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Abstract: Smart grids provide a unique platform to the participants of energy markets to tweak their
offerings based on demand-side management. Responding quickly to the needs of the market can
help to improve the reliability of the system, as well as the cost of capital investments. Electric load
forecasting is important because it is used to make and run decisions about the power grid. However,
people use electricity in nonlinear ways, which makes the electric load profile a complicated signal.
Even though there has been a lot of research done in this field, an accurate forecasting model is still
needed. In this regard, this article proposed a hybrid cross-channel-communication (C3)-enabled
CNN-LSTM model for accurate load forecasting which helps decision making in smart grids. The
proposed model is the combination of three different models, i.e., a C3 block to enable channel
communication of a CNN (convolutional neural networks) model, two convolutional layers to extract
the features and an LSTM (long short-term memory network) model for forecasting. In the proposed
hybrid model, Leaky ReLu (rectified linear unit) was used as activation function instead of sigmoid.
The channel communication in CNN model makes the proposed model very light and efficient.
Extensive experimentation was done on electricity load data. The results show the model’s high
efficiency. The proposed model shows 98.3% accuracy and 0.4560 MAPE error.

Keywords: cross-channel communication; Convolutional Neural Networks; LSTM; electricity; load;
forecasting

1. Introduction

The growing understanding of the importance of modernizing the energy grid in
order to enable innovative power consumption and generation patterns has shown itself in
the infrastructure of the idea of smart grids [1]. Smart grids enable energy to be delivered
more cheaply, sustainably, securely, and effectively by combining revolutionary concepts,
models, and auxiliary services from production, transmission, and distribution to customer
devices with highly sophisticated communication, sensing, and control technologies [2].
Customers can regulate their demand in response to price variations using smart grids and
DSM models. DSM is described as the process of putting policies in place to control energy
usage [3]. Typically, DSM identifies the numerous activities carried out by an electric utility
and its customers and utilizes this information to control the amount and timing of energy
usage. The reference [4] conducts an in-depth examination of DSM’s role in smart grids.

Similarly, smart grid is a smart power system which has achieved huge popularity
due to its capabilities of demand response, load forecasting, and load scheduling [5]. In
this field, plenty of research ideas have been proposed; however, maturity is still required
to ensure the accuracy of the forecasting models. When we see its application in the deci-
sion making and controlling of grids, accurate load forecasting has great importance and
benefits for both utility companies and customers [6]. However, climate change, variable
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temperatures, humidity, calendar indicators, occupancy patterns, and social conventions
are major obstacles in electric-load forecasting. It is very challenging to achieve the appro-
priate mapping of these factors due to the nonlinear and stochastic behavior of users. Smart
grids’ deployment of communications technology, sensing methodologies, and advanced
metering infrastructure allows us to monitor, record, and analyse the influence of these
elements on load forecasts [7]. In the literature, classical methodologies such as time series
methods and computational intelligence methods have been used for electrical load fore-
casting [8]. Both strategies have their drawbacks. The limitations of the previous classical
approaches in dealing with nonlinear data has urged many researchers to provide a better
solution. Moreover, computational intelligence methodologies are condemned for flaws
such as handcrafted features, low learning capability, ineffective learning, inaccurate assess-
ment, and inadequate guiding importance. However, there are already current machine
learning modules used for load- and energy-price forecasting that partially address the
aforementioned issues and have better performance owing to better design [9]. To address
the aforementioned issues, a proper strategy is needed, since poor prediction accuracy
results in significant economic loss. An inaccuracy increment of as little as 1% in forecasting
can cause a USD 10 million increase in overall utility costs. As a result, electric companies
are attempting to build a short-term electric-load forecasting models that should be quick,
accurate, resilient, and easy to implement. Furthermore, precise forecasting can aid in the
detection of possible problems and the operation of a dependable grid [10].

In this article, we proposed a novel hybrid cross-channel-communication (C3)-enabled
CNN-LSTM model for day-ahead electricity-load prediction to make decisions on the grid
side. The proposed C3-enabled CNN-LSTM model is the combination of two major parts,
where three models work together. The C3-enabled CNN part works as a feature-extraction
module and LSTM for forecasting the day-ahead load. We put the C3 block between two
convolutional layers where the C3 block enables channel communication within a single
layer. A single cross-channel-communication block has three more modules, i.e., feature
encoder, message-passing using graph neural networks, and the feature decoder. Initially,
the preprocessed data is fed into the first convolutional layer where it is separated into
different channels. Then, these channels are sent to the C3 block where they communicate
and update the feature map. Next, this updated feature map is inputted to the second
convolutional layer. At last, the LSTM layers predicted the load from these extracted
features of the load data. The main contributions of proposed model are manifolded
as follows.

