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Abstract: Incorporating solar energy into a grid necessitates an accurate power production forecast
for photovoltaic (PV) facilities. In this research, output PV power was predicted at an hour ahead on
yearly basis for three different PV plants based on polycrystalline (p-si), monocrystalline (m-si), and
thin-film (a-si) technologies over a four-year period. Wind speed, module temperature, ambiance,
and solar irradiation were among the input characteristics taken into account. Each PV plant power
output was the output parameter. A deep learning method (RNN-LSTM) was developed and
evaluated against existing techniques to forecast the PV output power of the selected PV plant.
The proposed technique was compared with regression (GPR, GPR (PCA)), hybrid ANFIS (grid
partitioning, subtractive clustering and FCM) and machine learning (ANN, SVR, SVR (PCA)) methods.
Furthermore, different LSTM structures were also investigated, with recurrent neural networks (RNN)
based on 2019 data to determine the best structure. The following parameters of prediction accuracy
measure were considered: RMSE, MSE, MAE, correlation (r) and determination (R2) coefficients.
In comparison to all other approaches, RNN-LSTM had higher prediction accuracy on the basis of
minimum (RMSE and MSE) and maximum (r and R?). The p-si, m-si and a-si PV plants showed
the lowest RMSE values of 26.85 W/m?2, 19.78 W/m?2 and 39.2 W/m? respectively. Moreover, the
proposed method was found to be robust and flexible in forecasting the output power of the three
considered different photovoltaic plants.

Keywords: hour-ahead prediction; PV power forecasting; RNN-LSTM; deep learning

1. Introduction

Globalization and the economic growth of the world have triggered an increase in the
need for electrical energy, and the principal sources of electrical energy are fossil fuels. Oil,
coal and gas reserves have an approximate life of 35, 107, and 37 years, respectively [1].
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Huge emissions of gases such as CO, and greenhouse gas (GHG) as a result of the massive
use of fossil fuels is polluting the environment, leading to world climate change [2]. In
light of these facts, PV energy has attained significant importance among other renewable
energy sources. Power generation from PV sources has a major impact on the environment,
with no GHG emissions [3,4], long life, and low maintenance costs compared to typical
energy sources [5-8]. However, natural fluctuations of solar radiation and temperature
affect PV output power, reducing the reliability, stability, and planning of power grids.
To keep the balance between energy supply and power system demand [9], the variable
properties of PV energy are applied to both sides of the power grid to control PV power
absorption [10,11]. The forecasting of output PV power is therefore crucially important to
improve power absorption.

In general, forecasting is performed based on different time periods known as fore-
casting horizons. Very short-term forecasting (1 s < 1 h) helps with real-time electricity dis-
tribution, resource optimization, and power leveling [12]. Short-term forecasting (1 h-24 h)
helps to enhance grid reliability and improvise power system operations [13]. Medium
term forecasting (one week-one month) establishes the schedule for the planning and main-
tenance of power systems by forecasting existing electric power. Long-term forecasting
(one month—one year) incorporates distribution and transmission governing bodies, the
planning of electricity generation, and energy bidding and security actions [14,15].

Various techniques have been used to forecast PV power output, such as ARMA,
ARIMA, ARMAX, coupled autoregressive and dynamic systems (CARDS), regression,
and regression trees. The forecasting accuracy of these techniques is better for short-term
horizons. However, accuracy declines with rising forecast horizon and output dimen-
sions [16-19]. Non-linear data are also a limitation of these methods. Based on cloud
tracking and prediction, sky and satellite photos were utilized to predict solar irradiance
on an ultra-short-term basis [20—22]. The forecasting accuracy of image-based methods is
directly dependent on image processing algorithms. However, based on low-resolution
satellite data and limited coverage of sky images from the ground, the forecasting accuracy
of these methods needs further improvement. Numerical weather prediction (NWP) is
used for medium-term (15 days ahead) solar irradiance forecasting. However, its applica-
tion is limited because of data retrieval restrictions imposed by domestic meteorological
departments [23-26].

An artificial neural network (ANN) in [27-30] and an adaptive neuro-fuzzy inference
system (ANFIS) in [31] are among the machine learning methods deployed for solar power
forecasting. These are better able to deal with non-linear systems and cope with the
variable behavior of solar power. However, issues of random initial data, local minima,
overfitting, and increased complexity because of multilayered structure affect the reliability
of power systems [6,32,33]. Support vector machines (SVM), meanwhile, show better
forecast accuracy for predicting solar power in [34-36]. However, these are extremely
susceptible to parameters such as penalty factor (C), kernel function and the tube radius
(¢). Making an appropriate choice for these parameters is therefore a difficult task [5]. The
weights and biases of buried nodes in an extreme learning machine (ELM) are chosen at
random [37-39].

