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Abstract: Engineering optimization is the subject of interest for many scientific research teams on a
global scale; it is a part of today’s mathematical modelling and control of processes and systems. The
attention in this article is focused on optimization modelling of technological processes of surface
treatment. To date, a multitude of articles are devoted to the applications of mathematical optimiza-
tion methods to control technological processes, but the situation is different for surface treatment
processes, especially for anodizing. We perceive their lack more, so this state has stimulated our
interest, and the article contributes to filling the gap in scientific research in this area. The article deals
with the application of non-linear programming (NLP) methods to optimise the process of anodic
oxidation of aluminium using MATLAB toolboxes. The implementation of optimization methods is
illustrated by solving a specific problem from engineering practice. The novelty of this article lies in
the selection of effective approaches to the statement of optimal process conditions for anodizing.
To solve this complex problem, a solving strategy based on the design of experiments approach
(for five factors), exploratory data analysis, confirmatory analysis, and optimization modelling is
proposed. The original results have been obtained through the experiment (performed by using the
DOE approach), statistical analysis, and optimization procedure. The main contribution of this study
is the developed mathematical-statistical computational (MSC) model predicting the thickness of the
resulting aluminium anodic oxide layer (AOL). Based on the MSC model, the main goal has been
achieved—the statement of optimal values of factors acting during the anodizing process to achieve
the thickness of the protective layer required by clients, namely, for 5, 7, 10, and 15 [µm].

Keywords: engineering optimization; mathematical optimization methods; constrained optimization;
non-linear programming; MATLAB; aluminum anodic oxidation

1. Introduction

Researchers and engineers very often face the challenges of predicting the behaviour
of certain systems or processes in order to control them and what it is possible to achieve
through mathematical models [1,2] and numerical simulations [3]. Although numerical
simulations usually provide a good prediction of the behaviour of a certain system and its
properties [4], initially, the best choice of many solution alternatives is unknown [5,6]. As
research activities are aimed at finding an alternative with the best properties, engineers and
researchers eventually enter the field of engineering optimization based on a mathematical
approach, the field of optimal control [6,7]. In engineering practice, it is sometimes common
that the optimization goal—mathematically defined by the objective function—can be
formulated intuitively when taking into account technical or economic requirements [8,9]
and, based on experience, subsequently to achieve a system with better properties [10,11].
However, when applying the scientific approach to solve a real engineering optimization
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problem, one is then confronted with the mathematical formulation of the optimization
problem (FOP) [12], with a countless number of optimization methods and algorithms
(OM) [13,14], as well as with a wide range of optimization software (OS) [8,15,16]. As there
is no universal optimization algorithm suitable for solving any optimization problem [17], it
is important for engineers, as newcomers in the optimization field, to be able and competent
in these three areas of scientific interest (FOP, OM, and OS). Hence, the article contributes
to this in Section 2, where we offer a brief description of the mathematical formulation of
the optimization problem and a brief summary of optimization methods that appear to be
effective in solving some engineering optimization problems (EOP), especially for the EOP
set out in Section 4.

To simplify the search for the optimal solution not only for newcomers, researchers
are developing optimization frameworks that are appropriate and addressed for solving a
specific problem [8]. So far, a large number of optimization frameworks or libraries have
been published that facilitate the solution of real optimization problems in engineering
practice. Each of these frameworks targets a different community, so a wide range of
programming languages are used [18,19]. As stated in [8], frameworks are programmed in
a range from low-level languages such as C and C++, to higher scripting languages such as
Python (e.g., OpenMDAO framework), Java (jMetal), and so on. There are numerous engi-
neering optimization problems in which problem specificities such as linearity, convexity,
or differentiability of objective functions and constraints are either non-existent, unknown,
or un-exploitable; therefore, the scientific community has focused on derivative-free op-
timization algorithms in the past two decades [20]. In [20], the authors review blackbox
optimization applications, demonstrate the versatility of the mesh adaptive direct search
(MADS) derivative-free optimization algorithm, and highlight the evolution of the NO-
MAD software package as a standard tool for blackbox optimization. The MADS algorithm
in the original version is part of the official MATLAB distribution.

A large community of researchers, engineers, and doctoral students prefer the pro-
gramming language MATLAB due to the ease of use of this programming syntax and due
to its suitability for research as well as for taking first steps into optimization. MATLAB
supports single-objective and multi-objective optimization, including constraints, by its
optimization toolboxes [18,19], providing multiple functionalities for optimization pur-
poses. MATLAB lowers the barrier for practical engineering optimization by a high level
of usability, thus it is widely used in academia as well as in engineering practice. The
implementation of MATLAB toolboxes to solve the real optimization problem is presented
in this article.

The rapid development in the field of optimization methods/algorithms and special
software in conjunction with the growing computational capabilities of modern computers
creates favourable conditions for the application of optimization in a wide range of scientific
fields. Using the Web of Science and citations, some authors generate tables, diagrams, and
“word cloud” graphs to illustrate a broad variety of fields where optimization algorithms
and their implementation have been employed, as can be seen in [20]. Note that this selec-
tion is far from being exhaustive but highlights different areas of application of optimization
methods and algorithms, starting from computer science, chemistry, physics, electrical
engineering, mechanical engineering, geoscience and the environment, civil engineering,
materials science, etc., to social sciences and biosciences [21–23]. Indeed, mathematical
optimization has become an important tool in a variety of areas. The list of applications
is still steadily expanding [24–32]. Solving real problems is the main motivation for the
development, so engineering optimization attract attention considerably of many scientists,
research teams, and engineers; it is a part of today’s current mathematical modelling and
control of processes and systems. Our attention focuses on optimization modelling of tech-
nological processes of surface treatment. Nowadays, there are many articles devoted to the
applications of mathematical optimization methods to control technological processes, but
the situation is different for surface treatment processes, especially for anodizing processes.
We perceive their lack more, so this state has stimulated our interest in this research topic.
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Moreover, our interest is supported by the 25 years of practical experience of one of our
co-authors in the surface treatment field. Noticeable results are presented in [33–35].

Optimisation methods and algorithms are applied to different fields of materials
science depending on their purpose: to optimise materials performance, to optimise in-
dustrial/technological processes, such as surface treatment, electrolysis, and so on, and
to design new materials. Optimisation of technological processes, including processes of
metal surface treatment, involves the determination of optimal process conditions such as
temperature, time of deposition, chemical composition of electrolyte, etc., with the purpose
of obtaining the best responses/results. The obvious aim is to promote the saving of energy
and to minimise energy costs during process performance. In metal surface treatment
processes, the duration of the process (deposition time) is one of the most important param-
eters that determines the efficiency of the whole process. If we are able, by setting control
variables (input factors), to minimise the time required for the creation of a protective
layer with the thickness demanded by clients while maintaining the required quality, it is
possible to maximise economic profit.

