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Abstract: Traditional reactive power optimization mainly considers the constraints of active manage-
ment elements and ignores the randomness and volatility of distributed energy sources, which cannot
meet the actual demand. Therefore, this paper establishes a reactive power optimization model for
active distribution networks, which is solved by a second-order cone relaxation method and interval
optimization theory. On the one hand, the second-order cone relaxation technique transforms the
non-convex optimal dynamic problem into a convex optimization model to improve the solving
efficiency. On the other hand, the interval optimization strategy can solve the source–load uncertainty
problem in the distribution network and obtain the interval solution of the optimization problem.
Specially, we use confidence interval estimation to shorten the interval range, thereby improving the
accuracy of the interval solution. The model takes the minimum economy as the objective function
and considers a variety of active management elements. Finally, the modified IEEE 33 node arithmetic
example verifies the feasibility and superiority of the interval optimization algorithm.

Keywords: interval optimization; second-order cone relaxation; confidence interval estimation;
optimal power flow; reactive power optimization

1. Introduction

Active distribution networks can promote low-carbon development in power systems,
which has received wide attention from society [1,2]. However, in recent years, access to
high penetration distributed generation (DG) has posed a serious challenge to the stable
operation of distribution networks. Meanwhile, traditional reactive power optimization
methods ignore the uncertainty impact of DG [3]. Therefore, considering the uncertainty of
DG, the study of distribution network reactive power optimization has important guiding
significance for the actual operation of the power grid.

In active distribution networks, reactive power optimization measures mainly include
the following methods: on-load tap changer (OLTC), capacitor banks (CB), and static
var compensation (SVC). The optimized configuration of the above measures is mainly
optimized for the power flow of the distribution network to obtain the optimal power
flow. However, due to the non-linear calculation in the power flow calculation process,
this problem becomes a non-convex, non-linear problem, which is an non-deterministic
polynomial (NP) hard problem [4]. To solve this problem, intelligent algorithms and
numerical analyses are standard methods. The intelligent algorithms mainly include
the particle swarm algorithm [5,6], genetic algorithm [7,8], and beetle antennae search
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algorithm [9]. These algorithms have good versatility and are widely used in various fields
due to their simple principles, such as reactive power optimization. However, the iterative
solution of an intelligent algorithm mainly relies on a certain probability to optimize the
group. It is easy to fall into the local optimum and not obtain the optimal global solution. As
the size of the system increases, the time required further increases, making the intelligent
algorithm no longer able to meet the current needs of the actual distribution network.

Therefore, related studies have used more efficient numerical analysis methods to
solve the reactive power optimization problem. A simple DC current model can be obtained
by a second-order cone relaxation technique based on the branch tidal model [10,11]. By
transforming the non-convex, non-linear optimization problem into a second-order cone
programming (SOCP), solution efficiency is greatly improved. At the same time, the global
optimal solution can be obtained within the allowed relaxation error [11].

On the other hand, access to high penetration renewable energy sources makes the
instability factor in the system much higher [12]. The multiple uncertainties of distributed
power sources and grid loads raise the economic and stability requirements of distribution
systems. Traditional deterministic optimization methods cannot be directly applied in
practice. At present, the primary techniques used by academia to deal with uncertainty
problems are as follows: stochastic optimization [13,14], robust optimization [15,16], and
interval optimization [17–20]. Stochastic optimization requires a large amount of source
data to obtain the probability density functions of uncertain variables, and then the final
optimization scheme is developed by chance-constrained planning [21] or the scenario
analysis method [22]. Robust optimization does not require a probability density function
to obtain the optimal solution in the worst-case scenario, which ensures that the system
can satisfy the distribution network constraints in all cases. However, the robust scheme is
too conservative and cannot take into account the economy of the system. Compared with
the above methods, interval optimization requires only boundary information and has a
greater engineering application value, which can guarantee the optimal solution to operate
safely under an uncertain environment [18].

Current research on interval optimization problems has focused more on the efficiency
and comprehensiveness of the model solutions. However, there is still a lack of considera-
tion of the conservativeness of interval variables under the influence of system flexibility
and multiple uncertainties. Therefore, in this paper, we will also study the rationality of
interval variable extraction for interval optimization.

