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Abstract: Microgrids should be continuously monitored in order to maintain suitable voltages over
time. Microgrids are mainly monitored remotely, and their measurement data transmitted through
lossy communication networks are vulnerable to cyberattacks and packet loss. The current study
leverages the idea of data fusion to address this problem. Hence, this paper investigates the effects of
estimation fusion using various machine-learning (ML) regression methods as data fusion methods
by aggregating the distributed Kalman filter (KF)-based state estimates of a linear smart microgrid
in order to achieve more accurate and reliable state estimates. This unreliability in measurements
is because they are received through a lossy communication network that incorporates packet loss
and cyberattacks. In addition to ML regression methods, multi-layer perceptron (MLP) and depen-
dent ordered weighted averaging (DOWA) operators are also employed for further comparisons.
The results of simulation on the IEEE 4-bus model validate the effectiveness of the employed ML
regression methods through the RMSE, MAE and R-squared indices under the condition of missing
and manipulated measurements. In general, the results obtained by the Random Forest regression
method were more accurate than those of other methods.

Keywords: cyberattack; data fusion; estimation fusion; internet of things; Kalman filter; machine
learning; packet loss; smart microgrid; state estimation

1. Introduction

Microgrids, including distributed energy resources (DERs), are currently being seri-
ously considered due to their greenhouse gas emissions being considerably lower than
power plants. Microgrids are therefore considered suitable for connection to the main grid
and result in reduced transmission costs and losses [1]. In contrast to the benefits that
they can offer, their natural patterns of power generation cause critical challenges for the
operational stability of the power system [2].

With the proliferation of machine-learning (ML) methods, a new window has opened
on the scalability and accuracy of smart microgrids for attack generation, detection, and
mitigation strategies [3]. The consideration of unreliability in the communication network
is motivated by several real-world inevitable factors that can be categorized into two major
aspects. The first one is the inherent lossy behavior of the channel, such as missing packets,
link failures of the internet infrastructure, packet delays, device failures, disturbances, and
attenuation of the sent and received signals [4,5]. The second one is the external entities
that are mainly considered as threats to the integrity of transferred data. These entities are
mostly observed to manipulate the sensed information [6].
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In this regard, cyberattacks have always caused major economic, social, and technical
challenges, such as blackouts, the manipulation of smart sensor readings, and the alteration
of the estimated profiles of load in power systems [7].

Regarding the sources of unreliability listed above, which adversely affect the integrity
and, more importantly, the accuracy of transmitted data, the communication network
between the microgrid and the energy management system (EMS) needs to resort to
unreliability-mitigation approaches [8]. It is, therefore, crucial to estimate the microgrid
states obtained from the received information and, consequently, apply these mitigation
approaches for monitoring enhancement [9].

1.1. Related Works

Various tools and approaches have been adopted to address the problems of smart
grids with communication systems regarding state estimation. For instance, state estimation
based on Kalman filter (KF) over wireless sensor networks (WSNs) with fading channels
was proposed in [10]. Generally, this type of state estimation using centralized techniques
requires a massive amount of computation and communication resources. It is primarily
prone to be threatened by central point failures that may result in disastrous blackouts.

Furthermore, a distributed approach for network-based sensor fusion using KF was
presented in [11] in order to address the communication problems. In this approach, the
fusion center combines the local estimators employing a set of premeditated weighting
factors. A similar approach with the help of ordered weighted averaging (OWA) operator is
considered in [12] for missing measurements. Besides, in order to calculate a proper weight-
ing factor, a recursive algorithm based on the weighted density function was developed
in [13] for reliable communication channels.

Approaches inspired by the covariance intersection for fusion via aggregation weights
were used in [14–16]. Rana [17] examined an attack-resistant algorithm in which the attack
is automatically ignored and the state estimation process continues. This acts as a grid
eye that monitors the entire power system. Since the altered sensor measurements are
the primary sources of uncertainty, the novelty of this algorithm lies in modifying the
correction step of the KF with the help of the residual saturation function, the calculation of
which depends upon the weighting factor and the residual dynamics.

In addition, to study the injecting power stabilization of nonlinear DC microgrids with
constant power demands, a third-degree cubature Kalman filter (CKF) was suggested in [18]
to reduce the influence of the noisy measurement and the noisy network on the system’s
information. For higher-order DC microgrids with a large number of sources and constant
power loads (CPLs), the proposed CKF method is resilient against system uncertainty
and noisy surroundings and has a short computing time. Likewise, a similar study was
performed in [19] for microgrid state estimation under cyberattack using spherical simplex
radial cubature Kalman filter (SSRCKF).

Moreover, the authors of [20] proposed the use of a satellite system based on the
internet of things (IoT) to transmit measurement information from sensing devices in the
grid to the EMS. This proposal stems from the need to accurately and continuously monitor
the power systems to ensure a reliable service for customers, mainly consisting of a suitable
voltage and frequency. In their proposed structure, the IoT elements, such as sensors and
actuators, are utilized to collect microgrid data that are relatively enormous in scale.