The main goal of anodizing is to obtain a thickness of an oxide layer that provides high
resistance to corrosion and abrasion, so it is necessary to optimise the anodizing process.
The process of anodizing on aluminium in mixed sulfuric-oxalic acid electrolyte is used to
improve the mechanical properties of plated parts because the hardness, thickness, and
wear resistance of an anodic aluminium oxide layer (AOL) on aluminium must be high
enough for industrial purposes. Many works have studied the effect of anodizing condi-
tions such as electrolyte composition [36–39], electrolyte temperature [36,37,40,41], current
density [36,37,40,42], time of deposition [33] on the properties of the AOL. Bensalah et al.
deals in [36–38] with the studying of mechanical and tribological properties of alumina
coatings formed in various conditions. To optimise the properties of the anodic layer
formed on aluminium in mixed electrolytes (oxalic/sulphuric acid bath), the authors prefer
to use the methodology of Doehlert experimental design. In [36], the optimization objective
was to maximise the growth rate and the microhardness of the anodic oxide layer (AOL)
and to minimise its abrasion and chemical resistance using multicriteria optimization by
desirability function.

The thickness and density of the AOL formed in the sulfuric acid electrolyte are
studied in [38]. In [43], Bargui, M. et al. (2017) varied three anodizing bath parameters
(bath temperature, current density, and sulphuric acid concentrations) using Doehlert
experimental design and examined their effects on the selected responses (micro-hardness,
wear, and growth rate of AOL) in order to obtain response models and optimise micro-
hardness and the tribological properties of the anodized Al 5754 aluminium alloy. Lednicky,
T. and Mozalev, A. [44] have observed nanoporous anodic films self-organized grown on
aluminium in certain organic electrolytes. By using the response surface method (RSM),
Roshani, M. et al. [45] have studied the effect of electrical process parameters (frequency,
duty cycle, and current density in a cycle) on the mechanical properties of AOL. In order
to maximise the thickness, microhardness, and wear resistance of the AOL, optimization
was conducted by means of desirability function. The optimal experimental condition
was calculated, and the response values were estimated. Deeper and more complex
identification of significant chemical and technological factors affecting the thickness of the
formed AOL by the electrolysis method in a sulfuric acid solution is presented in [33], where
defined input variables are varied simultaneously during the experimental procedure. On
the other hand, much of the research so far has studied the influence of process parameters
on the AOL properties by varying only one factor and keeping other factors constant. As
is known, there are interactions between factors, so process conditions determined by
such a method may not be optimal. By using the design of experiments methodology
(DOE) in conjunction with correct statistical analysis and evaluation of experimentally
obtained data—detailed in Section 3—it is possible to take into account interactions between
factors and then create a mathematical-statistical computational (MSC) model predicting
the responses.
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Based on the MSC model and taking into account nonlinearities, the optimization proce-
dure can be performed by applying suitable mathematical optimization methods/algorithms
and software. This article contributes to filling the gap in scientific research in this area of op-
timization of the aluminium anodic oxidation process. In metal surface treatment processes,
the process duration (time of deposition) is one of the most important parameters that
determines the efficiency of the whole process. If we manage to minimise the time necessary
to create a coated layer with the required thickness while maintaining the desired quality by
setting the control variables (input factors), it is possible to maximise the economic profit. In
this paper, we present the application of nonlinear programming methods to optimise the
process of anodic oxidation of aluminium (anodizing) using MATLAB software tools (de-
tailed in Section 4). Interpretation and discussion of the influence of input factors on output
is part of the article. The implementation of optimization methods is illustrated by solving
a specific problem from engineering practice. We operate with a mathematical-statistical
model developed from real data, which is obtained through the experiment performed
based on the DOE approach—detailed in Section 3. Original results obtained by the usage
of DOE, statistical analysis, and the optimization procedure are presented in this study.
The main contribution of the scientific study is the mathematical-statistical computational
(MSC) model (developed by the authors) predicting the thickness of the formed aluminium
anodic oxide layer (AOL). Based on the MSC model, the main goal is achieved—the optimal
values of factors acting during the anodizing process are established. Namely, m (H2SO4)—
concentration of sulphuric acid in the electrolyte, m (NaCl)—concentration of sodium chlo-
ride, T—the electrolyte temperature, and U—voltage, are determined by using methods of
non-linear programming (NLP). Optimal values of decision variables were determined for
the 5, 7, 10, and 15 [µm] layer thicknesses required by customers, in order to minimise time
of deposition and then to maximise economic benefits.

2. Mathematical Formulation of Optimization Problem and Selected Methods

The optimisation is applied to process control at all levels: at the level of elemen-
tary processes, technological processes, production processes, as well as in the control
of processes of strategic importance. In the field of design, construction, or operation of
any engineering system, engineers have to make various technological and managerial
decisions on several levels and in several phases. Decisions are made and subsequently
implemented for the purpose of managing and controlling a given engineering system in
such a way that the required criteria are achieved and fulfilled [6]. The final aim of all such
decisions is to minimise the consumed effort, energy, and costs or to maximise the desired
benefit, which can be expressed as an objective function of certain decision variables. Math-
ematical optimisation is the process of minimizing/maximizing one or more objectives
without violating specified constraints by regulating a set of decision variables influencing
both the objectives and the constraints [9,10,46].

Optimisation provides a human decision maker (a system operator, who supervises
the process and checks the results), with a way to obtain an optimal solution. From the
general standpoint, engineering optimisation provides tools for searching for the best
available solution to specific tasks; their implementation is a process of finding conditions
that will ensure the maximum or minimum value of the criterion function [7,12]. In
order to apply mathematical optimization, the objective(s) and the constraints must be
expressed as quantitative functions of the decision variables (variable parameters). The
optimisation itself is a process carried out in two key phases: the first is to establish on
optimisation problem (an optimisation model based on an engineering problem), and
the second is to obtain the optimal solution to the established optimisation problem [47].
Some authors distinguish three key steps of the optimisation process for engineering
optimisation problems (EOP): the mathematical modelling of the problem, the selection
of effective approaches, and the implementation of heuristics [48]. The aim is to find the
following optimal solution: to recognise and choose the best alternative among a finite or
even infinite set of feasible alternatives. Optimisation problem formulation, also called the
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“modelling the optimisation problem,” is strongly correlated with the choice of optimisation
algorithms. The class of optimisation methods/algorithms available to solve an established
optimisation problem depends on how that problem is formulated [9].

2.1. Mahtematical Formulation of the Problem

The mathematical formulation of an optimisation problem is generally based on the
search for the minimum (or maximum when changing the sign) of a function known as an
objective function (also known as a criterion function or optimality criterion). The basic
general form of an optimisation problem is as follows:

Minimize f (x)
subject to x ∈ X

, respectively min
x∈Rn

f (x) (1)

where X ⊆ Rn is the feasible region and f : X → R is the objective function. The validity
of the relationship

min
x∈Rn

f (x) = −max
x∈Rn

(− f (x)) (2)

allows us to transform each maximum problem into a minimum problem. If a set X is
empty, i.e., X = Ø , the optimisation problem is infeasible. If a set X is a nonempty, each
vector x ∈ X 6= Ø is denoted as a feasible solution. In many publications, we can find
deviations in the definition of an optimisation problem. The differences are mainly in the
marking and the symbols used, but the essence remains the same—an extremization of
a function. Authors in [49] use a symbol Min (with a capital initial letter) instead of the
usual operator min expressing a final state to emphasise that a problem of optimisation
(minimization) is the process of finding a final state.