In summary, the existing reactive power optimization strategies are inefficient for
solving and ignoring the uncertainties in the distribution network. Therefore, a distribution
network reactive power optimization model based on SOCP and interval optimization is
developed in this paper. The main contributions of this study are summarized as follows:

(1) The uncertainty can shorten the interval range by confidence interval estimation,
which improves the accuracy of the interval solution.

(2) The proposed optimization model accounts for the uncertainty in the distribution
network and obtains interval solutions by interval optimization.

(3) This model considers multiple active management elements and can be converted to
a second-order cone form to improve the efficiency of the solution.

The remainder of this paper is structured as follows: The reactive power optimization
model is presented in Section 2. Section 3 uses confidence interval estimation to narrow
the range of uncertainties in the distribution network. Section 4 proposes a dynamic
optimal power flow model for the distribution network. Section 5 develops a linear interval
optimization model and solution. Section 6 presents case studies for various operating
conditions. Section 7 summarizes the paper.
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2. Reactive Power Optimization Model
2.1. Objective Function

The objective function is to minimize the total economic costs, including energy
procurement costs and network loss costs, as follows:

minC = Cploss + Cbuy (1)

Cploss = cploss ∑
t∈T

I2
ij,tRij (2)

Cbuy = cbuy ∑
t∈T

∑
k∈Ωg

Pg
k,t (3)

where C is the total economic cost; Cploss and Cbuy are the network’s loss cost and energy
purchase cost of the active distribution network, respectively; cploss and cbuy are the net-
work’s loss coefficient and energy purchase cost, respectively; Iij,t and Rij are the branch
currents and branch impedance of the line ij; t is the specific time; T is the maximum time
of the day; Ωg is the generator set; and Pg

k,t is the output of the k-th generator set.

2.2. Grid Power Flow Constraints

(1) The active power flow constraint is determined as follows:

∑
j∈N(i)

−gijV2
i,t + Vi,tVj,t(gij cos θij,t + bij sin θij,t) = PDG

i,t + Pg
i,t − Pload

i,t (4)

where i is the i-th node in the system; Pg
i,t is the input power of the generator at node i;

PDG
i,t is the DG input power of node i; Pload

i,t is the active load of node i; gij and bij are
the conductance and susceptance of line ij, respectively; Vi,t represents the voltage of
node i; and θij,t is the phase angle difference between the nodes i and j.

(2) The reactive power flow constraints are determined as follows:

∑
j∈N(i)

bijV2
i,t + Vi,tVj,t(gij sin θij,t − bij cos θij,t) = QCB

i,t + QOLTC
i,t + QSVC

i,t + Qg
i,t −Qload

i,t (5)

where QCB
i,t is the reactive power compensation amount of CB at node i, Qg

i,t is the
input power of the generator at node i, QOLTC

i,t is the reactive power compensation
amount of OLTC at node i, QSVC

i,t is the reactive power compensation amount of SVC
at node i, and Qload

i,t is the reactive load of node i.
(3) The transformer capacity constraints are determined as follows:

(Pg
i,t)

2
+ (Qg

i,t)
2 ≤ (Sg

i,t)
2

(6)

where Sg
i,t is the rated capacity of the generator at node i.

(4) The node voltage constraints are determined as follows:

Vi,min ≤ Vi,t ≤ Vi,max (7)

where Vi,max and Vi,min are the upper and lower limits of the voltage at node i, respectively.
(5) The current constraints are determined as follows:

(iij,t)
2 ≤ (iij,max)

2 (8)

where iij,t is the current amplitude of branch ij, and iij,max is the upper limit of the
current amplitude of branch ij.
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2.3. Active Management Constraints

(1) OLTC constraints

The OLTC can adjust the low-voltage side voltage value in the high voltage (HV)/medium
voltage (MV), making the substation bus nodes convert to adjustable real-type variables.
Considering the constraints such as the number of regulation limits in the active distribution
network, the constraints are:

