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Abstract: As an important part of the ubiquitous power Internet of Things, the distribution Internet
of Things can further improve the automation and informatization level of the distribution network.
The reliability of the measurement data of the low-voltage terminal unit, as the sensing unit of the
sensing layer of the distribution Internet of Things, has a great impact on the fault processing and
advanced applications of the distribution Internet of Things. The self-check and the equipment
working status monitoring of the main station of the low-voltage terminal unit struggle to identify
the abnormality of measurement data. Aiming at this problem, an abnormal data detection and
identification recognition method of a distribution Internet of Things monitoring terminal is proposed
on the basis of spatiotemporal correlation. First, using the temporal correlation of monitoring terminal
data, the proposed composite temporal series similarity measurement criterion is used to calculate
the distance matrix between data, and the abnormal data detection is realized via combination with
the improved DBSCAN algorithm. Then, using the spatial correlation of the data of the terminal unit,
the geometric features of the spatial cross-correlation coefficient of the terminal nodes are extracted as
the input of the cascaded fuzzy logic system to identify the abnormal source. Lastly, the effectiveness
of the method is verified by a practical example.

Keywords: distribution Internet of Things; low-voltage terminal unit; abnormal data detection;
density clustering; fuzzy logic

1. Introduction

As an important part of the ubiquitous power Internet of Things, the distribution
Internet of Things can effectively improve the automation and informatization level of the
distribution network [1,2] and provide users with diversified and differentiated energy
services; thus, further enhancing the level of electricity safety for customers [3,4]. The
architecture of the distribution Internet of Things is divided into a perception layer, a
network layer, a platform layer, and an application layer. The perception layer is located at
the end of the distribution Internet of Things, and it can transmit the information collected
by a large number of low-voltage terminal units (LTUs) in the distribution network to the
application layer through the network layer, providing data support for the functions of
fault detection and low-voltage load monitoring in the distribution Internet of Things [5].
Data analysis or decision making at the application layer need to ensure the quality of
the data. The measurement data collected and sent by the LTU may be abnormal due to
various reasons. Generally speaking, data anomalies can be divided into two categories.
One category involves data interruption or data anomalies caused by problems such as
communication module failure, battery energy exhaustion, and sampling circuit failure in
the LTU, which can be detected through the self-checking of the LTU or equipment working
status monitoring of the master station. The second category involves data abnormalities
caused by sampling circuit failure and abnormal storage modules that cannot be detected
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by the LTU equipment; such data may only have a small step on the basis of normal
data, and these abnormalities are difficult to detect through the self-checking of the LTU or
equipment working status monitoring of the master station. Due to the characteristics of the
many points, wide areas, and large numbers of LTUs, it is difficult to detect in time when
an abnormality occurs. False alarms or omissions of faulty LTUs may affect the accuracy
and reliability of system troubleshooting and advanced applications; therefore, it is an
important part of improving the operation reliability of the distribution Internet of Things
system and the management level of the system equipment to perform abnormal detection
on the measurement data of the LTU, find the abnormal data, and confirm its source.

At present, there are few studies on the detection of abnormal data of LTUs in the
distribution Internet of Things, but there are many abnormal data detection methods for
IoT terminals, which can be divided into four categories: (1) anomaly detection methods
based on statistics [6,7], which need to establish a complete dataset in advance and under-
stand the prior information, resulting in limited detection conditions and poor real-time
performance; (2) distance-based anomaly detection methods [8,9] for detecting the top
n outliers based on the distance function; however, this method increases the network
communication overhead and is not suitable for dynamic changes in network topology
and multidimensional data; (3) density-based anomaly detection methods [10,11], which
take a long time to calculate; if the size of the dataset is m, the time complexity is O(m2),
making this method unsuitable for the detection of power distribution IoT data with a large
amount of data requiring real-time monitoring; (4) anomaly detection methods based on
pattern recognition [12,13]. Due to the nonlinearity, complexity, ambiguity, and random-
ness of abnormal data during the operation of LTUs, it is difficult to express with precise
mathematical equations, and the complex working environment of LTUs puts forward
higher requirements for the real-time performance and robustness of the detection method.
The pattern recognition method is a better method to solve this kind of problem. Some
scholars used Bayesian networks [14,15], neural networks [16,17], and other methods to
establish a prediction model from historical timeseries data. Such methods require known
prior probabilities, and the detection effect is directly related to the setting of the devia-
tion threshold. The authors of [18] proposed a global outlier detection method based on
clustering. Cluster-based methods do not require prior knowledge of the data distribution
and can use incremental models, which provide the system with new data instances and
perform outlier detection.