The goal of minimising an objective function f0(x) in a feasible region K is formulated
as a mathematical programming problem and is written as follows:

Min{ f0(x) | x ∈ K ⊆ Rn } where f0 : X0 ⊆ Rn → R. (3)

If the feasible region K has the form K = {x ∈ X | fi(x) ≤ 0, i = 1, 2, . . . , p} 6= 0

where fi : Xi → R, i = 0, 1, 2, . . . , p , Ø 6= Xi ⊆ Rn a X =
p
∩

i=0
Xi, the optimisation problem

(OP) in the narrower sense can be briefly written in the following form:

Min{ f0(x) | x ∈ X, fi(x) ≤ 0, i = 1, 2, . . . , p}. (4)

In case x ∈ X ⊂ Rn we discuss the constrained optimization, for x ∈ Rn about
unconstrained optimization.

The optimisation problem with the equality and inequality constraints written as

Min
{

f0(x) | x ∈ X, fi(x) ≤ 0, i ∈ I, hj(x) = 0, j ∈ J
}

(5)

is called a mathematical programming problem (MP) in the broader sense. In addition
to the p inequality constraints fi(x) ≤ 0, i ∈ I = {1, 2, . . . , p} there are also considered r
constraints in the form of equations hj(x) = 0, j ∈ J = {p + 1, p + 2, . . . , p + r}, where I, J
are index sets. If at least one of the functions f0, fi, i ∈ I, hj, j ∈ J in (5) is nonlinear, we
discuss about the nonlinear programming problem (NLP).

A vector x∗ ∈ X is the optimal solution to the problem (5) if it assumes the smallest
value among all the vectors in the feasible region, i.e., the formula ∀x ∈ X : f0(x∗) ≤ f0(x)
is valid. It is obvious that vector x = (x1, x2, . . . , xn)

T is the n-dimensional vector of design
variables (vector of independent variables, also known as design vector). According to the
above-mentioned, depending on the engineering application, the optimisation problem
involves one or more objectives and may contain a finite number of the equality and
inequality constraints, which define a feasible region X. In the literature, OP is usually
distinguished in two main categories.
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1. Single-objective optimisation problems (with or without constraints)

Many basic engineering OP fall into the category of bounded, unconstrained, non-linear
and derivative-free optimisation problems with the scalar objective function f0, i.e.,

Minimize f0(x) for f0 ∈ R, x ∈ Rn, where the design vector x is n-dimensional. The
space of the design variables is bounded to the volume of a hypercube xlb ≤ x ≤ xub where
xlb and xub are the lower and upper bounding vectors, respectively.

2. Multi-objective optimisation problems (with or without constraints)

The bounded, unconstrained, nonlinear, and derivative-free OP is solved in this category.
Minimize f0(x) for f0 ∈ Rm, x ∈ Rn, where f0, in contrast to the previous case, is the

m-dimensional objective function.
Constrained optimisation problem within two main categories is formulated when

solving some engineering problems requiring the usage of constraints, which define a feasible
region inside the bounded design space. The constrained OP can be expressed as follows:

Minimize f0(x) subject to fi(x) ≤ 0, hj(x) = 0 for f0 ∈ Rm, x ∈ Rn, fi ∈ Rp, hj ∈ Rr (6)

where fi is a one-sided inequality constraint equation (one of p inequality equations), hj is
an equality constraint equation (one of r such equations).

2.2. Sequences of Steps When Solving an Optimisation Problem from Engineering Practice

According to [1,2,5,7,9–11] in optimal decision making it is essentially necessary to
know the following: (a) mathematical model of a control object, (b) objective function, and
(c) constraints, conditions. Characteristics summarized in (a)–(c) represent only a minimal
range of issues that we must address if we want to reach an optimal decision in production
and technological processes optimization.

The creation of a mathematical model is the first step on the way to an optimal solution.
It is necessary to create a corresponding model that mathematically describes the relevant
object, system, or process under investigation [50]. For the meaningful decision-making
process, its object must have defined quantifiable parameters: input parameters that we
can influence and output parameters that we want to influence. To be as close as possible
to engineering reality, a mathematical model can contain various constraints. Constraints
establishment provides a way to avoid infeasible solutions to a given problem during an
optimisation process. Formulation of an objective function is a key step to proper optimi-
sation and its selection requires deep engineering experience in the issue of optimisation
modelling in the given research field [6]. The selection of a suitable optimization algorithm
and its implementation in a suitable software environment in order to obtain the solution
to an optimization problem follows the implementation of the previous steps. Finally,
the results must be evaluated to verify whether this is the appropriate solution to the
optimisation problem. A short version of the sequences of individual steps:

mathematical model → objective function → constraint conditions → selection of
optimisation method→ software for processing→ result verification.

2.3. Selected Optimisation Methods and Algorithms

The nature of f0, fi, hj, and X dictates what optimisation methods and algorithms will
be used to solve a given engineering problem. Exploiting specificities of the problem such as
linearity, convexity, or differentiability led to the use and implementation of efficient algorithms.

This subsection aims to provide an overview (partial) of popular optimisation al-
gorithms available to solve practical engineering optimisation problems. As is reported
in the literature, four types of optimisation strategies are usually implemented to solve
optimisation problems in engineering practice; the state-of-the-art optimisation strategies
are also comprised within them. Specifically, the gradient-based, convexification-based,
dynamic programming based, and derivative-free (heuristic-based) optimisation tech-
niques [48]. Several optimisation methods are put forward for calculating the constrained
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minimum/maximum optimisation problems, which can be further grouped into determin-
istic methods, stochastic approaches, and meta-heuristic methods [51]. The most popular
optimisation methods among deterministic approaches are summarised in Table 1.

Table 1. Popular optimisation methods among deterministic approaches.