New advances in artificial intelligence (Al) technology have led to the use of various
deep learning techniques in certain fields to overcome the shortcomings of traditional
neural networks and other machine learning techniques [40,41]. Deep learning has the
following major traits in contrast with physical, persistence and statistical methods [42]:
unsupervised feature extraction, dominant generalization ability, and training on big data.

K Wang developed a model based on the combination of CNN and LSTM for the day-
ahead solar power output forecasting, showing better forecasting accuracy than individual
methods, with the increase in the input sequence [43]. A physical constrained LSTM
model (PC-LSTM) has shown better hour-ahead solar power forecasting accuracy than
statistical and conventional machine learning models [44]. The Deep Belief network [45]
based on the proposed gray theory to predict the output power of a solar system for a day
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ahead showed better prediction accuracy and computational efficiency. Wang et al. [2]
developed a temporal correlation correction method to enhance the deep learning method
accuracy for day-ahead solar power prediction. Navaez et al. presented day- and week-
ahead PV power predictions using the deep learning method [42]. Using the local data,
the LSTM method was developed to predict the output power for the next 24 h [46].
The forecasting accuracy of this method is 18.34% better than other benchmark methods.
Very short-term power output forecasting for five minutes ahead has been executed for
different PV technologies using actual field measurements [47]. However, all these studies
lack deep learning-based PV power predictions for various PV power plants to ensure
model robustness. According to the authors” knowledge, comparison of the deep learning
method with regression, neural networks, machine learning, and hybrid (ANFIS) methods
combined is also missing. Therefore, it is still possible to develop a deep learning method
to predict the output power of a PV plant over a four-year timeframe.

The purpose of this study was to create a deep learning method (RNN-LSTM) for
predicting the power output of PV modules on yearly basis during the data collection
period (2016-2019) of PV power plants based on p-si, m-si, and a-si technologies. Secondly,
to compare the efficiency of the proposed method for hour-ahead forecasting of output
power, we used ANN, SVR, GPR, SVR(PCA), GPR (PCA), and ANFIS (grid partitioning,
subtractive clustering and FCM). Finally, an LSTM structure comparison was performed to
choose the best LSTM structure. The following are the study’s primary contributions:

e  Data preprocessing is performed for three different plants over the four years recording
actual PV data.

e A deep learning algorithm (RNN-LSTM) is proposed for hour-ahead forecasting of
output PV power for three independent PV plants on yearly basis for a four-year period.

e Annual hour-ahead forecasting of PV output power using SVR, SVR(PCA), GPR,
GPR (PCA), ANN, and ANFIS is also performed and compared with the proposed
technique (RNN-LSTM) for the considered period (2016-2019).

e Different LSTM structures are also investigated with RNN to determine the most
feasible structure, based on 2019 data only.

The rest of the paper is organized as follows. Section 2 delves into the approach in
depth, while Sections 3 and 4 offer the results and discussion, respectively. Finally, Section 5
presents the conclusions.

2. Methodology

Figure 1 depicts the suggested methodology’s research framework. This research
investigates the performance of proposed deep learning and several prediction models on
three different PV plants.
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Figure 1. The proposed methodology research framework.
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2.1. PV Plants Description and Data Set

Three types of PV plants were employed in this study: polycrystalline (p-si), monocrys-
talline (m-si), and thin-film (a-si), all of which were installed at the University of Malaya.
The geographic position of the plants was 3°7'6” North and 101°39'19” East. There were
16 modules (125 W each) for p-si, 20 modules (75 W each) for m-si, and 20 modules
(135 each) for the a-si PV system. For p-si, m-si, and a-si PV plants, the installed capacities
were 2 KW, 1.875 KW, and 2.7 KW, respectively.

The forecasting performance was evaluated using data from the previous four years
(2016-2019). Except for few days in 2018, the whole real data was properly synchronized
and retrieved using a pyranometer for solar radiation, an anemometer for wind speed, and
a temperature sensor to measure the temperature of the modules and environment. The
missing data in 2018 were due to power failure of the sensors. These data were reinstated
by acquiring the data of a similar date from the previous or next year. The data were
recorded at a five-minute resolution on the web server.

The three PV power outputs (one for each PV) were collected using SMA SUNNY
SENSOR BOX. Three variables (solar radiation, module temperature, and ambient temper-
ature) typically have better correlation with the power output of PV plants. Wind speed in
Malaysia is low due to tropical weather conditions, and therefore it has a very negligible
effect on solar radiation. However, the correlation of the wind speed with the solar power
output of each PV plant was found to be relatively better but inferior to the other three
variables. Therefore, all four variables were considered as an input of each prediction
model. Wind speed data have also been considered by other researchers for solar power
output prediction [38,48]. Further details related to used sensors, inverters, and PV plants
can be found in [49].