• A novel hybrid cross-channel-communication (C3)-enabled CNN-LSTM is proposed
for electricity-load prediction;

• For feature extraction, a shallow convolutional neural network is proposed which has
only two convolutional layers;

• C3 block is used inside the convolutional neural network to enable the channel com-
munication which makes the network more shallow;

• PMSprop alogorithm is used to optimize the whole network;
• The proposed model is trained and tested on historical electricity-load data. The

presented results show the high accuracy of the proposed model.

2. Related Work

The authors of [11] present an efficient method for rapid and precise load forecasting
in the day-ahead energy market, which is critical for the proper functioning of SGs with
significant demand-side flexibility. They proposed an SPLNF model that can retain linearity
while also learning-from-data in LMs. They improved the overall effectiveness for faster
model training by lowering the input vector dimensionality. In [12], the authors present an
IoT-based deep learning system that automatically extracts characteristics from acquired
data and, as a result, provides an accurate prediction of future load value. Their model is
an individually constructed two-step forecasting technique, which enhances forecasting
precision greatly. Additionally, the proposed model can statistically investigate the impacts
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of several main attributes, which is very effective in choosing attribute patterns and deploy-
ing onboard sensors for smart grids with large territories, varying climates, and societal
customs.

Ayub et al. [13] proposes SVM classifier to tackle the problem of load forecasting
accuracy. The forecasting model is divided into two stages: feature engineering and SVM
classification. For feature selection, a mixture of two approaches (XGBoost and DTC) is
used to choose the finest features from the dataset. The SVM classifier is fine-tuned using
three super factors until the desired accuracy is obtained. The SVM classifier has achieved
98% accuracy rate.

Another research study [14] offered a novel method for smart meter client load predic-
tion by converting nonlinear smart meter data into linear system profiles. The approach’s
resilience was demonstrated using extremely fluctuating smart meter customer demand
data. The study demonstrated the advantages of employing the suggested technique over
neural networks, particularly when dealing with extremely fluctuating smart meter con-
sumer needs. The combination of the cluster forecast provided a more precise prediction
while keeping the information’s variability. Usman et al. [15] proposed a modified RNN
for short-term pricing and predictive modelling to forecast electricity load and price using
data analytics. Data preprocessing techniques such as RFE and DTC are used to eliminate
extraneous characteristics to decreases redundancy. LSTM is used to train and test the
suggested model. The experimental findings demonstrate the efficacy of the suggested
strategy. The analytical findings reveal that their suggested system has a lower MAPE than
FFNN and RNN. The study [16] compares three different machine learning techniques on a
real-world example based on the daily data from an Aarhus-based DHN (Denmark). In
the analysis, support vector regression depending on the climatic parameters and calen-
dar events outperforms other models in the 15–38 h prediction ranges. Wang et al. [17]
increased the accuracy of load forecasting by presenting a novel load-forecasting system
called VMD–CISSA–LSSVM. The system includes the data preparation approach varia-
tional modal decomposition (VMD), the sparrow searches algorithm (SSA), and the least
squares support vector machine (LSSVM). To solve the drawbacks of the SSA method,
which is susceptible to local optima and sluggish convergence, they also developed a
multistrategy improved chaotic sparrow search algorithm (CISSA).

The authors of [18] proposed a fuzzy logic-based controller, which is extremely appro-
priate for reducing disruptions caused by variations in STLF. The challenge is designed to
optimize RER utilization in order to improve the dependability of the power network. To
identify any unpredictability in the power system caused by overloading and faults, an ef-
fective fuzzy control strategy is used. Their results showed that the network becomes stable
in a shorter amount of time than the other methods due to the controller’s quick response
time to unplanned disruptions. In the suggested method in [19], researchers estimated load
using accessible big data, using Apache Spark and Apache Hadoop as big data platforms
for distributed computing. This study assessed the development of ML techniques utilizing
Apache Spark’s MLib package. According to the findings, distributed computing of load
prediction delivered good precision and calculation times. Yang et al. [20] proposed a
deep scalable and adaptable ensemble learning system for individualized probabilistic
load forecasting. To increase uncertainty measurement efficiency, customer categorization
and multitask pattern recognition were applied. The ensemble projections were refined
using the LASSO-based quantile combination strategy. They also performed case studies
on residential and SME clients with two forecasting horizons, showing their superiority
and efficacy when compared to state-of-the-art benchmarking approaches.

