveform of
line 2 represents the load identification result based on the improved dAE algorithm, the
waveform of line 3 represents the load identification result based on the standard DAE
algorithm, and the waveform of line 4 represents the load identification result based on the
FHMM algorithm.

Figure 4. Identification results of three devices in home 1. (Line 1: the actual power curve of the
load; Line 2: the load identification result based on the improved dAE algorithm; Line 3: the load
identification result based on the standard dAE algorithm; Line 4: the load identification result based
on the FHMM algorithm).

It should be noted that commonly used household electrical equipment can be divided
into three categories from the operating state: single state class, continuous change class,
and multi-state class:
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Single state class: This means that there is only one stable state after the device is
turned on, and the power generally remains unchanged, such as lamps, kettles, microwave
ovens, etc.

Continuous change type: This means that the power of the device will have a continu-
ous increase/decrease process during the process of turning on/off, such as TV (power
change 50 W–75 W), computer (80 W–100 W), etc.

Multi-state class: Refers to the device having multiple power states during operation,
such as refrigerators, washing machines, dishwashers, dryers, etc.

Among these three types of electrical equipment, the identification of single-state and
continuous-change types is relatively simple, while the multi-state type is easily confused
with other equipment due to its great difference in power in different state stages.

As can be seen from Figure 4, for lamps belonging to the single-state category, the
identification effects of the three algorithms are good, which can well reflect the on and off
states of the device, and the calculation of the power consumption value is also relatively
accurate. For the dishwashers and refrigerators belonging to the multi-state category, the
load identification effect based on the improved dAE algorithm is better, which is reflected
in two aspects: (1) It decomposes the real power consumption value of the equipment more
accurately; (2) It detects the different state stages of the equipment more accurately, thereby
reducing the probability of misjudgment.

Figure 5 shows the usage of the dishwasher in Household 1 on a certain day, and
its usage time is in the interval of 10,000–12,000 s. This interval is enlarged and the
identification results of the two algorithms are compared, as shown in Figure 6.

It can be clearly seen from the figure that the load identification algorithm based on
the improved dAE only has a little jitter in the high-power operation state; the jitter error
does not exceed 5%, and can well fit the switching process between the states. Overall,
the identification method based on FHMM has a higher power decomposition result; the
amplitude is close to 20% and cannot accurately represent the load switching process. The
result from standard dAE is also included for comparison, from which we can see that it
has much more fluctuation. Especially at the time 1100 s, there is a big spike.

Figure 5. The actual daily energy consumption of Household 1’s dishwasher.
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Figure 6. Actual energy consumption of dishwasher in Household 1 in one day.

Table 1 compares the four indicators of the three algorithms. These four indicators are
defined and explained in Section 4.1. They represent the accuracy of energy consumption
disaggregation (the bigger the better), the accuracy of the device status detection (the bigger
the better), the NEP, which represents the deviation of the power disaggregation result
from the actual value (the smaller the better), and the Matthews Correlation Coefficient
(MCC), which represents the accuracy of the state detection (the closer to 1 the better). Due
to space limitations, the table only lists the comparison of 5 kinds of equipment. It can be
seen from the table that all indicators obtained by the improved dAE algorithm are better
than the FHMM algorithm. The percentage of improvement regarding improved dAE and
standard dAE is listed on the far-right side of the table, and the bold font indicates better
performance of the proposed algorithm.

Table 1. Comparison of identification indexes of several equipment using REDD dataset.

Algorithm Index Oven Refrigerator Dish
Washer Lamp Washer

Dryer
Overall

Performance Improvement *

FHMM

F(E)
1 % 33.2 22.7 50.0 45.3 80.3 46.30

F(S)
1 % 78.6 42.6 21.5 36.3 52.3 46.26
NEP 2.652 0.709 3.222 1.562 0.441 1.7172
MCC 0.223 0.420 0.478 0.423 0.652 0.4392

Standard
dAE

F(E)
1 % 42.6 45.6 70.5 59.6 85.4 60.74

F(S)
1 % 82.6 58.1 44.9 55.0 66.2 61.36
NEP 1.852 0.652 1.256 1.006 0.333 1.020
MCC 0.455 0.558 0.658 0.455 0.742 0.574

Improved
dAE

F(E)
1 % 78.5 66.84 88.8 69.0 99.3 80.50 32.5%

F(S)
1 % 92.3 65.96 65.3 67.5 74.5 73.11 19.1%
NEP 0.389 0.520 0.226 0.265 0.225 0.325 68.1%
MCC 0.674 0.685 0.783 0.885 0.898 0.785 36.8%

* percentage of improvement regarding the improved dAE and standard dAE.