2.2. Data Preprocessing

Data preprocessing involves collection, division, and standardization of data. A
database recorded over four years (2016-2019) was used in this research; 70% of each year
of data was used for training, and the remaining 30% was utilized for testing purposes.
The following formulae were used to normalize the data:

R 1 )

n=1
o =std (D) ()
Dstandardized = (D — 1)/ 0 ®3)
Ypredicted = O Dstandardized + 1 4

where p represents the mean and o stands for standard deviation of considered data (D).
Equation (3) is used to normalize the data before it is trained, and Equation (4) is used to
analyze the network testing performance by predicting the actual data. Figure 2 depicts the
entire methodology’s flow chart.

2.3. Regression for PV Power Output Prediction

GPR and SVR are two regression algorithms used for the hour-ahead forecasting power
output of PVs. These techniques were utilized by incorporating the principal component
analysis (PCA) method. A 5-fold cross validation procedure was also adopted to justify the
integrity of both forecasting methods. This procedure enabled the models to work properly
by protecting them from overfitting and underfitting.
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Figure 2. An overall methodology flow chart.

2.3.1. Gaussian Process Regression
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This is a probabilistic non-parametric method which consists of kernel functions.
It illustrates that a finite set of values follow the joint Gaussian distribution [50]. The
GP model shows a path that indicates prior function distributions. For the training data
D = {xn,yn}, where the input is x,€ R%* and the output is y, € R. Assume the following

observation model:

y=flx)+e

©)
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where f and ¢ are latent functions and Gaussian noise, respectively. The noise variance is

02, ie., ¢ ~ N(0,02), while y is the actual target value y — [y ......... yu]" and x is the
input features as x — [x1......... xn]T. P is the total number of new complete data sets.

The prediction for the new sample Xy is the average of all model predictions.

P

1
Ypredicted = ﬁ Mp(Xtest) (6)
=1

P

where M, (Xtest) represents the new test data set’s prediction result. In this study, the kernel
function used for regression is Matern 5/2 and basis function is constant. The kernel scale,
signal standard deviation, and sigma values are automatic.

2.3.2. Support Vector Regression (SVR)

Both regression and classification issues are solved using the SVM. It is utilized to
improve generalization by lowering the empirical risk and confidence interval utilizing the
structural risk minimization hypothesis. SVM can be used to solve regression problems,
known as support vector regression (SVR), in addition to classification. For a data set

of {(xn,yn)% =1 } where x;, and y, are the input and output vectors, while N is the
complete data set, SVM’s general mathematical function is as follows [51]:

M
y=fx)= ; o -(x) = we(x) )

¢(x) performs the nonlinear transformation, and the result is the linearly weighted
sum of M. SVM’s decision function is as follows:

N
y—f(x)—{z <, ~k(xn,x)}—b 8)
n=1

The kernel function is denoted by the letter k. The kernel function must be chosen
carefully to spread the data in a feature space. The bias values, objective function parame-
ter, and training data are represented by b, «, and N, respectively, while the independent
vectors and the vectors used in training are represented by x and x;,. In this study, different
kernel functions were experienced for SVM, namely: linear, Gaussian, coarse Gaussian,
medium Gaussian, and quadratic. More accurate results were obtained with the cubic ker-
nel function. The objective function parameter was RMSE. The kernel scale, box constraint
and epsilon were automatic. The cubic SVM was tuned properly.

2.3.3. Principal Component Analysis (PCA)

The main component splits the collection of connected variables into smaller sets with
no correlation, preserving the majority of the original data. Let W represent the input data
set, which includes ambient and PV module temperature as well as solar irradiance and
wind speed. Each column represents the sequence of n dimensional input [52]. The average
of each function in the data set is considered zero E(W) = 0. The original data matrix is
represented with m samples and n variables as follows:

w11 cee Win
W= [wy, wy,....... wm]T = : : )

Wyl - Wmn

The related eigenvectors show the new orthogonal components known as principal
components while the matching eigenvalues define the magnitude of these principal com-
ponents. The first principal component shows higher covariance when all the eigenvectors
and eigenvalues are arranged in descending order. It should be noted that, despite the
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fact that the input variables are linked due to the orthogonality of the decomposed eigen
vectors, there is no correlation between the resultant main components [53].