Deterministic Optimisation Algorithms

Steepest descent method (SDM) [52]
Quasi-Newton methods (QNM) [53]
Linear programming (LP) [54]
Interior point method (IPM) [55]
Interior point sequential quadratic programming (IPSQP) [56]
Sequential quadratic programming (SQP) [57]
Second-0rder cone programming (SOCP) [58]
Coordinate descent method (CD) [59]
Global pattern search (GPS) [60]
Semidefinite programming (SDP) [61]
Dynamic programming (DP) [62]
Differential dynamic programming (DDP) [63]
Stochastic differential dynamic programming (SDDP) [64]

In order to obtain the optimal solution of EOP, deterministic methods use numerical
iterations based on calculus (including simplex algorithm and linear programming [5]) and
on infinitesimal calculus (gradient-based methods). Due to the fact that classic gradient-
based methods are rigorous in mathematical logic and easy to understand, they are com-
monly used for optimizing, but there are the following requirements: objective function
in the optimisation model have to be continuous and differentiable, constraint equations
are required. Among gradient-based methods are involved (Table 1), the steepest descent
method (SDM), Quasi-Newton methods (QNM), the interior point method (IPM), and
sequential quadratic programming (SQP). IPM and SQP are successfully used for solving
large-scale NLP problems [65]. In general, the SQP algorithm is focused on the transfor-
mation of the original problem into a sequence of quadratic programming sub-problems.
However, each quadratic programming sub-problem contains Jacobian and Hessian matri-
ces, and these have to be calculated for each Newton iteration of the SQP loop, which may
result in a significant increase in the computational burden of the solver. Therefore, the IPM
has been developed during the last two decades as an alternative to the gradient-based
method SQP. It is worth noting, that static NLP can be addressed by implementing the
IPM method with the penalty function in a suitable form. The interior point sequential
quadratic programming (IPSQP) combines the advantages of the SQP and IPM. Derivative-
free deterministic optimization algorithms have become the most popular. Coordinate
descent is one of the oldest and simplest local optimisers, more detailed in [59]. The global
pattern search [60] is a global deterministic derivative-free optimisation algorithm based
on the generalisation of the local derivative-free pattern search.

In some cases, the classic gradient-based method might no longer be reliable because it is
difficult to obtain the required gradient information for the objective functions or constraints
(e.g., difficulties caused by the high nonlinearity involved in these functions). In these cases,
stochastic and meta-heuristics approaches provide some advantages, as there is no derivative
information required for the implementation of the evolutionary-based methods. Since these
methods do not suffer from the difficulty of calculating Jacobian and Hessian matrices, they
become the convenient way to obtain the optimum in such cases of OP. The most popular
optimisation methods among stochastic and metaheuristic approaches, addressed to solving
EOP, are summarised in Table 2. It is obvious that only selected optimisation algorithms
under individual categories are presented in Tables 1 and 2.
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Table 2. Popular optimisation methods among stochastic and metaheuristic approaches.

Stochastic Optimisation Algorithms

Evolution strategy (ES) [66]
Differential evolution (DE) [67]
Violation learning differential evolution (VLDE) [68]
Genetic algorithm (GA) [69]
Simulated annealing (SA) [70]
Particle swarm optimisation (PSO) [71]
Predator-prey Pigeon-inspired optimisation (PPPIO) [72]
Ant colony (AC) [73]
Artificial bee colony (ABC) [74]
Tabu search (TS) [75]
Harmony search (HS) [76]

Compared with classic gradient-based methods, a random step size within calculus-
based numerical iteration is introduced in stochastic and meta-heuristic approaches; in
many cases, no initial guess value is required by algorithms in this category (due to ran-
dom initialization). There are many types of evolutionary-based algorithms, commonly
known as global optimisation methods, which are suitable and convenient for finding the
optimum of an engineering optimisation problem [8]. Essentially, evolutionary algorithms
use the “survival of the fittest” principle, which is adopted to a population of elements
(candidate solutions) [66,77]. The determination of the global minimum tends to be more
likely by stochastic algorithms than by classic deterministic methods. It results from the
nature of evolutionary algorithms (EA). We distinguish within them the generic-based
class of EA (such as ES, DE, VLDE, and GA), the agent-based class (such as PSO and
PPPIO), and the colony-based class of evolutionary algorithms (ACO and ABC). For in-
stance, Particle Swarm Optimisation (PSO) is inspired by the social behaviour of organisms
and uses individual and social learning to perform the iterative evolution of a particle
swarm [47]. Among the advantages are the high speed of convergence and easy imple-
mentation, but it tends to premature convergence. Simulated annealing (SA) is inspired
by annealing processes (developed thanks to the observation of temperature decreasing
during the annealing process), but SA requires acceptance of probability. The popularity of
implementation of meta-heuristic methods increases in conjunction with the continuous
progress and development of computer technology. They are successfully applied to very
complex and multi-variable engineering optimization problems where high non-linearity
is involved. A genetic algorithm is proposed via an imitation of organic evolution, using
natural selection to comprise cross-over, mutation, and selection operations. Although the
feasibility of the usage of meta-heuristic-based methods for solving EOP is shown, there are
some difficulties with the validation of solution optimality, and they are still not treated as
“standard” optimisation algorithms. Recently, a convexification-based method has begun
to attract attention. Engineering optimisation problems are usually nonconvex, so it is
necessary to transform the original problem formulation into the form of a convex OP by
some convexification techniques before applying the convex method. For instance, linear
programming as a convex optimisation procedure has been successfully used to determine
the optimal cutting parameters in machining processes.

Based on Tables 1 and 2, several state-of-the-art algorithms can be included in the
following set of algorithms that are suitable for derivative-free single-objective optimiza-
tion, namely: CD, ES, GA, SA, PSO, HS, and GPS. For multi-objective optimisation, the
following can be implemented: non-dominated sorting genetic algorithm II (NSGA-II) and
multi-objective global pattern search (MOGPS) [8]. In this study, our attention is focused
on engineering optimisation problems, which belong to static nonlinear programming
problems. The following software products were mainly used in the design of experiments,
statistical data analysis, and optimization: Design Expert, R, QC Expert, Minitab, Statistica,
and MATLAB.
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3. Materials and Methods
3.1. Experimental Procedure

This study aims to provide optimal control of anodizing process by setting the operat-
ing process parameters to the optimal values according to the energy and economic load
saving targets. To solve this complex problem, first it was necessary to establish optimi-
sation problem and develop mathematical model (on basis of the performed experiment)
with respect to the aforementioned sequences of steps. A solving strategy based on design
of experiments (DOE) methodology, exploratory data analysis (EDA), confirmatory data
analysis (CDA), and optimisation procedure is applied and presented in this study.

The modified anodic oxidation of aluminium by direct current with sodium chloride,
also known and termed as “Mod”. GS method of anodic oxidation is used to perform
the experimental research. Anodizing is an electrochemical surface treatment used to
improve mechanical properties of treated components by producing protective surface
film—thick anodic aluminium oxide layer (AOL) with high hardness in order to provide
wear and corrosion resistance. Several variables (input factors) are acting during the process
of anodic oxidation of aluminium and its alloys. To perform the experimental research,
investigators must consider the influence of chemical factors (composition of the electrolyte),
physical factors (the temperature of the electrolyte, time of deposition, current density)
and technological factors (especially the electrolyte cooling method and the dimensions
of electrolyse tank). Moreover, the composition of used material is important (surface
material and kind of the cathode used) and it is suitable to consider with uncontrolled
factors (maintaining them at a constant value), and with random negligible factors. Some of
the factors used during the experimental procedure are varied within the chosen range of
levels that must be chosen and defined with respect to the following two aspects: theoretical
and practical aspect. In our experimental work both aspects were passed. Firstly, they
were stated to respect the recommendations presented in scientific publications; on the
other hand, they were selected based on the 25 years of practical experience of one of
the co-authors of this study, obtained during work in a company that provides surface
treatment of metals. The individual defined levels of the factors had to meet the conditions
for the feasibility of the individual experimental runs in all their possible combinations.
The research was carried out by implementation of the DOE methodology in accordance
with the experimental conditions presented in Table 3.