σOLTC
j,1,t ≥ σOLTC

j,2,t ≥ σOLTC
j,SRj ,t

δOLTC,IN
j,t + δOLTC,DE

j,t ≤ 1,

∑
s

σOLTC
j,s,t −∑

s
σOLTC

j,s,t ≥ δOLTC,IN
j,t − δOLTC,DE

j,t SRj

∑
s

σOLTC
j,s,t −∑

s
σOLTC

j,s,t ≤ δOLTC,IN
j,t SRj − δOLTC,DE

j,t

∑
s
(δOLTC,IN

j,t − δOLTC,DE
j,t ) ≤ NOLTC

j

∀j ∈ ΩOLTC

(9)

where ΩOLTC is the set of OLTC nodes, δOLTC,IN
j,t and δOLTC,DE

j,t represent the OLTC gear
adjustment and change flags, which is a binary variable, and when the gear is more excellent
than t − 1 at time t, δOLTC,IN

j,t takes 1 and δOLTC,DE
j,t is just the opposite. SRj is the maximum

adjustment range, and NOLTC
j represents the maximum allowable adjustment time.

(2) CB constraints

The discrete reactive power regulator is mainly based on the grouping of capacitor
banks, and the amount of reactive power compensation of the CB depends mainly on the
number of capacitor banks to be switched. The constraints are:

QCB
j,t = yCB

j,t QCB,step
j,t

yCB
j,t ≤ YCB,max

j

∀j ∈ ΩCB

(10)

where ΩCB is the set of CB nodes, yCB
j,t is the number of CB groups in operation, YCB,max

j is the

upper limit of the number of CB groups connected to node j, and QCB
j,t is the compensation

power of CB.

(3) SVC constraints

Continuous reactive power regulating devices mainly have upper and lower limits of
reactive power compensation, such as SVC, as follows:

QSVC
j,min ≤ QSVC

j,t ≤ QSVC
j,max∀j ∈ ΩSVC (11)

where, QSVC
j,min and QSVC

j,max are the lower and upper limits of SVC compensation
power, respectively.

(4) DG constraints
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Active power distribution networks mainly consider the influence of DG on active
power. The DG in this paper mainly considers the wind power of wind turbines, as follows:

0 ≤ PDG
j,t ≤ PDG

j,max∀j ∈ ΩDG (12)

where PDG
j,max is the maximum active power output of DG at node j.

3. Uncertainty Processing
3.1. Prediction Error Model

The prediction values of distributed wind turbine output and system load are uncer-
tain, and the existing prediction methods have large prediction errors, which cannot be
directly substituted into the model calculation. Therefore, this paper uses a normal distri-
bution to describe the wind power output error ∆PDG

i,t and load prediction error ∆Pload
i,t .

The prediction error obeys a normal distribution of random variables with mean 0, and the
standard deviation is proportional to the predicted value at time t, as follows:

∆PDG
i,t ∼ N(0, (σDG

i,t )
2
)

σDG
i,t = ρDGPDG

i,t

∆Pload
i,t ∼ N(0, (σload

i,t )
2
)

σ
g
i,t = ρgPload

i,t

(13)

where σDG
i,t and σload

i,t denote the standard deviation of wind power output and load predic-
tion errors at time t, respectively, and ρDG and ρload are the prediction error coefficients of
wind power output and load prediction errors.

3.2. Confidence Interval Estimation

The uncertainty of power on both sides of the generation and consumption is a factor
that cannot be ignored. As an effective uncertainty analysis method, the interval method
only requires the size of the distribution interval of uncertainty variables to solve the model.
It is possible to simply take the maximum value of power error as the interval boundary.
However, this approach suffers from the conservativeness problem of taking the extremely
unlikely case as the interval boundary.

The wind output and load power have a wide range of variation. Analyzing the proba-
bility of error distribution under a certain power prediction value can help to quantitatively
analyze the uncertainty factors. Assuming that a power forecast value is P, the corre-
sponding error ∆P satisfies a certain probability distribution F(∆P), and the fluctuation
interval [∆P−, ∆P+] can be obtained. It is impractical to directly consider the maximum
error range as the power interval for the scheduling scheme. Therefore, this paper adopts
the confidence interval estimation method to extract the power interval variables, and it is
sufficient to ensure that the scheme meets a certain confidence level.