3. Proposed C3-Enabled CNN-LSTM Model

This paper presents a novel hybrid cross-channel-communication-enabled CNN-LSTM
model for electric-load forecasting on the grid side as displayed in Figure 1. This work
presents the day-ahead electricity-load forecasting as well as minutely load forecasting. Our
proposed model is a hybrid framework which a the combination of CNN and LSTM models.
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From Figure 1, we can see that the model works in three phases, i.e., (i) data preprocessing
where data cleaning, data normalization, irrelevancy filter, and redundancy filters are
applied (ii) a very lightweight C3 block-based convolutional neural network (iii) and a
long short-term memory model with PMSprop-based optimization model for accurate
predictions. After selecting the dataset, the abovementioned data preprocessing techniques
were applied and prepared the data to feed into the lightweight C3 block-based CNN model
where the important features are selected. The main purposes of using a C3 block is to
enable channel communication between the channels after each convolutional layer. In the
C3 block we used an encoder, message-passing algorithm and simple decoder. The detail
of the C3 block is presented in coming sections. After the feature selection from the CNN
module, these features foraged to the LSTM module for better prediction where a total of
four LSTM layers were used. The RMSprop algorithm is used for optimization of the model.
The complete implementation procedure is discussed in detail in the following section.

Energies 2022, 15, x FOR PEER REVIEW 4 of 17 
 

 

3. Proposed C3-Enabled CNN-LSTM Model 

This paper presents a novel hybrid cross-channel-communication-enabled CNN-

LSTM model for electric-load forecasting on the grid side as displayed in Figure 1. This 

work presents the day-ahead electricity-load forecasting as well as minutely load forecast-

ing. Our proposed model is a hybrid framework which a the combination of CNN and 

LSTM models. From Figure 1, we can see that the model works in three phases, i.e., (i) 

data preprocessing where data cleaning, data normalization, irrelevancy filter, and redun-

dancy filters are applied (ii) a very lightweight C3 block-based convolutional neural net-

work (iii) and a long short-term memory model with PMSprop-based optimization model 

for accurate predictions. After selecting the dataset, the abovementioned data prepro-

cessing techniques were applied and prepared the data to feed into the lightweight C3 

block-based CNN model where the important features are selected. The main purposes of 

using a C3 block is to enable channel communication between the channels after each 

convolutional layer. In the C3 block we used an encoder, message-passing algorithm and 

simple decoder. The detail of the C3 block is presented in coming sections. After the fea-

ture selection from the CNN module, these features foraged to the LSTM module for bet-

ter prediction where a total of four LSTM layers were used. The RMSprop algorithm is 

used for optimization of the model. The complete implementation procedure is discussed 

in detail in the following section. 

 

Figure 1. Pictorial view of the proposed C3-enabled CNN-LSTM Model. 

3.1. Formulation of C3-Enabled Convolutional Neural Network 

To avoid high computation times and memory use, we proposed a lightweight C3-

enabled CNN model for feature extraction. The proposed C3-enabled convolutional neu-

ral network contains two convolutional layers along with two pooling layers and one C3 

block. After the first convolutional layer, there is a maxpooling layer to normalize the out-

put channels. We put the C3 block after the first maxpooling layer where the channels can 

communicate with one another. The detail of each block is described as follows. 

3.1.1. Convolutional Layer 

Convolutional layers conduct a complex process on the input image, and the output 

is passed to its following layer. At each position in the convolutional layer, there is a re-

sponsive region with a set of units from the previous levels. The neurons may acquire 

elementary visual properties in the immediate receptive field such as corners, endpoints, 

and orientated edges. This convolutional layer has numerous feature maps from which 

different properties can be extracted. Every unit has the same weightage and bias in every 

Figure 1. Pictorial view of the proposed C3-enabled CNN-LSTM Model.

3.1. Formulation of C3-Enabled Convolutional Neural Network

To avoid high computation times and memory use, we proposed a lightweight C3-
enabled CNN model for feature extraction. The proposed C3-enabled convolutional neural
network contains two convolutional layers along with two pooling layers and one C3 block.
After the first convolutional layer, there is a maxpooling layer to normalize the output
channels. We put the C3 block after the first maxpooling layer where the channels can
communicate with one another. The detail of each block is described as follows.