Table 3. Mod. GS experimental conditions.

Method of
Anodic

Oxidation

Type of
Experiment

Design

Number
of

Factors

Number of
Experimental

Trials

Controlled Factors Constant Factors

Factor
Code 1 Factor

Factor Level Anode/
Cathode Material−2.3784 −1 0 1 2.3784

Mod.GS
Central

Composite
Design

5 44

x1

m
(H2SO4)
(g·L−1)

14.863 70.000 110.000 150.000 205.137

EN AW-1050A H24x2

m
(NaCl)
(g·L−1)

0.024 0.300 0.500 0.700 0.976

x3 T (◦C) −1.784 12.000 22.000 32.000 45.784
x4 t (min) 6.215 20.000 30.000 40.000 53.784
x5 U (V) 7.622 9.000 10.000 11.000 12.378

1 The factors represent: x1—the amount of sulphuric acid in the electrolyte, x2—the amount of sodium chloride in
the electrolyte, x3—the electrolyte temperature, and x4—the time of deposition, x5—the applied voltage.

In accordance with the design matrix, the individual experimental runs were carried
out in a random order because of to avoid the subjective preference of one of the input
factor levels and then minimise the systematic error. The functionality of the electrolyte
was tested by using a tank (Hull cell) illustrated in Figure 1. The technological verification
of the electrolyte was successfully performed. As shown in Figure 1, the experimental
apparatus involves a controllable DC power source (continuous voltage regulation within
the range from 0 to 20 [V] and direct current within the range from 0 to 5 [A]), ammeter,
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and voltmeter. In case of experiment presented in this study, the anodizing process for
individual experimental runs was performed at constant current density of 1 [A·dm−2].

Figure 1. Diagram of the experimental bath connection.

3.2. Material

Tables 4 and 5 display the experimental materials, namely, aluminium EN AW-1050A
H24 (Alumeco Service GmbH., Coswig, Germany) of dimensions 100 × 70 × 0.5 [mm],
sulphuric acid solution, and distilled water. Table 4 shows the chemical composition of
sulphuric acid used to prepare the electrolyte in terms of the admixtures. Sulphuric acid of
p.a. purity was used for electrolyte preparation.

Table 4. The composition of the H2SO4 solution/weight percentage of the additive elements (%).

H2SO4 Chlorides Nitrogen (Total) Se Fe As Heavy Metals KMnO4

min. 96% max. 0.0001 max. 0.0001 max. 0.0005 max. 0.0001 max. 0.000003 max. 0.0005 max. 0.0002

Table 5. Chemical composition of Al2O3 used/weight percentage of the additive elements (%).

Al2O3 Loss by Annealing Chlorides Sulphates

min. 99.6 max. 0.3 max. 0.005 max. 0.1

In general, aluminium dissolved in the electrolyte does not have a significant influence
on the anodizing process; this statement is valid for the recommended values of anodic
oxidation by the GS method. According to the authors’ practical experience with the
commercialization of the anodic oxidation of aluminium, the influence of aluminium in
the electrolyte begins to have an adverse effect as early as 12 [g·L−1]. Therefore, it is
interesting to verify the validity of the above-mentioned statement even outside the range
of recommended anodic oxidation parameters. Note that aluminium was added to the
electrolyte as Al2O3, the chemical composition of which is illustrated in Table 5.

3.3. Measurement of the AOL Thickness

The MiniTest 4000 digital thickness meter by the German manufacturer ElektroPhysik
(Köln, Germany) was used for measurement of the resulting AOL thickness on individual
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samples, together with the N400 measuring probe, which provides the measurement of
non-magnetic layers such as aluminium, chromium, copper, rubber, and others by the
eddy current method within the range of 0–400 [µm]. Extended uncertainty U expressed as
the standard uncertainty uc, multiplied by the coverage factor k = 2, represents the value
µc = 1.5 [µm] for a nominal thickness of a layer defined by a standard of 50 ± 1 [µm].
This value was determined by calibrating the probe used by an independent certification
authority. The AOL thickness was measured 5 times in each of experimental points defined
as intersections of horizontal and vertical lines with distance of 5 [µm].

4. Results and Discussion
4.1. Statistical Analysis of DOE Data

Due to the fact that experimental data are commonly characterized by asymmetric
distribution, unconventional variance and violation of the essential requirements for a set
of data, three follow-up steps are implemented during the evaluation of experimentally
obtained data. The series of these three sequential steps were also applied to the outputs of
the experimental verification of the thickness of the resulting anodic oxide layer. Specifically,
namely, the following:

1. Exploratory data analysis (EDA)—enables experimenters to investigate the data
observation to see whether there is anything special about it, such as specifics in the
shape of data distribution, the occurrence of outliers, local data concentration, etc. The
exploratory data analysis provides techniques to deal with them in an appropriate
manner, to identify the shape of the distribution of an experimentally obtained data
set if it is fairly similar to that of a normal (Gaussian) distribution or not, and also
to detect deviations and anomalies. If the EDA demonstrates a distribution type
inappropriate for standard statistical analysis (such as the presence of an asymmetric
shape), appropriate data transformation (power or Box-Cox transformation) should
be performed for correct statistical analysis;

2. Verification of requirements on a data set (sample/group of observations)—it is impor-
tant to verify essential requirements such as homogeneity of a sample, independence
of elements, variance of a sample and sufficient large sample size;

3. Confirmatory analysis (CDA)—provides tools for estimation of position, dispersion,
and shape parameters. The following two groups of estimations are known: tradi-
tional estimates and robust estimates (insensitive to outliers and other requirements
for input data).

The sampling analysis procedure was aimed to determine an objective mean value—a
representative of the measuring results of the AOL thickness formed on individual samples
for individual test runs performed at a constant current density of 1 [A·dm−2] and, of
course, for the measurement on a standard. The sampling analysis itself was carried out
in the following two steps: first, individual measurements were evaluated by standard
statistical methods (Shapiro–Wilk test), aiming to examine the normality of a data set
and then to identify outliers and extreme values (Grubs test, Dixon test). This analysis
was applied to the thickness measurements for all samples of experiments and to the
corresponding measurements on the standard. In cases where the presence of outliers and
extreme values was confirmed and normal distribution was not possible to implement, and
in cases where normality of data distribution was not demonstrated even after the exclusion
of the confirmed outliers, exponential and Box-Cox transformations were performed to
ensure correct further statistical analysis of the experimentally obtained data. Depending
on the results of the exploratory analysis for the set of experimentally obtained data, the
mean value was determined as follows: the arithmetic mean was used for the sets with
normal distribution; power-adjusted or Box-Cox transformed average; Winsorized mean
(robust characteristic) for sets where data transformation was not appropriate and Gaussian
distribution was not shown.
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4.2. Statistical Analysis of Predictive Model Fitting and Validation

A summary analysis of the usefulness of the developed model, describing the influence
of input factors on th [µm]—the resulting thickness of AOL, is reported in Table 6. Model
interpretation plays an important role in the data analysis. To express the goodness of the
regression model, the following model diagnostic fit tools should be implemented: the
summary of fit plot, the lack of fit test, and the normal probability plot of residuals. As it
can be seen from Table 6, the variability of th (RSquare) reaches the value 96.9296% and
the adjusted index of determination (denoted as RSquare Adj), which points to the level of
variability explanation by a given model, reaches the value 95.5991%. It is appropriate to
highlight that, in accordance with the reached value of the adjusted index of determination,
the fit of quality or functionality of the developed model is satisfactory, and the model may
be suitable for the future optimisation procedure. The average error of the mathematical-
statistical computational (MSC) model is 0.614 [µm] and the average value of the thickness
of the formed layer during the anodizing process is 61.895 [µm]. However, R2 alone is
not a sufficient indicator for probing the validity of a model; furthermore, advanced data
analysis was performed.