The probability distribution of the power error is known, and a certain confidence level
can be obtained by taking a period of interval in the range of error fluctuation interval. Given a
definite confidence level, the corresponding confidence interval is not unique. Under the same
confidence level, the narrower the width of the confidence interval, the higher the confidence
level of the result. Therefore, the confidence interval for a given confidence level 1− α can be
found according to the principle of the shortest confidence interval:

min(∆P+ − ∆P−)
s.t F(∆P+)− F(∆P−) = 1− α

(14)

The specific calculation steps are.
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(1) Given the power prediction value at a certain moment, the probability density function
of the power error distribution is calculated according to the uncertainty model.

(2) According to the probability density function, find all intervals with cumulative
probability greater than or equal to the given confidence level 1− α to form a set
of intervals.

(3) Among all the intervals that satisfy the confidence level, select the interval with
the smallest length as the confidence interval for the power prediction at the given
confidence level 1− α.

4. Dynamic Optimal Power Flow Model of Distribution Network
4.1. Static Optimal Power Flow Model

The power flow constraints in active distribution networks have typical non-convex,
non-linear characteristics, so the solution is extremely inefficient, or it is even impossible to
obtain a global optimal solution. Using the second-order cone relaxation technique, the
original non-convex, non-linear problem can be converted into a mixed-integer, second-
order cone programming problem. This method can improve computational efficiency and
ensure that the obtained results are globally optimal solutions within the relaxation error.

First, the intermediate variables of the planning model need to be defined:

ui,t = V2
i,t/
√

2 (15)

υij,t = Vi,tVj,t cos(θi,t − θj,t) (16)

νij,t = Vi,tVj,t sin(θi,t − θj,t) (17)

Using intermediate variables, Equations (4) and (5) can become:

PDG
i,t + Pg

i,t − Pload
i,t − Plost

i,t − PIi,t = 0 (18)

QCB
i,t + QOLTC

i,t + QSVC
i,t + Qg

i,t −Qload
i,t −QIi,t = 0 (19)

The active power and reactive power have the following relationship:

PIi,t = ∑
j∈N(i)

gijυij,t + bijνij,t (20)

QIi,t = ∑
j∈N(i)

−gijνij,t + bijυij,t (21)

2ui,tuj,t ≥ ν2
ij,t + υ2

ij,t (22)

By modifying the above formula, the standard second-order cone form in the active
distribution networks can be obtained as:∥∥∥ [ui,t + uj,t, 2νij,t, 2υij,t]

T
∥∥∥ ≤ ui,t − uj,t (23)

After using the second-order cone relaxation technique to carry out the convex trans-
formation, the feasible region of the original model has been relaxed to the feasible convex
region. It becomes a mixed-integer, second-order cone programming model (MISOCP),
which can be solved efficiently by the solver.

4.2. Dynamic Optimal Power Flow Model

The static optimal power flow is mainly focused on the analysis of the power flow
section at a specific moment. In reality, it is primarily optimized for the model with
numerous time intervals. Therefore, in this paper, the static power flow is extended to the
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dynamic power flow of multiple periods, and the optimal dynamic power flow model is
obtained. The specific expression form is as follows:

min ∑
t∈T

f (xt)

s.t xt ∈ Xt, ∀t∥∥∥ [ui,t + uj,t, 2νij,t, 2υij,t]
T
∥∥∥ ≤ ui,t − uj,t, ∀t, ∀ij ∈ E

∑
t∈T

Btxt ≤ c

∑
t∈T

Ctxt = d

(24)

where T is the total period of the day. Compared with static power flow, dynamic power
flow is aimed at the optimal power flow at various times of the day.

5. Linear Interval Optimization Modeling and Solution
5.1. Interval Optimization Model

Due to the uncertainty of renewable energy and load in the active distribution network,
the linear interval optimization method is used to optimize the model. In the interval
optimization model, the commonly used symbol “±” represents the interval quantity and
“+” and “−” respectively represent the upper and lower boundaries of optimization. The
simplified and compact form of the original model is as follows:

min f± = Ax±

s.t Bx± ≥ C±

Dx± = E±

x± ≥ 0

(25)

where A represents the constant–coefficient vector of the objective function and B, C, D,
and E represent the coefficient matrix corresponding to the constraint condition. The first
line of constraints represents the inequality constraints in the model and the second line
of constraints represents the model’s equality restrictions. The third line is the limit of
decision variables.