3.1.1. Convolutional Layer

Convolutional layers conduct a complex process on the input image, and the output
is passed to its following layer. At each position in the convolutional layer, there is a
responsive region with a set of units from the previous levels. The neurons may acquire
elementary visual properties in the immediate receptive field such as corners, endpoints,
and orientated edges. This convolutional layer has numerous feature maps from which
different properties can be extracted. Every unit has the same weightage and bias in every
individual feature map. As a result of this, the identified properties are same for all possible
input locations. This mathematical formulation is commonly used to indicate the equation
of a convolutional layer:

X I
j = f

[
∑iεMj

[
X I−1

i ∗ kI
ij

]
+ bI

i

]
(1)
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where X I
j denotes the output feature map, Mj symbolizes the number of input channels, kI

ij
represents the kernels and b is bias term.

3.1.2. Pooling Layer

In order to lower the complicated resolution of each feature map, this layer employs
a mix of subsampling and local averaging. It also disregards output reactivity. The
mathematical formulation of this layer is given below.

X I
j = f

[
βI

jdown

(
X I−1

j

)
+ bI

i

]
(2)

The down in the above equation represents the subsampling function. In practice,
this function performs a sum over each individual block of input picture to reduce the
dimensions.

3.1.3. Cross-Channel-Communication Block

We explained the C3 structure within a CNN in this part, along with associated formu-
lations of cross-channel interaction between channels. C3 is a cross-channel-communication
block which is published in [21]. We used this block to make our CNN model shallow.
The network’s sketch map is shown in Figure 2. Learning the time series data is a critical
process in the nonlinear electricity-load forecasting process. In the proposed model, a
sliding-window technique has been used to learn the features with a fixed window size, in
which streams of time series data are often divided into continuous sub-sequences called
windows, each of which is linked with a particular feature. We can then insert the C3 block
to a few convolutional layers to enable the channels’ communication. Mathematical formu-
lation of C3 block is discussed as follows. Let us assume that a neural network has L layers,
and each layer contains nl filters. So, the feature response of the lth will be Xl={x1

l ,......xn
l }

.
Generally, the updated response after the channel’s interaction can be calculated as:

x̂i
l = xi

l + f i
l

(
x1

l , . . . . . . . xn
l

)
(3)

where, f i
l is a function has the functionality of collecting all the feature responses of all

channels. Simultaneously, it updates the encoded features of the channels. This cross-
channel communication enables communication between all sides of the network.
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The feature encoding, message passing, and feature decoding are the three main parts
of cross-channel communication network.

Feature Encoder

This module is responsible for extracting global information from each channel re-
sponse map. Particularly, the response map xi

l as discussed earlier, is flatten into simple
one-dimensional vector and then passes it two FC layers, i.e.,

yi
l = f in

enc

(
xi

l

)
,

zi
l = f out

enc

(
σ
(

yi
l

))
(4)

There are two fully connected layers where f in and f out are the linear functions and σ
is a ReLu activation function.

Message Passing

The message passing module is used to make sure that all channels communicate
with each other so that the different feature responses can be represented in different ways
by updating the final feature responses. Graph convolutional network (GCN) [22] is a
good way to learn the channel interaction. Specifically, we proposed a graph attention
network [23] for enabling channel interaction between load data, which has a built-in soft
attention mechanism the same as GCN. Our model has the same cross-channel interaction
ability as the block intension module. In our model, we construct an undirected graph
where Z =

{
zi

l
}

are nodes and sij = fatt

(
zi

l , zj
l

)
is the edge strength between two nodes.

There are number of methods available to learn fatt [23–25] but we used the following
method to learn it.

zi
j =

hlwl

∑
k=1

zi
l [k]

(hlwl)
,

sij = −
(

zi
j − zj

j

)
(5)

where hl and wl represents the hight and width of a layer. zi
l [k] represents the kth element

of zi
l 1-D vector. To allow more communication between the similar channels, we computed

negative square distance. This way, group of similar channels were formed which becomes
more harmonizing and distinct. Then the SoftMax layer normalized the attention score.