Due to the variety of types of household electrical appliances, there may be differences
in the power consumption behavior of different types of equipment. To test the generality
of the algorithm, we trained the network using the data of Household 1, Household 3, and
Household 4, and the trained network decomposes the ensemble power of Household
2. Figure 7 shows the results of identifying each device in Household 2 after using the
data of Household 1 for network training. Due to space limitations, only the comparison
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results of three devices are shown, namely stove, microwave, and sterilizer. In Figure 7,
the waveform of line 1 represents the actual power curve of the load, the waveform of
line 2 represents the load identification result based on the improved dAE algorithm, the
waveform of line 3 represents the load identification result based on the standard dAE
algorithm, and the waveform of line 4 represents the load identification result based on the
FHMM algorithm. It can be seen from the figure that, for single-state microwave ovens and
sterilizers, all three algorithms can properly identify the equipment, while for stoves with
multiple states, the improved dAE algorithm is obviously better than the standard dAE or
FHMM algorithm.

Figure 7. Identification result of Household 2 after using the network trained by dataset of House-
hold 1 (Line 1: the actual power curve of the load; Line 2: the load identification result based on the
improved dAE algorithm; Line 3: the load identification result based on the standard dAE algorithm;
Line 4: the load identification result based on the FHMM algorithm).

4.2.2. Performance Test Using TraceBase Dataset

The TraceBase dataset contains 31 different types of devices, 122 devices, and 1270 pieces
of load power consumption data. The data collection interval is 1–2 s. We used two algo-
rithms to identify 20 of these devices, and selected the identification results of TV sets,
desktop computers, and electric irons to display, as shown in Figure 8. In order to better
illustrate the pattern of electric iron, the abscissa axis is truncated from time 0 to 800 s be-
cause the power assumption is 0 afterwards. As can be seen from the figure, the improved
dAE algorithm has obvious advantages in both identifying the power consumption of the
real equipment and detecting the different stages of the equipment.

Figure 9 compares the recognition performance of the three algorithms on a desktop
computer from 15,000 s to 25,000 s. It can be seen from the figure that the jitter error of the
load identification algorithm based on the improved dAE does not exceed 4%, and it can
well fit the switching process between states, while the decomposition method based on
standard dAE and FHMM are not accurate at the time of load start and stop. Additionally,
the overall decomposed load power is too high. Table 2 compares the four indexes of the
three algorithms. It can be seen from the table that all indicators obtained by the improved
dAE algorithm are better than the standard dAE or FHMM algorithm, and the overall
performance value is listed on the second far-right side of the table.
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Figure 8. Identification Results of the three devices in TraceBase. (Line 1: the actual power curve of
the load; Line 2: the load identification result based on the improved dAE algorithm; Line 3: the load
identification result based on the standard dAE algorithm; Line 4: the load identification result based
on the FHMM algorithm).

Figure 9. PC load identification results over a period of 15,000–25,000 s.

Table 2. Comparison of identification indexes of several equipment using TraceBase dataset.

Algorithm Index Coffee
Machine LCD-TV Desktop Wash

Machine Electric Iron Overall
Performance Improvement *

FHMM

F(E)
1 % 65.6 45.3 33.3 35.9 39.6 43.94

F(S)
1 % 60.4 56.3 35.6 52.52 54.1 51.784
NEP 0.744 0.523 2.250 6.235 9.601 3.8706
MCC 0.732 0.729 0.420 0.452 0.333 0.5332

Standard
dAE

F(E)
1 % 74.2 66.6 44.3 55.2 52.3 58.52

F(S)
1 % 71.0 74.2 45.3 62.3 65.4 63.64
NEP 0.653 0.387 2.023 5.236 6.200 2.9000
MCC 0.741 0.774 0.625 0.650 0.661 0.6902
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Table 2. Cont.

Algorithm Index Coffee
Machine LCD-TV Desktop Wash

Machine Electric Iron Overall
Performance Improvement *

Improved
dAE

F(E)
1 % 87.3 77.6 55.6 65.2 87.6 74.66 27.60%

F(S)
1 % 88.9 85.3 65.4 72.3 74.1 77.20 21.30%
NEP 0.520 0.125 1.985 1.690 3.652 1.5944 45.00%
MCC 0.812 0.874 0.898 0.870 0.704 0.8316 20.50%

* percentage of improvement regarding the improved dAE and standard dAE.

5. Conclusions

This paper proposes a non-intrusive load identification method that only relies on
single active power measurements at a conventional sampling rate. This method is based
on the Denoising Auto-Encoder (dAE) algorithm, which regards the total mixing power as
a picture or a recording that needs to be processed, and the power generated by other un-
concerned devices as “noise”. The load power of the individual equipment is disaggregated
from the total mixed power.

In the performance evaluation test, the REDD and TraceBase datasets are used to
compare the effectiveness between the proposed method and the Factorial Hidden Markov
Model (FHMM) algorithm, and four specific metrics for power disaggregation and state
detection performance are introduced. The test results show that the proposed method has
obvious advantages in both identifying the actual power consumption of the device and
detecting the state of the device. In addition, the proposed algorithm has good generality
and can effectively identify the same equipment of different models or brands.
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