2.4. Artificial Neural Network (ANN) for PV Power Output Prediction

The ANN is a statistical model dealing with non-linear data properly. It has three
layers: input, hidden, and output. The input layer displays information about inputs before
the hidden layer analyzes it, while the hidden layer has a number of layers. After obtaining
analyzed information from the hidden layer, the output layer describes the output. The
ANN model can be represented as follows [5]:

™=z

Uy =b+ (I/V] X I]) (10)

]

Il
—_

The final network output, bias weight, total number of inputs, connection weight,
and input number are represented by Uy, b, N, W] and Ij, respectively. This study
employs a multilayer feed forward neural network with the Levenberg—Marquardt back-
propagation (LMBP) method. This method updates the weights of hidden neurons and
refers to the error propagated to the input from the output through the hidden layer.
The LM method takes less convergence time than other algorithms. The algorithm is
executed for many training cycles known as epochs to minimize error and specify accuracy.
Multiple combinations of neurons and iterations have been experienced in simulation. The
optimum combination with better accuracy was chosen in this work. The input layer of
MLENN consisted of four inputs, while the hidden layer had ten neurons. The output
layer represented one output. The learning rate, momentum, and number of iterations
for ANN were 0.2, 0.1 and 100, respectively. An iteration threshold (100) was chosen to
compare the response of all three PV systems equally. The activation function in ANN was
a continuous tangent sigmoid function [51]. A validation was also performed to generalize
the training of ANN and use that trained ANN for testing purpose on new data. This
validation procedure avoided model overfitting and underfitting.

2.5. Adaptive Neuro-Fuzzy Inference System (ANFIS)

A hybrid model that estimates premises and parameters as a result of those premises is
ANFIS. In the forward direction, it evaluates outcome parameters, whereas in the backward
journey, it evaluates premise variables. The data are sent to layer 4, where the least square
regression approach is utilized to optimize the resultant parameter [54]. The error value
propagates through the feedback or backward path The premise variables are updated
using the gradient descent (GD) approach [55]. By repeating the operation for a set number
of iterations, the error is minimized to the desired value as a squared difference between the
actual and measured value. The Takagi-Sugeno fuzzy inference structure can be created in
three ways.

2.5.1. Grid Partitioning

The grid partitioning method uses the axis paralleled approach to divide the input
into several spaces, with each input indicating a fuzzy MF. There is one rule for each input
member function combination. MFs are Gaussian and linear functions, respectively. The
maximum number of epochs is 100, while initial step size, step size increase and decrease
rates are 0.01, 1.1 and 0.9, respectively [56].

2.5.2. Subtractive Clustering

In this method, data clusters are used to derive the rules and membership function for
generating a Sugeno fuzzy system. Each input variable has one Gaussian input MF, and
each output variable has one linear output MF. Each fuzzy cluster has one rule. The initial
step size, step size increase and decrease rates are 0.01, 1.1 and 0.9, respectively, while the
influence radius and number of epochs are 0.55 and 100, respectively [56].
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2.5.3. Fuzzy Cluster Means (FCM)

In this method, data clusters are used to derive the rules and membership function
to generate a Sugeno fuzzy system. Gaussian input MF and linear output MF are there
for every input and output variable, respectively. Each fuzzy cluster has one rule. With
this method, the number of clusters is ten. The Gaussian function is used as a partition
matrix exponent. The number of epochs is 100. The initial step size, step size increase and
decrease rates are 0.01, 1.1 and 0.9, respectively [56].

2.6. Deep Learning Network (RNN-LSTM)

ANN lacks a correlation approach and performs direct mapping between input and
output data. The application of ANN in time series forecasting is therefore limited. To
overcome this drawback, RNN builds up sequence to sequence mapping by adding up
cyclic connections to neurons. The input of the previous time step affects the output of the
next time step [57,58].

The use of contextual information for mapping between input and output is a key
element of the RNN. The RNN loses the most deleted input information. However, RNN
face the issue of gradient vanishing, as with ANN. The parameters are optimized in a
negative way when the BP phenomena updates them. The gradient disappears, and the
network is not updated. The performance of the classic RNN model is enhanced by using
long short-term memory (LSTM) [59]. The RNN-LSTM is proposed to overcome the issues
faced by regression, ANN, ANFIS and machine learning techniques. The RNN-layered
LSTM'’s structure is depicted in Figure 3. The sequence input layer, LSTM layer, fully
connected layer, and regression output layer are the four layers that make up the proposed
model. The four inputs, with one-hour resolution, are induced in the sequence input layer,
with each input shown by a sole circle for 12 h a day. Layer 2 is an LSTM layer that works
in flow with a fully linked layer to improve model performance. The LSTM layer analyzes
numerous hidden units, whereas the fully connected layer displays a number of replies.
Finally, the output is recorded by the regression layer.