Feature Decoder

This module is responsible for obtaining the information for all repaired channels and
reshaping it to the original input’s dimensions. The feature decoder employs a standard
convolution technique to transmit the data to the subsequent layers. After acquiring
updated channel wise output zi

l , the decoder module reshapes it to the original dimension
by applying simple convolutional process. All three modules enable communication for
balance across all the neurons at the same level.

3.2. Long Short-Term Memory Network

LSTM [25] is designed to be a developed version of RNN (Recurrent Neural Network),
which might be useful for sorting, processing, and forecasting the time series data. A
pictorial depiction of LSTM is shown in Figure 3. The purpose of developing the LSTM
network is to resolve the issue of slope exploding or vanishing gradient problems, which
occurs in traditional recurrent neural networks. LSTM brings value with two qualities on
comparison to RNN, as discussed below:

1. Cell State ct: In LSTM, cell state is the new state which is used to list the reliance
amongst the subsequent components. Cell state ct at time period t provides the
historical information (memory);
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2. Gates: This property of LSTM in the network assists to manage the distribution of
information. This mechanism is comprised of three gates: the input gate it, the forget
gate ft, and the output gate Ot;

3. The said gates in LSTM helps to restrict the quantity of information flows. The
value is expressed between 0 and 1, where the value 0 refers that no transmission
of information is authorized, and the value 1 means that total communication of
information is accomplished.
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In the proposed LSTM model, despite the conventional LSTM network, we used ReLu
and Leaky ReLu [26] activation function instead of traditional sigmoid and hyper tanh
functions as shown in Figure 3. As we described earlier, learning the nonlinear behavior of
load data is a little challenging for activation functions such as sigmoid and tanh because
of their low output limit. To overcome this challenge, we implemented the LSTM model
which uses ReLu as activation function as shown in the function. The mathematical form of
all the cells of LSTM is shown in following equations.

ft = ReLu
(

w f · [ht−1, xt] + b f

)
(6)

it =ReLu(wi · [ht−1, xt] + bt) (7)

c̃t = L.ReLu(wc · [ht−1, xt] + bc) (8)

ct = ft · ct−1 + it · c̃t (9)

Ot = ReLu(wo · [ht−1, xt] + bt) (10)

ht = L.Relu(ct) (11)

where ft, it, ct, Ot, and ht are representing the forget gate, input gate, cell state, output
gate, and hidden state. The proposed approach is divided into four primary sections:
preparing the data, training the LSTM system, verifying the system, forecasting the load,
and calculating the value or cost based on the testing data. The processes for cost prediction
are detailed in the following phases. For the first phase, the historical price and load vectors
are normalized using the following computation.

pn =
p− µ(p)
σ(p)

(12)
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where µ and σ denotes mean and standard deviation respectively. In the equation (pn),
Mean and Std are used to calculate the standard deviation of the standardized load data.
Z-score normalization is the term used to describe this process. The data is separated in
hourly manner for our convenience. Algorithm 1 is used to divide the data into training,
validating, and testing parts. The system is then trained using the training dataset and
validated using the validating dataset in the subsequent phase. A trained neural network
is tested using a dataset including anticipated data of load for a day ahead. Root mean
square error (RMSE) estimate is used to test the model’s efficiency.

Algorithm 1: #This algorithm separated the electricity load dataset into training, validation and
testing sets

Input: Electricity load dataset
Output: 65% Training, 15%Validation and 10% Testing sets
1. Data_Size← Data_length (time-series) × 0.65
2. Data for Training← time-series [0 . . . Data_Size]
3. X← length (time-series) × 0.1
4. Validation-Data← time-series (Data-Size . . . X)
5. Testing-Data← time-series(X . . . length(Data-Size) + length(X))
6. Return Train-Data, Validation-Data, Testing Data

4. Implementation Detail

The electricity datasets of the energy load were taken from different data sources, e.g.,
the power consumption dataset was from Independent System Operator New England
(ISO NE) [27] and New York Independent System Operator (NYISO) [28]. ISO NE controls
the creation and distribution system for New England. ISO NE yields and spreads nearly
30,000 MW electrical energy every day. At ISO NE, per annum USD 10 million of business
is accomplished by a total of 400 electrical consumers in the market. The facts consist of
ISO NE zone’s limits of system load per hour and adjusting capacity clearance value of
21 states in USA for the past 8 years that is starting from January 2011 to March 2018. The
dataset shows about 63,224 estimations. New York Independent System Operator is a
nonprofit establishment that works with an American city’s electricity grid and is in charge
of an entire state’s comprehensive energy markets. The evidence collected from New York
Independent System Operator comprises the hourly utilization and value in the city. It
contains 13 years’ worth of data which is from January 2006 to October 2018 and has a total
of 112,300 estimations.