5.2. Interval Optimization Solutions Method

The optimal solution of the interval optimization model is a value interval. Therefore,
the above interval optimization model can be divided into two solution models: the upper
bound and the lower bound.

(1) The lower bound optimization solution model needs to get the optimal value of the
original model, and the feasible region needs to be as large as possible. Therefore,
the inequality of the original model is relaxed to the maximum, and the equality
constraint is the maximum potential constraint, as follows:

min f− =
n
∑

j=1
ajx−j

s.t
n
∑

k=1
bkjx+k ≥ c−j

n
∑

k=1
dkjx−k ≤ e+j or

n
∑

k=1
dkjx+k ≥ e−j ,

x−j ≥ 0 ∀j

(26)



Energies 2022, 15, 2235 8 of 16

(2) The upper bound optimization solution model needs to get the pessimistic value of
the original model, resulting in the feasible domain needing to be as small as possible.
Therefore, the equation constraint will only take values in both endpoints, as follows:

min f+ =
n
∑

j=1
ajx+j

s.t
n
∑

k=1
bkjx−k ≥ c−j

n
∑

k=1
bkjx+k = c−j

n
∑

k=1
dkjx−k = e+j or

n
∑

k=1
dkjx+k = e−j ,

x−j ≥ 0 ∀j

(27)

(3) Combining the lower limit solution of Equation (26) and the upper limit solution of
Equation (27) of the sub-model, the interval solution of the decision variable in the
optimization model is x±j = [xj, xj], where xj = min(x−j , x+j ), xj = max(x−j , x+j ), and

the interval-optimized solution of the optimal global solution is f±= [ f , f ].

5.3. Interval Optimization Solving Steps

In this paper, wind power output and electric load are used as uncertainties to par-
ticipate in reactive power optimization. The final interval solution takes the lowest total
economy as the objective function and can be divided into an upper bound model and a
lower bound model.

(1) The lower bound model needs to get the optimistic value of the original model and
the feasible domain needs to be as large as possible. The most optimistic scenario is
that the wind power output is at its maximum and the grid load is at its minimum.
The cost of energy purchase is significantly lower at this point, which further reduces
the value of the objective function. The lower bound model is:

min f− = cploss ∑
t∈T

I2
ij,tRij + cbuy ∑

t∈T
∑

k∈Ωg

Pg
k,t

s.t ∑
j∈N(i)

−gijV2
i,t + Vi,tVj,t

(
gij cos θij,t + bij sin θij,t

)
= [PDG

i,t ]+ + Pg
i,t−[P

load
i,t ]−

∑
j∈N(i)

bijV2
i,t + Vi,tVj,t

(
gij sin θij,t − bij cos θij,t

)
= QCB

i,t + QOLTC
i,t + QSVC

i,t + Qg
i,t − [Qload

i,t ]
−

Eq.(6)− Eq.(20)

(28)

(2) The upper bound model needs to get the pessimistic value of the original model and
the feasible domain needs to be as small as possible. The scenario with the minimum
wind power output and maximum grid load is the most pessimistic scenario. The cost
of energy purchase increases significantly at this point, further making the objective
function value increase. In the planning model, the equations related to the uncertainty
quantities are Equations (4) and (5). The upper bound model is:

min f+ = cploss ∑
t∈T

I2
ij,tRij + cbuy ∑

t∈T
∑

k∈Ωg

Pg
k,t

s.t. ∑
j∈N(i)

−gijV2
i,t + Vi,tVj,t

(
gij cos θij,t + bij sin θij,t

)
= [PDG

i,t ]+ + Pg
i,t−[P

load
i,t ]+

∑
j∈N(i)

bijV2
i,t + Vi,tVj,t

(
gij sin θij,t − bij cos θij,t

)
= QCB

i,t + QOLTC
i,t + QSVC

i,t + Qg
i,t − [Qload

i,t ]
+

Eq.(6)− Eq.(20)

(29)
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(3) Combining the optimal solutions of the upper bound model and the lower bound
model, the global optimal interval solution is f±= [ f , f ], where f = min( f−, f+) and
f = max( f−, f+).