Most of the state estimation methods tend to utilize weighted least squares (WLS) in
order to address state estimation issues under cyberattack conditions [21–23]. A sequential
injected false data detection in smart grids was presented in [24]. This method implements
a generalized likelihood-based ratio centralized detector with a cumulative sum algorithm.

Moslemi [25] offered a fast, decentralized technique for cyberattack detection in
smart grids on the basis of maximum likelihood (ML) estimation that makes use of power
grids’ near-chordal sparsity to create an efficient framework for solving the ML estimation
problem through a modified Newton method. By preventing data exchange across areas, the
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suggested decentralization ensures the privacy of the utilities and decreases the complexity
of ML problems by downsizing.

Concerning the data manipulation threats, Mustafa [26] discussed a robust control
system for distributed frequency and voltage regulation of AC microgrids. An attack detec-
tion technique utilizing a Kullback–Leibler (KL) divergence-based criterion is provided for
each DER to identify any misbehavior on its adjacent DERs. The computed KL divergence
factors are then used to produce belief values that indicate the validity of the received
information, which is then recommended as an attack mitigation strategy.

The authors of [27] investigated leveraging the strength of the KF to overcome the
problem of false data injection (FDI) into the sensed information. Likewise, intentional
injections of false synchrophasor measurements can lead to erroneous control actions,
thus, jeopardizing the security and reliability of transmission networks. Hence, the au-
thors of [28] presented a multisensor track-level fusion-based model prediction (TFMP)
as a solution to this problem. Each monitoring node utilizes a Kalman-like particle filter
(KLPF)-based smoother to recover the initial correlation information regarding attacked
oscillation parameters. The KLPF-based smoother is divided into subsystems to decrease
its computational load. As a result, the initial oscillatory state estimations are improved.

Rana [29] proposed a distributed state estimation algorithm that considers the packet
loss in the smart grid environment. The novelty of this algorithm lies in the method of
calculating the best weighting factor for estimating the global states. At the same time,
the same author [30] proposed a novel consensus filter-based dynamic state estimation
algorithm for distributed state estimation in a modern power system. The algorithm relies
on the mean squared error (MSE) and semidefinite programming methods to calculate the
optimal local gain between the actual states and the estimated ones. The consensus gain is
also determined with the help of a convex optimization process with a given sub-optimal
local gain.

The authors of [31] investigated the application of decentralized state estimation to
the combined heat and power system (CHPS) regarding possible communication failures
among different energy systems. The proposed approach, namely the relaxed alternating
direction method of multipliers (R-ADMM), provides efficiency in computational costs.
In addition, Qu [32] studied the problem of estimating the dynamic states of islanded
microgrids affected by the fading measurement. The proposed approach is a recursive state
estimation scheme whose estimation error is assured to be within a certain upper limit,
allowing for the online monitoring of islanded microgrids.

The exploitation of a delay-universal-based error correction coding scheme is discussed
in [33] for achieving reliable and real-time state estimates from an IoT-based unstable micro-
grid by alleviating the error impacts of the communication channel. Rana [34] considered
the problem of robust estimation of the network states and proposed a technique for estimat-
ing the state of a power distribution system containing multiple synchronous generators
in the presence of a network attack. The proposed method is based on graph theory and
optimal filter, which improves the performance of the network state estimation process.

Wang [35] studied the possibility of applying deep learning for estimating the states of
power systems and proposed a physically-guided deep learning (PGDL) method inspired
by autoencoders and deep neural networks (DNNs) regarding their ability in learning
temporal correlations. The proposed PGDL is known to be data- and physically-driven.
In addition, Tanvir [36] discussed the estimation and control of a DC microgrid based on
wind power by employing an adaptive KF to estimate the rotor flux and an artificial neural
network (ANN) to estimate the rotor velocity. Consequently, the robustness of parameter
uncertainty due to adaptive mechanisms is improved.

The authors of [37] provided state estimation of a real-time power system based on
data using a deep-ensemble-learning algorithm. The proposed setup consists of several
parallel ResNetD stacked as base-learners and multivariate-linear regression as a meta-
learner. This setup uses historical measurements and states for training based on power
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system states, voltage amplitude, and phase estimates. The trained model is then made use
of to predict the states of the power system in real-time using real-time measurements.

The authors of [38] used a conditional deep belief network (CDBN) to distinguish the
behavior aspects of FDI attacks with historical measurement data and use the recorded
features to detect FDI attacks in real-time. Accordingly, the suggested detection technique
effectively relaxes assumptions about possible attack situations, thus, achieving high
accuracy.

Furthermore, Deng [39] explored the vulnerabilities of smart distribution systems to
FDI attacks by first presenting a local state-based linear distribution system state estimation
(DSSE) for multiphase and imbalanced distribution systems from the attacker’s perspective.
The probabilities of a successful FDI attack are also calculated mathematically. The case
study results demonstrate the possibility for attackers to launch FDI attacks in a practical
multiphase and imbalanced smart distribution system with varying levels of effort.