To train the model, we used the minibatch method. The minibatch approach divides
the data into many batches and updates the variable for each batch individually. Minibatch
avoids the massive number of finds produced by the traditional training strategy of criss-
crossing the whole data variable. We must perform gradient steps for all training sets as
a single batch in batch gradient descent. In contrast to batch gradient descent, minibatch
gradient descent allows a dataset to be split into many little datasets, such as one batch of
data into many small vectors of data called minibatches. The training datasets are trundled
synchronously between X and Y using the minibatch gradient descent technique. This
shuffle ensures that samples are divided into tiny batches at random. The shuffled batch is
then divided into several smaller batches. Each micro batch is usually a power of two in
size (64, 128, 256, 512, 1024, etc.). The minibatch approach infuses adequate chaos to each
gradient update while obtaining relative rapid convergence, because minibatch updates
weights on each minibatch gradient. Adam optimizer is used to avoid this disadvantage.
The Adam algorithm is not to be confused with the traditional conditional gradient descent
algorithm. The classic gradient descent technique maintains a single iteration rate while up-
dating all weights. Throughout the training, the learning rate remains constant. The Adam
algorithm calculates the gradient’s first instant approximation and second raw instant
approximation. For various variables, the instant approximation is built as an independent
adaptive learning rate, which may be changed throughout the training process.
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Our proposed prediction C3-enabled CNN-LSTM model is implemented in Python
using keras and TensorFlow libraries. The model is trained on a system with the spec-
ifications described as Intel Core i5-3570 CPU @ 3.40 GHz 3.80 GHz, NVIDIA GeForce
GTX1070 GPU, and our operating system was Windows 10, 64-bit. After the normalization
of the load dataset, it is fed into C3-enabled CNN model for feature extraction. Leaky
ReLu function is used as an activation function every after convolutional layer. Minibatch
technique with Stochastic Gradient Descent (SGD) was used where the momentum value is
0.001 to train the model. A total of 4 LSTM blocks were used for predicting the final output.
Dropout layers were also used to reduce the factor of overfitting the model. Initially the
learning rate was of 0.001 but it decreased by 1/10 every after 30,000, 60,000, 60,000, and
30,000 iterations. All the hyperparameters used in the proposed network are summarized
in Table 1.

Table 1. Used hyperparameters.

No. Hyperparameter’s Name Hyperparameter’s Value

1 Learning Rate 0.001
2 Step Decay Rate 1/10
3 Momentum 0.6
4 Dropout in hidden layers 0.5
5 Dropout in input layer 0.8
6 Epoch 50

5. Results and Discussion

As per previous discussion, the proposed model is trained on ISO NE and NYISO
datasets. In total, 65% of the data was used for training, 15% of the data for validating
the model, and the remaining 20% of the data was used to test the model. Both datasets
have records of many grids, but we chose only four grids’ data for prediction. The actual
data is visualized in Figure 4 for four grids. As discussed earlier, the model is trained
in Python with leaky ReLu as an activation function and the step-decay algorithm as a
learning function. Initially, the test data is passed to the data preprocessing part to prepare
for the model where different filters such as data cleaning, data normalization, irrelevance
filter, and redundancy filter were applied. Then, the C3-enabled CNN model was trained
for feature extraction purposes.
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Then, the four-block LSTM model was trained on extracted features. To check the
model efficiency, we visualized the learning curves for four different runs. The model
performance can be examined over several epochs on training and testing data using a
learning curve. It can be said after looking at the learning curve that the model is picking
up new information from the data or simply memorizing it. The high error rate in training
and testing and the fast convergence because of the high learning rate and bias results
the learning curve being skewed, and the model does not learn from its errors. Similarly,
when the gap between training and testing errors is high, the high variance develops. In
both ways, the model has problem and results in inaccurate generalization. When the test
error increases while the training error decreases, this phenomenon is called overfitting.
This demonstrates that the model is memorizing, but not learning. Consequently, in these
situations it is impossible to generalize from the model. After applying dropout method and
early termination of learning can avoid overfitting. For the proposed model, however, the
testing/validation error gradually diminishes alongside the training error for the electricity
grids as shown in Figure 5. Our model handled overfitting issues quite well.
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Table 2 presents the first three epochs of each four runs: their time of execution, loss,
and accuracy. Meanwhile, while testing the C3-enabled CNN-LSTM model, the model
achieved 98.3% accuracy, as shown in Figure 6, while Figure 7 shows the ROC curve of
the model. We depicted the predicted loads of four grids’ data in Figure 8a–d for the four
grids, respectively, which shows the complete load forecasting of our model. From the
figure, it can be seen that the model is performing better and efficiently. In Figure 8, blue
lines represent the actual value of the load, the yellow line shows the prediction on training
data, and green lines show load forecasting. It is noticeable from the presented graphs that
the proposed C3-enabled CNN-LSTM model can capture nonlinear behavior from the past
data and, on this learned behavior, it can forecast the load very efficiently.