Table 6. Summary analysis of fit quality of MSC model.

Parameter Value

RSquare 0.969296
RSquare adj 0.955991
Root mean square error 0.614441
Mean of response 3.894773
Observations (or Sum Wgts.) 44

The value of AICC—Akaike Information Criterion for the MSC model is 112.2981
and the value of BIC—Bayes Information Criterion is 121.918. Using these criteria, when
comparing multiple models, a model with a lower AICC and BIC is better.

The results of the analysis of variance (ANOVA) are summarised in Table 7. As it
is observable from these results, the variability caused by random errors is significantly
less than the variability of the values determined and explained by the model. Based on
the Fisher–Snedecor test criterion, the achieved value (Prob > F) at the chosen level of
significance α = 5% indicates the adequacy of the used model. It results from the verified
null statistical hypothesis, which states that none of the factors (terms) in the model affects
the value of the examined variable (response). As the achieved value (Prob > F) is less than
the significance level α = 0.05, it can be said that there is at least one non-zero term in the
model that affects the value of the investigated variable.

Table 7. ANOVA evaluation of the MSC model.

Source DF Sum of Squares Mean Square F Ratio Prob > F

Model 13 357.55437 27.5042 78.815 <0.0001 *
Error 30 11.32613 0.3775

C. Total 43 368.88050
*—significant at the level of α = 0.05.

When computing the model validity, the outcomes of the lack of fit test are used. The
variance of residuals and the variance of measured data within groups should be used
to diagnose if the model well fits the observed dependence. The outputs of the ANOVA
lack-of-fit test are presented in Table 8.
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Table 8. Lack of fit test of the model.

Source DF Sum of Squares Mean Square F Ratio Prob > F Max
RSq

Lack of fit 29 11.152081 0.384555 2.2094 0.4936 0.9995
Pure error 1 0.174050 0.174050
Total error 30 11.236131

In order to estimate the predictive power of the developed model, the ANOVA lack of
fit test was used. The residual variability was compared with the variability of measured
data within groups. Thus, it can be said that the null statistical hypothesis (H0) that the
variance of residuals is less than or equal to the variance within groups was being tested
against the alternative hypothesis (H1) that the variance of residuals is greater than the
variance within groups. At the chosen significance level of level α = 0.05, the value of the
Fisher test criterion converted to a probability scale (Prob > F) is 0.4936; therefore, it can
be concluded that we do not have enough evidence to reject the null statistical hypothesis
(H0). Hence, the result is that the variance of residuals is less than or equal to the variance
within groups, and thus the model is sufficient. In other words, the model is statistically
significant. When a sufficiently low model error is obtained, the model shows a good fit to
the data; therefore, in our case, we conclude that the MSC model is adequate and sufficient.

4.3. Model Description

As the model obtained passes the basic diagnostic, the last stage in the analysis of DOE
data is to use the regression model for making predictions. It is of crucial importance to
derive a model with optimal predictive capability; therefore, evaluation of data, regression
analysis, and model interpretation must be performed statistically correctly. In our case,
it was performed, and estimation of model parameters/coefficients was achieved, as is
presented in Table 9. The MSC model regression coefficients, listed in column Estimate in
order from the highest impact, are unscaled but refer to the original measurement scale of
the considered individual factors (they are listed in the coded unit). It is clear from Table 9
that the highest impact on the explanation of the response variability, i.e., on the layer
thickness, has an intercept (x0), also known as the absolute term of the model. Intercept
represents both all unconsidered input factors operating during the anodic oxidation pro-
cess and used intervals (Table 3) of considered input variables. In terms of five considered
input factors (Table 3), a separate main effect of 22.11% corresponds to the main effect of
the electrolyte temperature (x3), that is, the change in layer thickness, when raising the
temperature of the electrolyte, the resulting thickness of AOL also increases. However, at
the temperature of the electrolyte, it is necessary to consider its quadratic and cubic terms,
which are statistically significant. The electrolyte temperature in the form of its square
root contributes 3.17% to the change of the formed AOL thickens, and the influence of
the temperature in the sense of the square root is 8.26%. Interestingly, when we consider
the electrolyte temperature in the interaction, its effect is negative. This means that when
increasing the temperature of the electrolyte, the thickness of the formed layer decreases
due to the interaction.

Another significant effect on the layer thickness is the concentration of sulfuric acid in
the electrolyte (x1). In a similar way, when the amount of sulfuric acid is raised, the thickness
of the layer formed is increased. The main effect of factor (x1) on the AOL thickness is
17.10%. The deposition time (x4), expressing the duration of the anodic oxidation process,
contributes to changes in the growth of the layer thickness by 12.31% and, as with the factor
x2, when raising the deposition time, the layer thickness increases. The last significant
factor acting as the main factor is the applied voltage (x5). The effect of factor x5 in the layer
thickness changes is 5.31% and, as in the above-mentioned cases, the response increases
with the increase in the applied voltage.
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Table 9. Estimated parameters of MSC model.

Term Estimate Std Error t Ratio Prob > |t| Lower 95% Upper 95% VIF

Intercept (x0) 4.120 0.124244 33.16 <0.0001 * 3.866554 4.374033 .
x3 2.607 0.137651 18.94 <0.0001 * 2.326315 2.888557 1
x1 1.367 0.093361 14.65 <0.0001 * 1.176683 1.558022 1
x4 0.985 0.093361 10.55 <0.0001 * 0.794131 1.17547 1
x5 0.830 0.182675 4.55 <0.0001 * 0.457315 1.203458 1

x3·x3 −0.229 0.084114 −2.72 0.0107 * −0.40088 −0.05731 1
x3·x1 0.787 0.108619 7.24 <0.0001 * 0.565046 1.008704 1
x3·x4 0.457 0.108619 4.21 0.0002 * 0.235046 0.678704 1
x1·x4 0.550 0.108619 5.06 <0.0001 * 0.328171 0.771829 1
x3·x5 0.348 0.108619 3.20 0.0032 * 0.125671 0.569329 1
x1·x5 0.329 0.108619 3.03 0.0050 * 0.107546 0.551204 1

x3·x3·x3 −0.323 0.045638 −7.08 <0.0001 * −0.41627 −0.22986 1
x3·x3·x5 −0.454 0.212528 −2.13 0.0411 * −0.88755 −0.01947 1
x4·x5·x2 −0.253 0.108619 −2.32 0.0270 * −0.47433 −0.03067 1

*—significant at level of α = 0.05, x1—m (H2SO4) [g·L−1], x2—m (NaCl) [g·L−1], x3—T [◦C], x4—t [min], x5—U [V].