1.2. Primary Contributions

The related works discussed above have common characteristics. They only considered
one of the communication imparities, such as packet dropouts, cyberattacks, or FDI. With a
new perspective for using machine-learning (ML) regression methods, as estimation fusion
methods, for KF-based state estimators, the key contributions of this paper are as follows:

1. The current study considers three sources of uncertainty simultaneously applied
to the measurement data. These sources are packet dropout, IoT channel noise,
and cyberattack.

2. The current study applies different ML regression methods, employed as data fusion
methods, to fuse the KF-based state estimates and compare the results for higher
accuracy. The first reason is to determine if these easy and fast methods can substitute
for methods requiring high computational costs and complex mathematical formal-
ization. The second reason is to determine whether aggregating state estimates using
these methods can contribute to a more accurate estimate of state than accomplished
by each KF alone.

3. This study also illustrates the inefficacy of the weighted averaging operators, which
are used in many prior studies, through fusing the state estimates by the dependent
ordered weighted averaging (DOWA) operator.

1.3. Manuscript Layout

The remainder of this manuscript is arranged as follows. Section 2 presents a model of
a linear microgrid, followed by the structure of a lossy IoT-based communication network
and the proposed method. Section 3 is dedicated to the results of the simulation while
Section 4 provides discussion and analysis. Lastly, the paper is concluded in Section 5,
followed by a statement of future work.

2. Materials and Methods

This section introduces the model under consideration, the properties of the commu-
nication network and its associated issues, as well as the proposed approaches to solve
the issues.

2.1. Linear Microgrid Model

In this study, as shown in Figure 1, we assumed that N = 4 DERs are connected to the
IEEE 4-bus test feeder at the points of common coupling (PCCs) [40,41]. Each DER requires
its voltage to be controlled in order to maintain its reference values. The dynamics of the
system are linear and are given as follows:

ẋ(t) = Ax(t) + Bu(t) + ω(t), (1)
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where the state vector x(t) = [v1 v2 v3 v4]
T is the PCC voltage vector, A is the state

transition matrix, B is the input matrix, u(t) is the control input, and ω(t) is the process
noise given by

ω ∼ N (0, Q), (2)

in which Q is the covariance matrix of the process noise.

Infinite

Bus

Loads

Bus 1Bus 2Bus 3Bus 4

I1

V1V2V3V4

I2I3I4

Figure 1. Illustration of the IEEE 4-bus model.

In order to work with this model, discretization is required. Hence, the employed rule
of discretization is as shown below.

ẋ(t) =
x(t + ∆t)− x(t)

∆t
= Ax(t) + Bu(t), (3)

x(t + ∆t) =
(

Ax(t) + Bu(t)
)
∆t + x(t). (4)

By considering that the sampling process occurs every ∆t seconds, (4) can be rewritten
as follows:

x(k + 1) = (I + A∆t)x(k) + (B∆t)u(k), (5)

where [41]

A =


175.9 176.8 511 103.6
−350 0 0 0
−544.2 −474.8 −408.1 −828.8
−119.7 −554.6 −968.8 −1077.5

,

B =


0.8 334.2 525.1 −103.6
−350 0 0 0
−69.3 −66.1 −420.1 −828.8
−434.9 −414.2 −108.7 −1077.5

.

Hence, the final representation is as follows:

xk+1 = Adxk + Bduk + ωk. (6)

Now that the dynamics of power system states have been determined, the smart
sensors that can directly sense the system states need to be considered, thus, forming an
observation or measurement model. In this study, four observation stations, which measure
all four voltages, were considered to reduce uncertainties in the sensed data by creating
redundancy. Hence, the measurement equation can be written as follows:

yi
k = Hxk + υi

k, (7)

where yi
k is the information vector observed by the i-th observation station at time step

k, H is the system’s observation matrix, and υi
k is the measurement noise vector for the

i-th observation station caused by the distributed wireless sensors [42]. Therefore, the
measurement noise can be written as follows:
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υi ∼ N (0, Ri), (8)

where Ri is the covariance matrix of the measurement noise of the i-th observation station.

2.2. Unreliable Communication Channel Structure

In this subsection, first, the occurrence of cyberattacks in terms of the information
generated in a microgrid is considered. A lossy and unreliable channel is then presented
for transmitting this manipulated data, and its behavior is discussed.

2.2.1. Cyberattack

Suppose that a malicious agent, also known as the attacker, attacks at time τ and
deliberately tampers with the sensor readings by a time-varying value Fk. Subsequently,
the measurement change can be formalized as follows [24]:

yi
k =

{
Hxk + υi

k k < τ∆t, (9a)

Hxk + Fi
k + υi

k k ≥ τ∆t. (9b)

As mentioned in [43], Fi
k can be decomposed into two parts, as shown below:

Fi
k = Hci

k + βi
k. (10)

The parameter βi
k is the only informative part of the injected false data that is detectable.