The hyperparameters are optimally adjusted to improve the proposed model’s accu-
racy. The considered hyperparameters and their ranges are described in Table 1. Different
combinations of these hyperparameter values within the specified range are incorporated
for simulation to evaluate the accuracy of the proposed model. Moreover, the constraints
of the hyperparameters (epochs, hidden units) are defined because the response remains
almost the same beyond the maximum value. It causes only wastage of time and resources.
The optimal combination with lowest RMSE is chosen for better performance. Different
LSTM structures are also investigated for each PV plant based on 2019 data to choose the
best structure and to verify the concreteness of the proposed structure. The computing
power for all simulation is Intel(R) Core (TM) i7-7500U CPU @ 2.70 GHz 2.90 GHz along
with 64-bit operating system.

Table 1. Range of the hyperparameters used in proposed model.

Hyperparameters Range

The total number of hidden units 80-250

Maximum number of epochs 100400

Initial rate of learning 50-200
Learn rate drop period 0.0001-0.01

Learn rate drop factor 0.002-1
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Figure 3. The layered structure of proposed RNN-LSTM model.

2.6.1. A Basic LSTM Structure

Figure 4 describes the basic LSTM cell structure. In RNN-LSTM, the subnets are
referred to as memory units which consist of one or more than one memory cells. Fur-
thermore, it consists of three types of gates known to be input, output and forget gates,
all of which are impacted by x(t) and h(t — 1). Activation function, o, often known as the
sigmoid function, modulates the output coefficient value of these gates between 0 and 1

and is defined as follows [59]:
! a1

¥i1)

/ Fopget gate
aft=1) I i alt)

Ingnat gate

Chiput gate

fin)

[Simeié

__._._-f? —
= —
Te-1) _bbié--#— " . g 7‘ /

X1}

Figure 4. A schematic representing the basic construction of an LSTM cell.

The LSTM cell’s basic operations are as follows:

1.  The LSTM cell decides whether the stored information from the previous cell state
a(t — 1) should be removed. On activation, the forget gate receives the current and
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previous inputs and provides outputs in the form of zero and one. f(¢) is calculated
using the equation below [60].

£(t) = a[wxf.xu) + Wigh(t—1) + bf} (12)

2. The data to be stored in the cell is divided into two parts: a(t) and i(¢). The next state
is decided by combining these two portions of information [60].

tanh(x) = Ei —_i- Z:i (13)
a(t) = tanh(We-X(£) + Wyeh(t — 1) + be) (14)
l(t) = O'(Wxi~X(t) + Whi-h(t — 1) + bi) (15)

3. The information from the previous stages is used to update the new cell state. By
losing information in the first phase, f(t) is multiplied with the prior state a(t — 1).
The generated information is multiplied by the input. Both components are added to
decide the next state a(t), as shown in Equation (16) [60]:

a(t) = f(t)-a(t = 1) +i(t)-a(t) (16)

4.  The final result is decoded in this stage. The hidden state h(t) is discovered by
combining a(t)-tanh and o(t) in order to conserve important information. The output
gate determines the output. The following are the equations for o(t), h(t), and y(t) [60]:

O(t) - U(on'x(t) + Who'h(t - 1) + bo) (17)
h(t) = o(t)-tanh[a(t)] (18)
y(t) = o (Wiyh(t) + b, ) (19)

Wi s, Wi, Wxo, Wxec and Wy, Wy Wi, Wy are the input and recurrent weights matri-
ces, while W}, is the weight bias for the hidden output. Corresponding bias vectors are
b iz b, by, bc and by. The forward and backward passes are used to train the LSTM neurons.
The neuron weight is updated using the BPTT approach. The x(t) and y(t) are the input
data and the PV power output, respectively, in this method.

2.6.2. Multilayered LSTM Structures

In a basic LSTM, one hidden layer is used as in ANN. That hidden layer incorporates
a certain number of hidden units. Following the theme of deep learning, more than one
layer is added to enhance the prediction accuracy and training efficiency. Figure 5 further
details the two-layered LSTM structure. The output of the preceding layer is used as the
input of the succeeding layer at the specified time. In these multi-layered LSTM structures,
information is only conveyed in one direction: forward.
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Figure 5. Double-layered LSTM.

Figure 6 describes a bi-directional LSTM, which represents both forward and backward
transmission of information, connected with the output layer. The full previous and
incoming information for each input pattern can be delivered to the output nodes using
the bi-LSTM. The bi-LSTM has various applications in text recognition [61].

¥(t+1)

I

¥(t-1) ¥(t)

I

x(t-1) x(f)

Figure 6. Single-layered Bi-LSTM.