Table 3 provides the comparison of the proposed model with existing models in terms
of MAPE. We showed this table for one grid station. This table lists the numerical findings
of benchmark models such as LSTM [29], CNN-LSTM [30], Bi-LSTM [31], and our proposed
model. It also shows the day-ahead forecasted load based on the proposed model. Our
model has a MAPE error of 0.4560%, while the Bi-LSTM model has a MAPE error of
2.5397%, the CNN-LSTM model has a MAPE error of 2.3123%, and the LSTM model has a
MAPE error of 4.3664%. When compared to state-of-the-art models, our proposed model
shows lower MAPE, which means the proposed model has more accurate results. In terms
of accuracy, CNN-LSTM-projected load forecasting outperforms LSTM, while Bi-LSTM
outperforms CNN-LSTM. The CNN-LSTM model employed RMSprop for optimization,
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but the Bi-LSTM model utilized DEA, which improves prediction accuracy by decreasing
error. At the expense of greater execution time, this higher precision is achieved. Due
to the inclusion of the C3-based CNN model for feature selection and RMSprop-based
optimization module in LSTM framework, the proposed C3-enabled CNN-LSTM model
outperforms Bi-LSTM, CNN-LSTM, and LSTM models. Table 1 shows the statistical results
of our model with state-of the art models for a single power-grid station in terms of MAPE.
We conclude that the proposed C3-enabled CNN-LSTM outperforms benchmark models
based on the findings and discussion. In terms of MAPE, the average numerical findings
for a power grid are 0.4560% which are lower than the benchmark models.

Table 2. Training time, loss, and accuracy of first three epochs of each run.

Epochs Training Time Loss Accuracy

First Run

1/50 2 s 0.3183 0.6817
2/50 0.03 s 0.2153 1.7847
3/50 0.05 s 0.1411 0.8511

Second Run

1/50 1.5 s 0.4785 0.5215
2/50 0.8 s 0.2673 0.7327
3/50 0.5 s 0.1588 0.8412

Third Run

1/50 1.3 s 0.2541 0.7459
2/50 0.02 0.1770 0.8230
3/50 0.05 s 0.1228 0.8772

Fourth Run

1/50 1.1 S 0.4677 0.5323
2/50 0.004 s 0.3508 0.6492
3/50 0.002 s 0.2603 0.7397
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The comparison of the proposed model with respect to time execution with benchmark
models is depicted in Figure 9. Sometimes the accuracy of the Bi-LSTM model increased
because of the DEA optimization algorithm, but it came at the cost of a higher execution
time due to its greedy nature. From Figure 8, it is obvious our model becomes more accurate
with lower execution times. The reasons behind the low execution time is the C3 block,
which lessens the convolutional layers to only three. There are two main reasons for the low
execution time of the C3-enabled CNN-LSTM model, i.e., cross-channel-communication
block which enabled the channel communication within layer and the use of the ReLu
activation function instead of sigmoid in the LSTM model.
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Table 3. Comparison of proposed model with other state of the art algorithms using mean absolute
percentage error.