However, the term Hci
k can purportedly bypass the monitoring system’s security measures

as it is difficult to differentiate from Hxk per each state estimation. Therefore, as the
attackers avoid being detected, they mostly attempt to disguise attack vectors in the
column space of the measurement matrix H. If attackers have seamless knowledge of the
network characteristics (i.e., the values of matrix H, the network topology, line admittances,
and transformer tap ratio) and can exploit any sensor they desire, then they would be able
to perform stealth attacks that bypass the security system [43].

Fortunately, this is not the usual case in microgrids due to certain factors in real-
world situations. Firstly, most attackers often acquire the network’s characteristics by
offline learning of the network entities’ behavior over a long period while the power grid
configuration could change over time. Thus, the attackers are not likely to collect and
analyze the network information in real-time. Secondly, the attackers generally have an
inadequate level of access to manipulate a large enough number of sensing devices [43].

This paper assumes that the attackers are unable to predict the system dynamics, as a
consequence of which, they are unable to access the distribution parameters of the measure-
ments. Consequently, the injection of false data has significant effects on the distribution
of the measured data, which decreases the correlation between the data acquired by each
sensing station [44,45]. This leads to the assumption that some components of βis are
nonzero, meaning that the trace of the attack vector always exists. Thus, the change in the
sensed data can be redrafted as follows:

βi
k =

{
bk

m = 0 m /∈ Ω k < τ∆t, (11a)

|bk
m| > γ m ∈ Ω k ≥ τ∆t, (11b)

where γ is an agreed value that describes the lower bound for the measurement tolerance
that draws security attention, and the set Ω includes randomly chosen columns of the
state-space vectors that are to be attacked in each time step k. Here, the objective is to abate
the effect of false data injected undesirably through an attack vector βi that is exploiting
the measurements of i-th observation station soon after its occurrence at τ∆t [24].

2.2.2. IoT Network and Packet Loss

The sensed information from each observation station has to be sent to the EMS. To
accomplish this purpose, an observation station needs to send the gathered data over a
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collection of relay nodes (i.e., the internet) due to the long distance between the DERs and
the EMS.

As the sensing devices are mostly assumed to be wirelessly communicating with the
sensing station, there needs to be an integrated communication setup incorporated into
the microgrid to facilitate the data exchange process between these two mentioned sides.
Consequently, the IoT network is the concept capable of addressing this issue.

In the case of this study, a WSN powered by 5G technology is considered as the
appropriate IoT-based communication network, relaying the sensed information to the
estimation station. In the IoT network, by the act of a uniform quantizer, the information
signals are transformed into corresponding bit sequences, Bk, in each time step k. These
bit sequences are then modulated as a signal, Sk, by proceeding through the modulation
process using the binary phase-shift keying (BPSK) technique. Eventually, Sk is transmitted
over the internet to the EMS.

Considering the cyberattack discussed earlier in this section, the measurement model
(7) can be restated as follows:

yi
st,k = Hxk + υi

k + βi
k, (12)

where yi
st,k is the measurement vector to be transmitted from the i-th observation station

under the condition of cyberattacks. As discussed earlier, each yi
st,k is transformed into a

bit sequence Bi
k and then modulated to Si

k. The transmission of the measurement data over
an IoT network, by its intrinsic characteristics, may cause delayed or lost measurements
due to packet dropouts [46]. Regarding the mentioned losses, cyberattacks, quantization,
and modulation, the received measurements transmitted from the i-th observation station
to the corresponding estimator in the time step k (12) can be redrafted as follows:

yi
rd,k = αi

kSi
k + αi

kek, (13)

in which ek is the additive white Gaussian noise (AWGN) and αi
k is the IoT-based packet

loss parameter. This parameter is modeled as shown below [4]:

αi
k =

{ 1± δ with probability of λk, (14a)

0 with probability of 1− λk, (14b)

where λk is the packet arrival rate of each observation station at the EMS at time step k, and δ
is fundamentally a fraction of sent packet value that is randomly added or subtracted during
the process of transmission in order to practically model the noisy nature of IoT-based
communication networks. Finally, the log-maximum a posteriori (Log-MAP) decoding
method is used to decode each received signal [47]. The decoded outputs are then followed
by demodulation and dequantization, thus, being prepared to be fed to the state estimators.

2.3. Proposed Method

In this section, the proposed methods are discussed in two steps, namely state estima-
tion and estimation fusion: (1) processing all received data with distributed KF estimators
and (2) fusing the state estimates based on the received data for each state using various
ML regression methods to obtain more accurate results. An illustration of the proposed
distributed state estimation and estimation fusion regarding cyberattacks and packet loss
is shown in Figure 2.
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Figure 2. The proposed distributed microgrid state estimation and estimation fusion under cyberat-
tack and packet loss (a significantly modified version of the benchmark structure given in [48]).