According to the above interval optimization model and solution method, the reactive
power optimization model with source load uncertainty can be solved. The whole model is
a MISOCP model. The decision variables are integer-type variables for the stall selection
of CB and OLTC, and real-type variables for the output of SVC and DG. Among the
constraints, the upper and lower bounds of voltage, current, and power are inequality
constraints, and the active and reactive currents are equation constraints. Figure 1 shows
the flow chart of linear interval programming.

Figure 1. Flow chart of linear interval programming.

6. Case Analysis

The system configuration is a computer (intel i7-5500, 2.40 GHz, 12 G), and the CPLEX
algorithm package is called to solve the problem. The test case is the IEEE 33 node power
distribution system [23]. The convergence gap of mixed-integer optimization is set to 0.1%.
The calculation example contains three DGs connected to nodes 3, 17, and 28, respectively;
three SVCs connected to nodes 5, 15, and 31, respectively; and two CBs joined to nodes 5
and 15, respectively, as shown in Figure 2. Table 1 shows the important parameters.
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Figure 2. IEEE 33 bus system.

Table 1. Parameters.

Types Access Node Quantity Output Range

CB 5, 15 2 (0, 0.5) (MVar)
SVC 5, 15, 31 3 (−0.2, 0.4) (MVar)
DG 3, 17, 28 3 (0, 0.8) (MW)

The DG model only considers the output of wind turbines. It is assumed that the units
are in the same wind farm and the same external environment. The upper and lower limits
of the wind power output are obtained for each moment based on historical data. The
upper and lower limits are taken as interval quantities and substituted into the interval
optimization model for corresponding solutions.

6.1. Static Optimal Power Flow Model

Table 2 shows a comparison of interval scheduling results under different fluctuation
ranges. In order to reflect the impact of the degree of source–load uncertainty on the total
cost, five different sets of source–load fluctuation ranges are set for comparison. The wind
power fluctuation range is used to represent the degree of uncertainty at the source end, and
the load fluctuation range represents the degree of uncertainty at the load end. The degree
of uncertainty of source and load are both chosen from two values of ± 10% and ± 15%.

Table 2. Comparison of interval scheduling results under different fluctuation ranges.

Cases Wind Power
Fluctuation/%

Amplitude of
Charge

Fluctuation/%

Energy Purchase
Cost/10,000 Yuan

Networks Loss
Cost/10,000 Yuan

Total
Cost/10,000 Yuan

1 0 0 3.070 0.029 3.099
2 ± 10% ± 10% (2.356, 3.808) (0.023, 0.038) (2.379, 3.846)
3 ± 15% ± 10% (2.266, 3.999) (0.023, 0.039) (2.289, 4.038)
4 ± 10% ± 15% (2.091, 4.086) (0.021, 0.042) (2.112, 4.128)
5 ± 15% ± 15% (2.002, 4.182) (0.021, 0.043) (2.023, 4.225)

In Table 2, both the source and load fluctuations for Scenario 1 are zero. The optimiza-
tion model is a deterministic model, and the predicted data are directly used as the actual
values of the optimization model. No matter how the parameter values at both ends of the
source load change, the target values of the deterministic model are between the interval
solutions, which reflects the effectiveness of interval optimization. Comparing Case 2 and
Case 3 shows that as the fluctuation of wind power increases, the fluctuation interval of the
energy purchase cost increases. This in turn increases the radius of the total cost interval of
the optimization model, further increasing the degree of uncertainty in the reactive power
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optimization and making the results more conservative. As the load volatility becomes
larger, the operating environment becomes more hostile. With the same 5% increase in
volatility, Case 4 is more conservative compared to the target interval solution of Case 3,
and the total cost is taken to have a larger fluctuation range. In scenario 5, as the range of
fluctuations of the source loads are all at their highest values, the resulting solution has the
highest robustness.