Hours Actual Load Proposed Model Bi-LSTM LSTM CNN-LSTM

P. Load MAPE P. Load MAPE P. Load MAPE P. Load MAPE

1 1035 1042 0.4513 1054 2.5186 1012 4.3371 1044 2.4741

2 1370 1374 0.4851 1377 2.5874 1387 4.3251 1376 2.6514

3 1785 1789 0.4752 1798 2.6584 1742 4.3587 1787 2.2541

4 1801 1807 0.4852 1835 2.3658 1826 4.3574 1847 2.3547

5 1813 1820 0.4125 1875 2.1245 1885 4.2541 1880 2.1254

6 1392 1398 0.4456 1421 2.3548 1432 4.6985 1428 2.1458

7 1828 1832 0.4712 1842 2.5847 1852 4.3521 1845 2.6514

8 1874 1877 0.4951 1898 2.6954 1907 4.3887 1903 2.3521

9 1930 1935 0.4325 1965 2.6587 1978 4.3002 1962 2.2514

10 1950 1965 0.4125 1986 2.6874 1995 4.3698 1972 2.1245

11 650 670 0.4215 685 2.3587 695 4.8541 675 2.2154

12 1326 1333 0.4562 1375 2.3658 1384 4.8854 1338 2.5484

13 1421 1430 0.4754 1463 2.1478 1473 4.2514 1435 2.9542

14 1163 1170 0.4751 1187 2.3658 1198 4.3652 1176 2.1124

15 822 832 0.4124 871 2.3214 885 4.3665 840 2.0254

16 434 440 0.4214 487 2.5846 497 4.2154 448 2.1245

17 764 772 0.4239 792 2.3648 801 4.0035 784 2.3652

18 442 450 0.4732 482 2.8487 475 4.2514 455 2.4412

19 865 873 0.4859 890 2.9547 892 4.3251 874 2.3215

20 698 703 0.4854 742 2.6687 748 4.3257 712 2.0024

21 442 451 0.4125 495 2.8745 502 4.3223 455 2.1024

22 601 613 0.4815 654 2.5474 665 4.6587 614 2.1143

23 1167 1178 0.4583 1402 2.8412 1408 4.0021 1184 2.1325

24 1384 1492 0.4954 1528 2.4752 1540 4.2254 1499 2.6512

Average 0.4560 2.5397 4.3664 2.3123

We have made a scalability analysis in Figure 10. This analysis allows us to make
assumptions whether the proposed C3-enabled CNN-LSTM model is scalable for the huge
dataset or in other said scenarios. We changed the input sample, bias of the model, changed
some weights and tried some different features and then analysed the model performance.
In the scenario where we changed the weights of the model, but the input remained
constant, the proposed model was not affected. Figure 9 shows the impact of these factors
on the execution time of the models. We compared our model execution time with other
benchmark models in this scenario. This analysis shows, even in the said scenario, that our
model outperforms and shows a lower execution time because of the inclusion of the C3
block. Figure 11 shows the comparison of the poposed model with other hybrid models in
terms of MAPE error. From the figure we can observe that MAPE error rate of proposed
model is lower than WTNNEA [32], WGMIPSO [33] and another hybrid model [34]. This
result demonstrates that the proposed model outperforms these hybrid models.
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Figure 11. Comparison of proposed model with other hybrid models in terms of MAPE. WTN-
NEA [32], WGMIPSO [33] and an other hybrid model [34].

6. Conclusions

Accurate electric-load forecasting is critical for decision making and system function-
ing in electricity power grids. With efficient forecasting of load demand, operators may
create an ideal market strategy to maximize the economic benefits of energy management.
In this manuscript, a hybrid C3-enabled CNN-LSTM model for load forecasting is pro-
posed. The proposed model contains three parts, i.e., convolutional layers, a C3 block
and LSTM layers. The convolutional layers and C3 block worked to extract the important
features from the load data and LSTM layers were used to predict the load. Two different
datasets of electricity load were used, named as NYISO and ISO NE. In the model, ReLu
functions were used as activation functions. The presented experiments show that the
proposed model gained 98.3% accuracy in prediction. The proposed model is compared
with other state-of-the-art methods, i.e., LSTM, CNN-LSTM, and Bi-LSTM based on MAPE
and execution time. The proposed model showed a 0.4560% error rate while LSTM showed
4.3664%, CNN-LSTM showed 2.3123%, and Bi-LSTM showed 2.5397%. As the proposed
model used a C3 block inside the CNN network, making the model shallow, the execution
time of the proposed model is comparatively less than other benchmark models.
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Nomenclature

BP Back Propagation
DR Demand Response
LSTM Long short-term memory
MAPE Mean absolute percentage error
RMSE Root mean square error
SVM Support vector machine
ARIMA Auto-regressive integrated moving average
BPNN BP neural network
ELM Extreme learning machine
HEMS Home energy management system
RNN Recurrent neural networks
WNN Wavelet neural network
ReLu Rectified Linear Unit
SG Smart grid
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