2.3.1. Distributed State Estimation

The KF algorithm for each estimator that is responsible for estimating the states based
on the measurements received from the observation stations is written as follows [49]:

x̂i
k|k−1 = Ad x̂i

k−1|k−1 + Bduk, (15)

Pi
k|k−1 = AdPi

k−1|k−1 AT
d + , (16)

Ki
k = Pi

k|k−1HT(HPi
k|k−1HT + R

)−1, (17)

x̂i
k|k = x̂i

k|k−1 + Ki
k
[
yi

rd,k − Hx̂i
k|k−1

]
, (18)

Pi
k|k = (I − Ki

k H)Pi
k|k−1. (19)



Energies 2022, 15, 2288 9 of 24

In these equations, x̂i
k−1|k−1 is the state estimate of the previous step by the i-th

estimator, Pi
k−1|k−1 is the predicted covariance matrix of the previous step, x̂i

k|k is the

current state estimate, and Ki
k is the Kalman gain.

2.3.2. Estimation Fusion

Once the estimates of a state variable are obtained, they should be fused to yield a
single value representing the final estimation of that state variable for each time step k. In
this study, a novel perspective of using the ML regression methods is considered to fuse
the state estimates and compare the methods with popular data fusion approaches, such
as the dependent ordered weighted averaging (DOWA) operator as well as multi-layer
perceptron (MLP).

In the literature, several ML methods and algorithms have been surveyed with regard
to their applicability in the context of fusion [50–52]. Here, the ML regression methods of
interest are Linear, Decision Tree, AdaBoost, XGBoost, Gradient Boosting, Random Forest
and Voting. The reason for selecting these algorithms is due to their fast training and testing
process, as timeliness is one of the benefits of data fusion [53].

Regression is a linear model that assumes a linear relationship between the input
values and gives a single variable as the output. To mathematically define this, the output
y given by a linear regression model for a set of input data {x1, x2, . . . , xn} is calculated
as follows:

y =
n

∑
i=1

wixi + b. (20)

The task of estimation fusion is to find weights such that the fusion of state estimates
via the obtained weights shows the most resemblance to the actual data—that is, the values
of the fusion of estimated states are expected to have the least possible difference with the
actual state values, and this is acquired by training a suitable model. In regression methods,
weights are computed dynamically based on solving an optimization problem to minimize
a loss function.

Combining multiple regression methods to improve the prediction accuracy can be
called multi-regressor fusion (MRF). Two well-known types of MRFs are bagging and
boosting methods.

Bagging is mainly a method of generating multiple variants of a predictor (e.g., the
regression model in this study) and leveraging them to achieve an aggregated prediction—
the aggregation averages over the multiple variants when predicting a numerical outcome.
Experiments on actual and simulated datasets using regression trees have shown that
bagging can considerably improve the accuracy of a model [54].

Among the most successful bagging methods in this study is the Random Forest
regression method, which uses a large number of decision tree regressors bundled together.
After performing the bootstrapping process on the input data and feeding the bootstrapped
samples to the regression trees, this method aggregates the results to produce the final
output. Assuming there are L tree regressors and, correspondingly, L subsets of boot-
strapped data, the ensemble learner has to assign weights wl (l = 1, . . . , L) to each of the
aforementioned results and then operate as an aggregator as shown below:

SL =
1
L

L

∑
l=1

wl ẑl , (21)

where ẑl denotes the output of l-th tree regressor. The main goal here is to find each wl such
that SL approaches the actual label of the sample, causing a decrease in the relative error.

On the other hand, boosting methods are defined as functional gradient descent
algorithms that work iteratively to optimize a cost function over the function space by
selecting a function (weak hypothesis as regressor) [55].
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More specifically, the weak regressors are added one after another, exploring each
iteration to find the best pair to add to the current ensemble model. In other words,
the model SL in the l-th iteration is recurrently defined. For example, in AdaBoost, the
following is considered [56]:

sl = sl−1 + clwl , (22)

where cl and wl are optimized in a way that sl is the best improvement over sl−1 and better
fits the training data. The optimization problem to find cl and wl can be written as follows:

(cl , wl) = arg min
c,w

E(sl−1 + clwl), (23)

in which E(·) is the fitting error of the given model. Similarly, for Gradient Boosting
regression method, (23) can be modified to achieve the weights and coefficients using the
gradient descent approach as follows:

sl = sl−1 − cl∇sl−1 E(sl−1). (24)

Considering the descriptions on finding appropriate weights to combine outputs in
boosting algorithms, some of the most popular algorithms of this type, such as adaptive
boosting (AdaBoost), Gradient Boosting and XGBoost, were selected in this study for fusion
comparison.

In addition to the aforementioned methods, three other methods were employed: (1)
the DOWA operator, which is introduced in [57]; (2) an MLP model, as a universal function
approximator [58] to obtain a better overview of how efficient our proposed methods are;
and (3) a voting regressor over three of the best aforementioned methods with the lowest
error values.