2.7. Performance Metrics to Measure Forecasting Accuracy
The following are the parameters that were used to evaluate the prediction model:
(@) Root mean square error (RMSE):

1 Y )
RMSE = J N ;(Xl -Y)) (20)
(b) Mean square error (MSE):
1 Y ’
MSE = — ) (X; - Y)) (21)
N =

(c) Mean absolute error (MAE):

1 N
MAE = & i;KXi =) (22)
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(d) Correlation coefficient (r):

it [(X — Xang) * (i — Yaug)|

r= > - (23)
VIR (X = Xaog) 5 2 (¥ = Yaog)
(e) Coefficient of determination (R?):
N L v2

i (Y — Yaug)”

where X; and Y; represent the forecasted and real values, respectively, and the average
values of these variables are represented by X;y¢ and Y. The RMSE is a measure of how
far the anticipated value differs from the actual value. The MSE is used to calculate the
mean square deviation between predicted and actual data. The mean absolute error, or
MAE, is the absolute value of the average difference between predicted and actual values.
The amount and direction of a linear relationship between two variables are indicated by
the correlation coefficient (r). This varies between —1 and +1. A value of +1 represents
strong correlation, while —1 shows a weak correlation. A value of r = 0 indicates no
correlation between two variables. The coefficient of determination (R?) provides the
percentage deviation in Y, which is explained by all the X variables together. The strength
of the linear regression model is indicated by this number, which goes from 0 to 1. It is the
same as the correlation coefficient squared. For the optimum performance model, r and R?
have higher values and RMSE, MAE, and MSE have lower values.

3. Results and Discussions
3.1. LSTM Structure Comparison

Table 2 compares alternative LSTM architectures using 2019 data to demonstrate the
superiority of the suggested technique (RNN-LSTM). It is clear from the table that single-
layered LSTM performed better than the double-layered LSTM and single-layered bi-LSTM
structures. The proposed RNN-LSTM technique (single-layered) showed the lowest testing
MAE and RMSE for three PV plants when compared to other structures. This indicates that
RNN-LSTM (single-layered) architecture is more feasible for implementation in forecasting
the output PV power for all three PV plants (p-si, m-si and a-si).

Table 2. Comparison of different LSTM structures with RNN for power output prediction for three
different PV plants using 2019 data.

p-si m-si a-si
LSTM Structures
MAE RMSE MAE RMSE MAE RSME
RNN-LSTM (single layered) 18.92 26.86 15.04 21.28 46.66 61.44
RNN-LSTM (double layered) 19.43 32.72 17.13 254 49.54 63.93
RNN-BiLSTM (single layered) 41.96 49 23.93 29.14 53.43 68.41

3.2. Forecasting Performance of Three PV Plants

This section discusses the performance findings of the suggested deep learning method,
as well as of the linear and machine learning algorithms, for hour-ahead prediction of PV
power output. The suggested technique (RNN-LSTM) was compared to other forecasting
methods such as GPR, SVR, GPR(PCA), SVR(PCA), ANN, ANFIS(GP), ANFIS(SC) and
ANFIS(FCM). The comparison was performed based on the same recorded data (2016-2019)
on an annual basis for each of the three PV plants. For evaluation purposes, the data were
subdivided into two parts: the training component, which consisted of 70% of input data,
and the remaining 30% of the input data was for testing. The input parameters considered
were the PV module and ambient temperatures, solar radiation, and wind speed, while
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the output parameter was the solar power output for each PV plant. The performance
parameters used for system evaluation purposes were RMSE, MSE, MAE, r and R?, as
defined in Equations (20)—(24), respectively.

Based on the experimental results for the three PV plants over the four-year period
from 2016 to 2019, the proposed RNN-LSTM exhibited the minimum training RMSE
and MSE when compared with other techniques such as SVR, GPR, ANN, GPR(PCA),
ANFIS(GP), SVR(PCA), ANFIS(FCM) and ANFIS(SC). Meanwhile, the training r and R?
values of RNN-LSTM were also highest for all three PV plants in comparison with other
applied techniques.

Statistical Analysis

Figures 7-9 present the forecasting system’s yearly performance with respect to RMSE
and MSE for all three (p-si, m-si, and a-si) PV plants for the timeframe of four years (2016-2019).
In these three figures, RMSE and MSE are represented by solid and dotted lines. As shown in
Figure 7, the suggested method resulted in test values of 30.25, 26.9, 44.06, 26.85, and 915.1,
723.52,1941.2,720.7, for RMSE and MSE, respectively, for p-si PV plants throughout the period
of evaluation, which were the lowest compared to all other methods. The SVR (PCA) showed
worst performance with the highest RMSE and MSE values in each year. For the m-si PV
plant, as shown in Figure 8, the RNN-LSTM method gave lowest RMSE and MSE test values
of 19.78, 29.04, 31.5, 21.28 and 391.1, 843.22, 991.9, 453.07, respectively, in contrast with all
other methods over the period (2016-2019). The ANFIS (GP) presented the highest RMSE
and MSE for 2016, 2017, and 2019, while for 2018, ANFIS (FCM) showed weak performance
among all methods. The yearly statistics showed that testing RMSE of both p-si and m-si was
lowest for the 2019 data and was highest for the 2018 data for all methods.