Based on the estimation of the model parameters presented in Table 9, it was possible to
compile a mathematical-statistical computational (MSC) model expressing the relationship
between input factors (x1–x5) and response (the AOL thickness). For coded input factors,
the following fitted model will be of the form:

ŷ = 4.120 + 2.607x3 + 1.367x1 + 0.985x4 + 0.830x5 − 0.229x2
3 + 0.787x3x1 + 0.457x3x4

+0.550x1x4 + 0.348x3x5 + 0.329x1x5 − 0.323x3
3 − 0.454x2

3x5 − 0.253x4x5x2
(7)

When taking into account that input factors were coded by DOE coding during
statistical evaluation of experimentally obtained data, it is necessary to apply the reverse
DOE coding in order to obtain the predicting model in natural scale. DOE coding is
expressed by the following Formula (8):

xd(i) =
x(i)− xmax+xmin

2
xmax−xmin

2
(8)

where xd (i)—is a coded variable according to DOE coding, x (i)—is the original basic
variable in natural scale for i = 1,2,3, . . . ,n where n is the number of input factors, xmax—is
the maximum value of the original variable, x (i) a xmin—is the minimum value of the
original variable x (i).

Considering the coding Equation (8) and the mathematical-statistical formula of the
fitted Model (7), it is possible to obtain the computational (MSC) model describing the
resulting AOL thickness in natural scale as follows:

th = 8.235·10−3·m(H2SO4)·U − 37.875·m(NaCl)− 2.804·T − 4.928·U − 0.133·m(H2SO4)+
3.876·m(NaCl)·U − 0.234·T·U − 4.535·10−3·T2·U + 1.375·10−3·m(H2SO4)·t+
1.263·m(NaCl)·t + 4.569·10−3·T·t + 6.438·10−2·T2 − 3.231·10−4·T3+
6.313·10−2·t·U + 1.967·10−3·m(H2SO4)·T − 0.785·t− 0.126·m(NaCl)·U·t + 55.600

(9)

Due to provide the complexity of the performed analysis and confirmation of the
correctness and suitability of the selected model, it is necessary to verify the residues,
the difference between the actually measured and predicted values, calculated using the
prediction model in terms of their distribution and autocorrelation. The value of the
Durbin-Watson statistic represents the value of 1.6695713, while the calculated significance
value is 0.1507; therefore, it is possible to accept a null statistical hypothesis that there is
no autocorrelation. The achieved level of significance of the Shapiro–Wilk test (Figure 2)
indicates Gaussian residue distributions. In conclusion, we can proclaim the prediction
model as statistically and numerically correct.
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Figure 2. The graphical analysis of residuals for predicting layer thickness th.

4.4. Optimisation Analysis and Procedure

In view of the conclusions reached in the previous analysis on the numerical and
statistical correctness of the model predicting the thickness of the formed layer th depending
on the five independently variable factors x1, x2, x3, x4, and x5; Equation (9) can be accepted
as a valid mathematical model and useful for the next optimisation procedure. In the
context of techno-economical optimisation of the anodic oxidation process of aluminium,
the Model (9) can be used for the purpose of formulating an optimisation problem, i.e.,
for the formulation of objective functions and technological constraints. In real technical
practice, the economy of the process of anodic oxidation is defined by the production
equipment, i.e., by the number of surface-treated curtains per unit time, as is known
from practice. In general, the production line cycle is given by the length of the longest
operation during the production process. When optimising the process of anodic oxidation
of aluminium in terms of time saving, we recognise that the longest operation in the
production process is the anodic oxidation itself. In other words, the deposition time,
i.e., the time of anodic oxide layer formation, was stated as the optimality criterion. The
criterion of optimality has to take into account the aspect of economic efficiency of the given
surface treatment process, and for the anodic oxidation of aluminium, the decisive indicator
of economic efficiency is the deposition time. In comparison with the time duration of
other process operations (degreasing, pickling, clearing, and sealing), the deposition time
is the longest and thus defines the cycle of the production line. When we minimise the
time of AOL with the required thickness by setting the optimal combination of values
for the acting factors, we can maximise the economic yield while ensuring the required
quality. From practical experience, it can be said that up to 95% of customers define
the thickness of the formed layer as the basic demand for the implementation of surface
treatment by anodic oxidation, which is the most frequently entered parameter in the
design documentation. Therefore, as part of the optimisation procedure, our effort will be
to minimise the deposition time for a predetermined thickness of the final formed layer.
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Therefore, within the optimisation procedure, we focus on minimising the deposition
time at a predefined, i.e., prescribed thickness of the formed layer. Due to the fact, that
MSC Model (9) is nonlinear in parameters, it can be expected that the objective function
will also be nonlinear. Hence, non-linear programming was chosen in order to perform the
optimisation procedure using the MATLAB software system.

The minimization optimisation problem in the extended sense of the meaning can be
defined as follows:

Min
{

f0(x) | x ∈ X, fi(x) ≤ 0, i ∈ I, hj(x) = 0, j ∈ J
}

(10)

with the constraints in the form of equations and also inequalities, where I, J are index
sets. If at least one of the functions f0, fi, i ∈ I, hj, j ∈ J is non-linear, we discuss an
optimisation task called nonlinear programming. As mentioned above, we will apply
nonlinear programming in the case of optimizing the AAO process, as the purpose function
(expressing the functional dependence for the deposition time) will be nonlinear. In our
case, the main goal of optimisation can be defined as the minimization of the deposition
time t while maintaining the prescribed thickness thp of the resulting layer.

The objective function can be written in the following general form:

t(x4) = f0(x1, x2, x3, x5)th=thp=const → min (11)

resp. in natural scale (Table 1) in the following general form:

t(x4) = f0(m(H2SO4)(x1), m(NaCl)(x2), T(x3), U(x5))th=thp=const. → min (12)

The Equation (11) expresses the objective function f0(x) modelling, saving time. Our main
goal is to find such a combination of x1, x2, x3, x5 from a feasible region, (x1, x2, x3) = x∗ ∈ X,
which will guarantee the minimum value of the objective (criterion) function while complying
with all prescribed technological limitations. We will call this combination of numbers the
optimal solution.