The main underlying reason behind employing these methods is that most of the
previous works, as discussed in the introduction, made use of the weighted averaging
operators. This means that the fusion of the input set {x1, x2, . . . , xn} is performed by n
number of weights that follow the rule below:

n

∑
i=1

wi = 1, (25a)

wi ∈ [0, 1] i = 1, . . . , n. (25b)

However, the problem with these methods is that the aggregated result is always between
the minimum and maximum values in the input set {x1, x2, . . . , xn}. If the true value is
out of this range, these methods have no chance of increasing the estimation accuracy.
OWA operators are in this category, and this paper employs the DOWA operator to justify
the reason for the rejection of the weighted averaging operators in such applications.
Nevertheless, these methods have other applications that lead to excellent results (the
interested reader is referred to [59,60]).

3. Results

To construct a framework that simulates the entire process as closely as possible to
real-world conditions, this work implements a framework encompassing state generation,
measurement sensing, lossy IoT-based communication network with cyberattack and
packet loss, state estimation, and, finally, estimation fusion, as illustrated in Figure 2.

In this experiment, 150 time steps (snapshots) of measurements for each of the four
states from each observation station are generated; these measurements experience cyberat-
tacks and go through a lossy IoT communication network. Having been received by the
fusion center, the measurements are then fed to the KFs for the purpose of state estimation.
In other words, four KFs estimate each of the four states of the microgrid. Hence, a total
amount of 16 state estimates in every time step is generated.



Energies 2022, 15, 2288 11 of 24

This operation is repeated 100 times to perform a Monte Carlo (MC) simulation,
resulting in a training dataset consisting of 15,000 samples of estimated and true states—
that is, a matrix with 20 columns and 15,000 rows. Furthermore, 25 runs of MC simulations
are also performed to create a test dataset. The parameters for these performed processes
are mentioned in Table 1.

Table 1. Table of the parameters used for the simulations.

Parameter Description Value

H Observation matrix I4×4

Q Process noise cov. 1× 10−7 × I4×4

R1 Measurement noise cov. for station 1 1× 10−6 × I4×4

R2 Measurement noise cov. for station 2 2× 10−6 × I4×4

R3 Measurement noise cov. for station 3 3× 10−6 × I4×4

R4 Measurement noise cov. for station 4 4× 10−6 × I4×4

λ Package arrival rate 0.95

γ Lower bound for false data 2

δ Fraction of sent packet value 0.05

∆t Sampling time 0.0001 s

Three measures are employed in order to evaluate the accuracy of each estimation;
these include MAE, RMSE and R-squared. According to Table 2, which provides estimation
errors of the KFs (before fusion) on the test dataset, both MAE and RMSE measures
for states 2 and 4 have their lowest values for the first estimator; however, for states 1
and 3, both measures show a more reliable performance for the second estimator. This
difference is due to the stochasticity and uncertainty imposed on the measurements by the
communication network.

Table 2. Kalman filter-based estimation errors on the test dataset.

State Station MAE RMSE R2

x̂1

1 3.2963 5.0993 0.9720

2 3.0632 4.9420 0.9737

3 4.7249 6.7034 0.9517

4 4.5799 6.0224 0.9610

x̂2

1 2.7704 5.9068 0.9860

2 6.5434 13.4811 0.9271

3 5.8461 13.7188 0.9245

4 5.2894 12.8139 0.9341

x̂3

1 2.0455 2.4221 0.9854

2 1.6878 2.2850 0.9870

3 1.8052 2.2576 0.9873

4 2.5473 3.1690 0.9750

x̂4

1 1.3977 2.6451 0.9953

2 5.5890 12.9268 0.8878

3 5.4177 12.4675 0.8956

4 5.0777 12.1761 0.9004
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After the estimation phase, data must be fused by using the methods discussed
previously. In the fusion phase, the regression models will be trained on the previously
created training dataset through five-fold cross-validation process and tested on the test
dataset for fusion evaluation. The error values, computed by the three aforementioned
measures, are then reported for the fusion results in order to provide a comparison between
the methods of interest.

Regarding the training process of the fusion methods of interest, one model of each
regression method per state number is trained using the training dataset. Their parameters
are tuned empirically, using a random grid search with five-fold cross-validation. This
implementation was performed using the scikit-learn library in the Python programming
language. For the MLP model, four MLPs, one for each state, with four layers were trained
with four input nodes and one output node, iterating for 120 epochs.

The training features of each MLP are the ReLU activation function for the first three
layers, Linear activation function for the output layer, Adam optimizer, and MSE loss
function. The MinMaxScaler is also used to preprocess the data before feeding the data
to the MLPs. The training process is performed using the TensorFlow library in Python.
In addition, the DOWA operator, which does not need training, is leveraged to show the
inefficacy of the weighted averaging operators in such harsh situations.