60 3500
50 | 3000
2yl 2500 S
g 5 2000
- 1500 £
2 20 ¢ 1000 &
@ 10 r 500 =
0 0
& & > AP s 9 S
& & & & K S <¢6\

& & & § & &
¢ S

Forecasting Methods

= 2016(RMSE) =2017(RMSE) = 2018(RMSE) = 2019(RMSE)
®2016(MSE) ®2017(MSE) m2018(MSE) m2019(MSE)

Figure 7. Comparison of RNN-LTSM test results of RMSE and MSE for p-si with other techniques
over the period of four year (2016-2019).

The suggested RNN-LSTM approach likewise showed the lowest test results of 43.37,
39.2,76.31, 61.44 and 1881.3, 1536.64, 5822.5, 3774.87 of RMSE and MSE, respectively, over
the duration (2016-2019) for a-si PV plants, as compared with all other methods shown
in Figure 9. However, it exhibited comparative forecasting accuracy with GPR(PCA) for
2017. The SVR (PCA) presented weak performance for the 2016 and 2017 data, while
ANFIS (FCM) was worst for the 2018 and 2019 data. All methods showed the highest
RMSE for 2018 data in Figure 9. This may be due to missing data for some days because
of power failure of the sensors. However, the missing data were reinstated using the data
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from a similar date in the previous or next year. The data for the remaining duration were
properly synchronized and accurately retrieved without any synchronizing error.
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= 2016(RMSE) = 2017(RMSE) # 2018(RMSE) = 2019(RMSE)
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Figure 8. Comparison of RNN-LTSM test results of RMSE and MSE for m-si with other techniques
over the period of four years (2016-2019).
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Figure 9. Comparison of RNN-LTSM test results of RMSE and MSE for a-si with other techniques
over the period of four year (2016-2019).

Meanwhile, Figures 10-12 show the computation of the determination coefficients (R?)
and correlation coefficients (r) for the (p-si, m-si, and a-si) PV systems. Due to the close
values, R? is represented by bar graphs on the primary axis, while r is shown by solid
lines on the secondary axis. For all three PV plants, the suggested RNN-LSTM approach
produced the greatest testing r and R? values for the time period (2016-2019). However,
the r and R? values of the proposed method for a-si PV plants, based on 2019 data, were
comparable with the ANN and ANFIS methods. Figure 10 shows that, for the p-si PV
plant, the SVR and SVR (PCA) exhibited the lowest r values compared to all methods
for (2016, 2017) and (2018, 2019) data, respectively. For the m-si system in Figure 11, the
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GPR and ANFIS (FCM) showed minimum values of ¥ compared to all other methods for
(2016, 2017) and (2018, 2019) data, respectively. The SVR (PCA) and ANFIS (FCM) showed
minimum values of r compared to all other methods for the a-si PV plant, based on (2016,
2017 and 2018) and 2019 data, respectively, as shown in Figure 12.
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Figure 10. Comparison of RNN-LTSM test results of 7 and R? for p-si with other techniques over the
period (2016-2019).
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Figure 11. Comparison of RNN-LTSM test results of r and R? for m-si with other techniques over the
period (2016-2019).

Figures 13-15 show the predicting outcomes for the developed deep learning ap-
proach (RNN-LSTM) and alternative forecasting models for three PV plants based only on
2019 data. When compared to previous approaches, the suggested method (RNN-LSTM)
curve closely tracks the real power curve due to minimal variations in anticipated and real
values. The reason is that when the RNN-LSTM technique is employed to estimate PV
power output, the MSE and RMSE values are the lowest. The proposed model performed
best for three distinct PV system materials and is thus practical and robust for forecasting
PV power production for three different PV plants.
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Figure 12. Comparison of RNN-LTSM test results of » and R? for a-si with other techniques over the
timeframe consisting of four years (2016-2019).
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Figure 13. Comparison of actual vs. predicted results for different prediction methods for the
p-si PV plant.
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Figure 15. Prediction results of different prediction methods for the a-si PV plant.

4. Summary

PV power output forecasting for one hour ahead was performed on yearly basis
for three distinct types of PV plants during a four-year (2016-2019) timeframe. The pro-
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posed technique (RNN-LSTM) was compared with forecasting methods such as GPR, SVR,
GPR(PCA), SVR(PCA), ANN, ANFIS(GP), ANFIS(SC), and ANFIS(FCM).