6.2. Deterministic Model Scheduling Results

In order to reflect the scientific nature of interval optimization, the optimization solu-
tions of deterministic and uncertain models are compared, and the source load fluctuations
are all taken as ±10%. Since there are too many active management elements in the dis-
tribution network, the deterministic solution of CB2, SVC2, and OLTC and the interval
optimization solution are selected for comparison, respectively. The interval optimized
solutions are divided into interval upper bound solution and interval lower bound solution,
and the specific comparison results are shown in Figure 3.

Figure 3. Comparison of interval-optimized solutions and deterministic solutions: (a) Comparison
of reactive power compensation of CB2; (b) Comparison of reactive power compensation of SVC2.
(c) Comparison of transformer gears.
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The interval solution is divided into an upper bound solution and a lower bound
solution. The upper bound solution corresponds to the boundary case where the wind
power output is the smallest and the load is the largest. The upper bound solution is the
highest total economic cost due to the increase in energy purchase cost. The lower bound
solution, on the contrary, corresponds to the boundary case where the wind power output
is the largest and the load is the smallest.

In Figure 3a, the CB2 reactive power compensation is a discrete variable, and the CB2
reactive power compensation that determines the solution is mainly performed between
7:00 and 15:00. This time period is also the peak period of daily electricity consumption,
and since the reactive power is insufficient, CB2 compensates by adjusting the gears. In
the reactive power compensation volume of CB2, the total compensation volume of the
upper boundary solution is significantly more than that of the lower boundary solution.
This is because the upper boundary case has more load than the lower boundary case and
requires more CB2 for reactive power compensation. In Figure 3b, the dynamic regulation
of the transformer gears is basically the same. Due to the problem of varying load supply,
where the stalls of the upper bound solution are all higher overall than the lower bound
solution, the stalls of the solution are determined to be essentially the same as the upper
bound solution in order to make the lowest total cost. In Figure 3c, the value of reactive
power compensation of SVC2 varies in magnitude and is a continuous-type variable. In
the time period when the load demand is high, the difference between the upper bound
solution and the lower bound solution increases significantly. It means that the amount of
reactive power compensation still depends on the actual load demand, and the volatility of
the source load increases the uncertainty of the cost. All the above phenomena indicate
that interval-optimized reactive power compensation is mainly supplied for different time
periods of load demand. In summary, the more conservative the scheme, the larger the
interval range of the total cost.

6.3. Effect of Different Confidence

Figure 4 shows the load intervals at different confidence levels. The level of confidence
level reflects the requirement of the scheduling decision on the reliability of system opera-
tion, and the fluctuation of wind power and load is set to ± 15%. To analyze the impact
of different confidence levels on the scheduling scheme, the power interval variables are
extracted with confidence levels of 100%, 95%, and 90%, respectively.

Figure 4. DG output interval forecast.
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When the confidence levels are 100% and 95%, respectively, there is a significant differ-
ence in terms of the range of loading intervals, although the difference is only 5% in terms
of confidence level. When the confidence level is taken as 100%, the comprehensiveness
of the extracted intervals can be guaranteed. However, there are some regions with low
probability of occurrence in the interval range, which can easily interfere with the selection
of the scheme in practical applications.

Table 3 shows the scheduling results of the optimal scheme with different confidence
intervals. The power fluctuation range is large when the confidence interval is taken as
100%, and all uncertainty factors are considered. The interval difference is significantly
larger than the other schemes. The scheduling scheme tends to be conservative, which
inevitably leads to resource waste, and thus economic losses. The solution obtained under
the low confidence interval has a smaller interval difference, and the solution is more
accurate, which can reduce part of the economic loss. On the other hand, the program
allows less flexibility due to the reduced confidence level. In this way, power fluctuations
outside the interval range may occur, leading to unplanned power adjustments. Therefore,
in practical applications, it is necessary to consider reliability and economy and select the
appropriate confidence level to optimize system operation.

Table 3. Comparison of schemes under different confidence levels.