The expectation is to achieve MAE and RMSE values that are less than those of the
KF estimators. It is also expected to obtain higher values for R-squared, which determines
how well the results fit the target data (i.e., the ground truth). Note that, in order to see if
the regression weights are reproducible, the training process was run several times for each
method. The weights were initialized based on the normal distribution each time. Thus, the
initial weights differ each time the process of training is performed, and the same results
were obtained each time. Figures 3–9 illustrate the training and validation loss function
values for all states for all the trainable methods.
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Figure 3. Training and validation MSE losses for AdaBoost.
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Figure 5. Training and validation MSE losses for Gradient Boosting.
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Figure 6. Training and validation MSE losses for Linear Regression.
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Figure 7. Training and validation MSE losses for Random Forest.
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Figure 8. Training and validation MSE losses for XGBoost.
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Figure 9. Training and validation MSE losses for MLP.

According to the evaluation measures utilized, the majority of the employed methods,
with the exception of the DOWA operator, surpassed the findings for the estimation phase,
as shown in Table 3. For example, for the state 1, the best error obtained by estimation was
3.0632 in terms of MAE and 4.942 in terms of RMSE. The worst results obtained by the
regression methods of interest for this state were 2.087 and 2.59, respectively, which were
from AdaBoost. This pattern can be observed for other states as well.
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Table 3. Estimation fusion errors on the test dataset.

Method
x̂(Fused)

1 x̂(Fused)
2 x̂(Fused)

3 x̂(Fused)
4

MAE RMSE R2 MAE RMSE R2 MAE RMSE R2 MAE RMSE R2

MLP 0.8730 1.1630 0.9978 0.7817 1.1147 0.9989 0.7746 1.1175 0.9931 0.7242 1.0401 0.9985

Voting Reg. 0.9212 1.2468 0.9973 0.8192 1.1869 0.9988 0.7908 1.0903 0.9938 0.7342 1.0016 0.9985

Random
Forest Reg. 0.9296 1.2987 0.9970 0.7909 1.1711 0.9989 0.7746 1.0845 0.9937 0.7000 0.9684 0.9985

Gradient
Boosting Reg. 1.0026 1.3354 0.9969 1.0634 1.4952 0.9980 0.8487 1.1633 0.9933 0.9179 1.2327 0.9979

XGBoost Reg. 0.9904 1.3297 0.9971 0.8873 1.2941 0.9987 0.8674 1.1981 0.9928 0.7746 1.0852 0.9982

AdaBoost
Reg. 2.0871 2.5905 0.9879 3.3988 4.2964 0.9827 1.4784 1.9343 0.9825 2.5024 3.0333 0.9805

Linear Reg. 1.4753 2.1712 0.9923 2.2026 3.7697 0.9900 0.9733 1.3927 0.9929 1.8457 2.7007 0.9919

Decision Tree
Reg. 1.1926 1.7118 0.9953 1.1342 1.6855 0.9977 1.0405 1.5540 0.9889 0.9334 1.3450 0.9972

DOWA
Operator 13.2437 15.7244 0.6106 19.3938 23.2389 0.2535 9.1564 11.1311 0.5228 14.3409 17.9817 0.3774

4. Discussion

One of the most important outcomes of this experiment is that the bagging method,
i.e., the Random Forest method, had the best results for all states compared to the other
methods, surprisingly, in close competition with the MLP. It even outperformed the MLP in
RMSE and R-squared measures for state 3 and all measures for state 4. This performance of
the Random Forest is presumed to be due to its outstanding ability for interpolation since
the test data points rest among the training data points.

As a bagging method, Random Forest has another significant advantage over the
boosting methods, specifically AdaBoost. It is known to be less afflicted with the noise of
data, which leads to a better generalization by reducing variance, and this is mainly due
to the fact that the error of generalization reaches a limit regardless of the increase in the
number of decision trees.

AdaBoost, on the other hand, is expected to show weak performance when the dataset
is highly noisy, which was the case for this study. This is because it spends too much time
learning the most extreme cases and distorting the results, followed by worsened error
rates when computational complexity is a concern. Accordingly, the results achieved by
Random Forest were much better than for AdaBoost, which is shown in Table 3.

Among the boosting methods, Gradient Boosting and XGBoost demonstrated an
acceptable performance competing for better error values for different states. The most
referenced advantage of the XGBoost method is its speed compared to other boosting
methods. In addition, as expected, the Decision Tree method almost ranks after these
discussed methods since it is mainly known to be beneficial in situations where certain
feature values are missing or the noise is relatively high.

The Linear Regression method is also considered prior to AdaBoost in this study. The
main reason for its observed deficiencies in certain cases could be because of a possible high
rate of partial non-linearity in the relationship between the data points and the target values.
A particular case is where the increasing or decreasing trends of received measurement
values reach a turning point, and voltages tend to change toward the opposite direction as
shown in Figures 10–11.

Packet loss is more observable and devastating on the received data in these particular
areas and thus more difficult to alleviate. In the cases where the trend is linear, Linear
Regression operates normally, outperforming AdaBoost for most states and the DOWA
operator method for all states regarding all error measures. This is because of the discussed
limitations of the DOWA operator. After ensuring that the results of Random Forest and
the two mentioned boosting algorithms are sufficient, the Voting regression method is built
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using these three methods. The results, as reported, are not superior to the Random Forest
method but better than the other two for all states.