The objective function t = f0(x1, x2, x3, x5)th=const describes the relationship between
the response (AOL thickness) and independent variables (5 input factors). The objective
function in natural scale was derived in the form of the following equation:

t = 37.875·m(NaCl)−th+2.803·T+0.132·m(H2SO4)+4.929·U−6.438·10−2·T2+3.231·10−4·T3

1.375·10−3·m(H2SO4)+1.263·m(NaCl)+4.569·10−3·T+6.313·10−2·U−3.788·m(NaCl)·U−0.785

−−1.967·10−3·m(H2SO4)·T−8.235·10−3·m(H2SO4)·U−3.788·m(NaCl)·U−0.234·T·U+4.535·10−3·T2·U−th
1.375·10−3·m(H2SO4)+1.263·m(NaCl)+4.569·10−3·T+6.313·10−2·U−3.788·m(NaCl)·U−0.785

(13)

When defining the constraints of the anodic oxidation process of aluminium by the mod-
ified GS method, we must take into account the practically proven intervals of technological
limitations in conjunction with the limitations given by the performed experiment, i.e., in
accordance with the data presented in Tables 3 and 9. Based on this, we define technological
boundary conditions (optimisation constraints) in the following form of inequalities:

50 ≤ m(H2SO4) ≤ 200 (14)

0.1 ≤ m(NaCl) ≤ 0.9 (15)

5 ≤ T ≤ 25 (16)

7 ≤ U ≤ 12 (17)

To run the optimisation procedure for solving the defined EOP—the minimization
problem with the objective function (13) subject to the optimisation constraints (14)–(17), the
appropriate script was created in MATLAB 2019a software, using nonlinear programming
(NP) methods available within the Optimisation toolbox. It should be mentioned that we used
the “fmincon ()” solver for constrained nonlinear minimization and the interior point method
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(IPM) algorithm. The task of nonlinear optimisation in the MATLAB environment was, in
our case, to find the minimum (local extreme) of the objective function for the optimisation
problem written in a format suitable for the given software, i.e., in the following form:

min f (x)


c(x) ≤ 0

ceq(x) = 0
A·x < b

Aeq·x = beq
lb ≤ x ≤ ub

(18)

where x, b, beq, lb (lower boundary), and ub (upper boundary) are vectors, A and Aeq
are matrices with constant coefficients, c(x) and ceq(x) are vector functions, and f (x) is a
scalar function. Functions f (x), c(x) and ceq(x) are nonlinear. The objective function (13) and
optimisation constraints (14)–(17) have been rewritten into a form suitable for optimisation
in the MATLAB software environment.

After the implementation of the optimization procedure, we obtained the optimal
combination of values of control variables (input factors) and the optimal value of the
time duration of anodic oxidation of aluminium by the GS method (the value of the
objective function). The outputs of the anodizing optimization procedure for the individual
prediscribed thicknesses (demanded by customers) of the AAO layer formed at the defined
current density of 1 [A·dm−2] are listed in Table 10.

Table 10. Results of the optimisation of the anodic oxide aluminum process.

The Required
AOL Thickness [µm]

m (H2SO4)
[g·L−1]

m (NaCl)
[g·L−1]

T
[◦C]

U
[V]

t—Optimum
[min]

5 174.921 0.213 22.163 10.997 10.534
7 175.662 0.213 22.891 11.211 13.823
10 180.119 0.213 22.983 11.552 17.311
15 186.775 0.213 23.416 11.934 23.676

The first column in Table 10 shows the required thickness of the resulting anodic
oxide layer, namely, 5, 7, 10, and 15 [µm]. The rest of the columns (except the last) present
calculated/suggested optimum values of input factors. A graphical representation of the
optimisation process for the formed AOL thickness of thp = 5 [µm] is given in Figure 3.

As it is observable from the results of data analysis and outputs of the optimisation
process (Tables 9 and 10), the optimum (minimum) value of the anodizing time is mostly
affected by the concentration of sulfuric acid in the electrolyte. The results (Table 10) reveal
that the optimum of the deposition time can be achieved by changing (increasing) the
sulfuric acid concentration in the electrolyte while maintaining a constant value of sodium
chloride concentration m (NaCl) = 0.213 [g·L−1] and setting values of temperature and
voltage closer to the upper limit of the interval defined by constraints (16) and (17).

Although it is clear from the previous research results that the electrolyte temperature
has the greatest effect on the layer thickness, raising the value of the electrolyte temperature
has its limitations. It is necessary to take into account the value of the critical temperature
at which the formed layer starts to dissolve and cause the unsatisfactory quality. Therefore,
we limited the temperature from above to 25 [◦C]. When this temperature is exceeded, a
layer with an unsatisfactory appearance and quality parameters is formed, even if the layer
thickness is sufficient.

These results (Table 10) were verified under real operating conditions (for thicknesses
of 5, 7, 10, and 15 [µm]). They are also consistent with the results achieved in our previous
experimental work (different approach without implementation of optimization). Defining
the limiting conditions derives from our practical experience and research work.
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Figure 3. Graphical outputs of the optimisation procedure for AOL thickness thp = 5 [µm].

5. Conclusions

At this time, the characteristic feature of production processes is the effort to produce
at low cost but high quality and in a short time. Because the required effort can be expressed
as a function of certain decision variables, the correct choice of the input parameter values
of each process, not excluding technological processes, has a positive effect on the output
in the sense of the above. Finding the right combination of values for the adjustable input
variables of a given process has been the effort of experts for many years, as evidenced
by research and years of experimentation. However, experimentation is often expensive
and time-consuming, as is the case with experimentation to streamline technological
processes. For this reason, in finding the right combination of setting input variables of
a certain production, technological, or other process, it is important to use the following
possibilities offered by modern times: methods of modern applied mathematics, DOE
methods, statistical methods, and especially optimization methods, in conjunction with
advances in computer technology and in the development of special software.

This study declares the following power and usefulness of these: the optimal combi-
nation of input factors acting during anodic oxidation of aluminium was achieved.

Namely, the optimization goal—to achieve a minimum deposition time (as listed in
Table 10) while maintaining the required thickness (5, 7, 10, and 15 [µm]) and quality of the
formed anodic aluminium oxide layer by implementing an optimization procedure has been
reached. The developed mathematical-statistical model predicting the thickness of the created
protective layer (AOL) provided the basis for the optimization procedure. It is important to
combine experimentation with optimization. It has to go hand in hand. We are not able to
optimise without experimentation (as a mathematical model is necessary to develop) and
experimentation without trying to optimise the system or process is not worthwhile.

The anodic oxidation time is a significant factor influencing the thickness of the
formed anodic layer at the considered current densities used in practice. This input factor
is manifested by its influence both independently and in interactions with other factors
depending on the current density.

For further investigation in this scientific area, it is necessary to take a more com-
prehensive approach to the optimisation of surface treatment processes and to take into
account the critical values of some factors. To perform anodic oxidation of aluminium
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under optimal process conditions, we must also take into account the value of the critical
temperature, as exceeding it will dissolve the layer being formed or form layers of unsatis-
factory quality. Therefore, in order to increase the efficiency of the operation of the anodic
oxidation process in practice, in the future we will focus our attention on experimental and
research activities on the analysis of the rate of AAO formation and the determination of
the critical temperature for varied defined current densities.
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