Confidence
1−α/%

Energy Purchase
Cost/10,000 Yuan

Networks Loss
Cost/10,000 Yuan Total Cost/10,000 Yuan

100 (2.002, 4.182) (0.021, 0.043) (2.023, 4.225)
95 (2.370, 3.793) (0.023, 0.038) (2.393, 3.831)
90 (2.482, 3.676) (0.024, 0.036) (2.506, 3.712)
80 (2.555, 3.600) (0.025, 0.035) (2.580, 3.635)

6.4. Effectiveness Analysis of Second-Order Cone Relaxation

Figure 5 shows the error of each branch under different time periods. To improve the
solution’s efficiency, the reactive power optimization model is relaxed by the second-order
cone. We analyze the effectiveness of the second-order cone after relaxation. The error after
the second-order cone relaxation satisfies the requirements of the operation plan, which
meets the corresponding requirements in actual engineering.

Figure 5. The error of each branch at different times.
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Table 4 shows the comparison of the solution speeds under different algorithms.
The model after the second-order cone relaxation is a mixed-integer, second-order cone
programming program (MISOCP), instead of being transformed into a mixed-integer,
non-linear program (MINLP). The two models are solved by CPLEX and Bonmin solvers,
respectively. Table 3 shows that the MINLP is an unsolvable problem, which verifies the
superiority of the method proposed in this paper.

Table 4. Comparison of solving speed under different algorithms.

Model Algorithm Time

MISOCP CPLEX 67.63 s
MINLP Bonmin Infeasible

7. Conclusions

For the uncertainty of new energy output, this paper proposes a distribution network
reactive power optimization model based on interval optimization. The model has the
following characteristics:

(1) The model is an optimal dynamic power flow model for the active distribution net-
work, taking into account a variety of active management elements in the distribution
network. The generation method of the model can better adapt to the actual changes
in load demand at various times of the day.

(2) Confidence interval estimation methods can reduce the range of interval solutions.
They can improve the accuracy of the interval solution and avoid economic loss with
high probability.

(3) The interval optimization method can make the generation solution space encompass
all possible cases and can adapt to the case of fluctuations in uncertain variables. It
ensures the reliability of power supply and improves the power quality.

(4) The second-order cone relaxation technique can improve the efficiency of model
solving. It ensures that the error of the generated solution is within the allowed range
and meets the needs of practical engineering.

The reactive power optimization model established in this paper is an optimal dynamic
power flow problem. The next step will focus on further consideration of the demand
response characteristics in the distribution network.
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Acronyms
CB Capacitor banks
DG Distributed generation
HV High voltage
MINLP Mixed-integer, non-linear program
MISOCP Mixed-integer, second-order cone program
MV Medium voltage
OLTC On-load tap changer
SVC Static VAR compensation
Nomenclature
C, Cploss, Cbuy Total economic cost, network’s loss cost, and energy purchase cost
cploss, cbuy The network’s loss coefficient and energy purchase cost
Iij,t, Rij The branch currents and branch impedance of the line ij
t, T Specific time, the maximum time of the day
Ωg Generator set
Pg

i,t, PDG
i,t The input power of the generator and the DG input power at node i

Pload
i,t The active load of node i

gij, bij The conductance and susceptance of line ij
Vi,t The voltage of node i
θij,t The phase angle difference between the nodes i and j
QOLTC

i,t The reactive power compensation amount of OLTC at node i
Qg

i,t The input power of the generator at node i
QCB

i,t The reactive power compensation amount of CB at node i
QSVC

i,t The reactive power compensation amount of SVC at node i
Qload

i,t The reactive load of node i
Vi,max, Vi,min The upper and lower limits of the voltage at node i
iij,max The upper limit of the current amplitude of branch ij
ΩOLTC The set of OLTC
δOLTC,IN

j,t , δOLTC,DE
j,t The OLTC gear adjustment and change flags

SRj The maximum adjustment range
NOLTC

j The maximum allowable adjustment times
ΩCB The set of CB nodes
yCB

j,t The number of CB groups in operation

YCB,max
j The upper limit of the number of CB groups connected to node j

QCB
j,t The compensation power of CB

QSVC
j,min, QSVC

j,max The lower and upper limits of SVC compensation power
ui,t, υij,t, νij,t Auxiliary variable after second-order cone transformation
∆PDG

i,t , ∆Pload
i,t Wind power output error and load prediction error

σDG
i,t , σload

i,t The standard deviation of wind power output and load prediction errors
ρDG, ρload The prediction error coefficients of wind power output and load prediction errors
F(∆P) Certain probability distribution
1− α Confidence level
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