Finally, both the estimation and fusion phases overcame the high noise variance of
the received measurements even before the cyberattack started to interfer at k = 15. This
means that, even if the attacker tends to alter the value of β, the employed methods of
interest can overcome this effect. No value for β would be able to stay undetected and
still cause a severe problem or noticeable trace in the estimation and fusion results. This is
because the attacker can only use values of β of a specific range to avoid being detected. In
addition, these methods relax the destructive influence of packet dropouts, which results in
zero-valued received measurements in certain time steps. The fusion results for one MC
simulation for each state are shown in Figures 10–17.
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Figure 10. Fusion results for one Monte Carlo simulation for state 1.
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Figure 11. Fusion results for one Monte Carlo simulation for state 1 (zoomed in).
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Figure 12. Fusion results for one Monte Carlo simulation for state 2.
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Figure 13. Fusion results for one Monte Carlo simulation for state 2 (zoomed in).
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Figure 14. Fusion results for one Monte Carlo simulation for state 3.
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Figure 15. Fusion results for one Monte Carlo simulation for state 3 (zoomed in).
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Figure 16. Fusion results for one Monte Carlo simulation for state 4.
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Figure 17. Fusion results for one Monte Carlo simulation for state 4 (zoomed in).

5. Conclusions

This paper explored the efficacy of state estimation fusion using machine learning
(ML) regression methods on a linear smart microgrid based on an IEEE 4-bus model. For
the very first time, to the best of the authors’ knowledge, both cyberattack and packet loss
for an unreliable IoT-based communication channel were considered simultaneously in
this paper. The simulation results validate and justify the proposed idea, by considering
the obtained RMSE, MAE and R-squared error indices, that the ML regression methods of
interest are capable of functioning as data fusion methods, thus, improving the results of
the KF estimators.

The aforementioned methods were employed to fuse the state estimates of four dif-
ferent data-sensing sources under the conditions of severe unreliability observed in the
communication channel between the power substations and the energy management sys-



Energies 2022, 15, 2288 21 of 24

tem (EMS). The main advantage of using ML regression methods for data fusion is that
they are relatively fast and accurate in terms of errors and predicting data trends. Their
results are also easily explained and comprehended.

The results showed that ML regression methods can outperform MLP, which is a
universal function approximator. This study also validated the inefficiency of the weighted
averaging operators by leveraging the dependent ordered weighted averaging (DOWA)
operator for the purpose of fusion.

Indeed, the hyperparameters of the ML regression methods are generally hard to
tune, and some methods do not perform as expected in noisy environments. Neverthe-
less, these methods, combined with the proposed structure, are suitable candidates for
dealing with cyberattacks and packet losses in smart microgrids. They can replace the
complex and twisted methods, which demand high computational cost and complex
mathematical formalization.

As for future works, the performance of other regression methods will be further
investigated with a particular focus on multi-regression fusion methods, such as Decision
Template, and the proposed method will be tested in other similar areas, such as cyber-
physical systems, that involve sensor data estimation and sensor data fusion.

Author Contributions: Conceptualization, M.S., D.S.Z. and B.M.; methodology, M.S. and D.S.Z.;
software, M.S., D.S.Z. and E.N.S.; validation, B.M., E.N.S., J.G.H. and J.M.M.L.; data curation, M.S.
and D.S.Z.; writing—original draft preparation, M.S. and D.S.Z.; writing—review and editing, all
authors; visualization, D.S.Z.; supervision, B.M.; funding acquisition, E.N.S., J.G.H. and J.M.M.L. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was partially funded by public research projects of Spanish Ministry of
Science and Innovation, references PID2020-118249RB-C22 and PDC2021-121567-C22 - AEI/10.13039/
501100011033, and by the Madrid Government (Comunidad de Madrid-Spain) under the Multiannual
Agreement with UC3M in the line of Excellence of University Professors, reference EPUC3M17.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

DERs distributed energy resources
ML machine learning
EMS energy management system
KF Kalman filter
WSNs wireless sensor networks
OWA ordered weighted averaging
CKF cubature Kalman filter
CPLs constant power loads
SSRCKF spherical simplex radial cubature Kalman filter
IoT internet of things
WLS weighted least squares
ML maximum likelihood
KL Kullback-Leibler
FDI false data injection
TFMP track-level fusion-based model prediction
KLPF Kalman-like particle filter
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R-ADMM relaxed alternating direction method of multipliers
PGDL physically-guided deep learning
DNNs deep neural networks
ANN artificial neural network
CDBN conditional deep belief network
DSSE distribution system state estimation
PCCs points of common coupling
LTE long-term evolution
BPSK binary phase-shift keying
AWGN additive white Gaussian noise
Log-MAP log-maximum a posteriori
MLP multi-layer perceptron
MRF multi-regressor fusion
DOWA dependent ordered weighted averaging
MC Monte Carlo
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