Forecasting accuracy was quantified using measures such as RMSE, MSE, MAE, r, and
R2. The suggested approach (RNN-LSTM) had the lowest (RMSE, MSE) and maximum
(r, R?) testing values when compared to the other eight benchmark techniques for output
PV power prediction at an hour ahead for all three PV plants on a yearly basis over the
observed period (2016-2019). However, deep learning had comparable forecasting accuracy
with GPR (PCA) for 2017 data and (ANN and ANFIS) for 2019 data, based on RMSE
and (r, R?), respectively. Moreover, the comparison of different LSTM structures was also
performed for 2019 data alone to show the dominance of the LSTM structure used in the
proposed deep learning method (RNN-LSTM).

Furthermore, the p-si and a-si PV plants presented better prediction accuracy for 2017
than the other three years. For m-si plants, meanwhile, prediction accuracy for 2016 was
better than for other years. On the other hand, all PV plants had the highest RMSE values
for 2018 data, perhaps because some missing input data had been incorporated as a result
of the power failure of recording sensors. The suggested technique also proved to be more
reliable when it came to hourly power output forecasts for three distinct PV plants. In
addition, Table 3 compares the proposed method’s prediction accuracy to that of previous
benchmark approaches [38] for similar site data in 2016. The RNN-LSTM and benchmark
methods in this research showed better results than the given methods in [38].

Table 3. Comparison of the suggested approach and benchmark methodologies in forecasting
accuracy for different PV modules for the year 2016.

Predicted Results [38]
RNN-LSTM ANN SVR ELM ANN SVR
RMSE p-si 30.25 33 47.63 54.96 60.27 71.92
m-si 19.78 26.03 25.49 59.93 101.23 103.61
a-si 43.37 46.9 52.92 90.41 101.99 145.38
R? p-si 0.995 0.996 0.9874 0.9809 0.9798 0.9750
m-si 0.9943 0.99 0.9905 0.8675 0.8647 0.8618
a-si 0.996 0.996 0.9928 0.9783 0.9754 0.9704

Table 4 compares the suggested method’s forecasting accuracy to the approaches
addressed in the literature. This table shows the lowest testing RMSE for each PV plant
over the last four years (2016-2019). When compared to the findings of prior studies, the
proposed technique had the lowest testing RMSE for all three PV plants.

Table 4. Comparison of the suggested method’s forecasting accuracy to the literature.

Methodology for Prediction Ref Year Testing RMSE (W/m?)
RNN-LSTM (p-si) Present study - 26.85
RNN-LSTM (m-si) Present study - 19.78

RNN-LSTM (Thin film) Present study - 39.2
LSTM [62] 2018 139.3
LSTM [46] 2018 122.7
LSTM [46] 2018 76.24
LSTM [63] 2018 <29.26

5. Conclusions

For hour-ahead prediction of output PV power, this study compared the predicting
accuracy of the suggested deep learning method (RNN-LSTM) to regression (GPR, GPR
(PCA)), machine learning (SVR, ANN, SVR (PCA)), and hybrid (ANFIS) methodologies for
three different PV plants (p-si, m-si, and a-si). For four years of data (2016-2019), predictions
were made on an annual basis. The MAE, MSE, RMSE, coefficient of correlation (r), and
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determination (R?) were used to evaluate the forecasting accuracy of the recommended
and other applicable approaches.

In contrast to the existing methodologies, the suggested RNN-LSTM exhibited the
lowest testing RMSE and MSE values for p-si and m-si PV plants during the four-year
timeframe (2016-2019). Meanwhile, the suggested technique had the lowest testing RMSE
of (43.37,39.2,76.31 and 61.44), over the years 2016, 2017, 2018 and 2019, respectively, for
thin-film PV plants. Furthermore, when compared to previous approaches, the suggested
method demonstrated improved r and R? values for all three PV plants for practically all of
the years. The findings also indicated that, based on 2019 data alone, the single-layered
LSTM had greater predicting accuracy in terms of reduced MAE and RMSE than other
LSTM structures, proving the superiority of the suggested strategy (RNN-LSTM).

It can be concluded that the suggested RNN-LSTM has demonstrated superior forecast-
ing accuracy for solar power output forecasting at an hour ahead on an annual basis over a
four-year timeframe when compared to other approaches, such as to regression (GPR (PCA),
GPR), machine learning (ANN, SVR, SVR (PCA)) and hybrid (ANFIS) methods. Moreover,
the proposed method was found to be robust, showing better forecasting accuracy for three
different PV plants. Further study can be performed in the future by incorporating some
optimization algorithms with RNN-LSTM to optimize hyperparameters and enhance its
prediction accuracy.
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