There are few related studies on the identification of IoT abnormal data sources. The
authors of [19] used the median of historical data to establish pivot quantities, and abnormal
data source discrimination was realized by calculating the degree of difference between
data intervals. The authors of [20] used the Markov chain to extract the spatiotemporal
features of IoT sensor data streams on the basis of the spatiotemporal correlation of IoT data,
which were then used as input features for a multiclass CNN model to identify abnormal
sources. However, this method requires the offline training of the multiclass CNN model
using datasets with various abnormal labels in advance. The above two methods ignore
the time correlation, resulting in a limited measurement accuracy.

Aiming at the problem of abnormal data detection, this paper proposes an abnormal
detection and identification method of LTU nodes in the distribution Internet of Things.
The method can be divided into two parts.

The first part is the cluster-based LTU anomaly detection method. First, in view
of the problem that the traditional similarity measurement method has a poor effect on
the similarity measurement of high-dimensional data, using the temporal correlation of
LTU measurement data and considering the local similarity and global similarity of the
measurement sequence, an improved composite timeseries similarity measure is proposed,
which can improve the accuracy of the input data during the cluster analysis. Then, in
order to overcome the problem that the traditional DBSCAN algorithm is sensitive to
the selection of clustering parameters, a DBSCAN algorithm for adaptively generating
clustering parameters is proposed, thereby obtaining the core data points representing
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the change characteristics of the measurement data through clustering training, before
calculating the relationship between the distance between the real-time measurement data
and the core data points and the neighborhood radius Eps through a composite timeseries
similarity measure. The comparison of real simulation results in Section 5.4.1 shows that
the improved DBSCAN algorithm has a lower false alarm rate and higher practical value
when the detection rate is higher.

The second part is the anomaly source detection based on a fuzzy logic system.
The first part realizes the detection of abnormal data, whereas this part uses the spatial
correlation of the LTU measurement data of the distribution Internet of Things to distinguish
the abnormal data from line events or LTU faults. First of all, using the spatial correlation
of the distribution Internet of Things data, the sliding time window algorithm is used
to calculate the spatial cross-correlation coefficient between the LTU with abnormal data
and its neighboring LTUs, while the geometric features of the spatial cross-correlation
coefficient are extracted as the input of the fuzzy logic system. Then, in view of the problem
that it is difficult to obtain the evaluation of the spatial correlation of nodes through a
certain quantitative calculation equation, a fuzzy logic algorithm that can process imprecise
information based on the fuzzy set theory is selected and combined with the spatial and
temporal correlation of the data of the distribution Internet of Things. Accordingly, a
cascaded fuzzy logic system is designed to evaluate the spatial correlation between LTUs,
by evaluating the degree of spatial correlation between the abnormal data LTU and its
neighboring devices, allowing it to distinguish whether the abnormal data come from line
events or LTU failures.

2. Cluster-Based LTU Anomaly Detection Method
2.1. Source of Abnormal State of LTU in Low-Voltage Distribution Network

The causes of abnormal data generated by the LTU mainly include the following types
of faults:
1© Hardware faults: Hardware faults are mostly caused by the failure of the internal

communication module of the LTU, the exhaustion of battery power, or the failure
of some types of A/D conversion modules. Measurement data usually show data
interruption or measurement data at a positive/negative limit.

2© Stuck-at faults: Stuck-at faults are characterized by a series of offset and continuous
readings, and these sampling data may persist in subsequent sampling cycles. The
offset is maintained or may return to normal after a period of time. The offset sampling
data may be within the normal sampling data range or may exceed the range of the
normal sampling data. Such faults are generally caused by the abnormality of the
internal sampling module of the LTU.

3© Low-voltage faults: Typical low-voltage faults usually manifest as a result of con-
stant sampling data or offset values, which significantly increase the data noise.
This type of fault is generally caused by an abnormal drop in battery power due to
an internal/external short-circuit of the battery when the LTU is in battery power
supply mode.

4© Calibration failure: The reason for this failure is a calibration error, which is manifested
as a relatively fixed offset between the sampled data and the actual data, which may
be large or small.

The abnormal data generated by type 1© faults can be detected more accurately by the
self-check of the LTU and the equipment working status monitoring of the master station,
whereas the abnormal data of types 2©, 3©, and 4©may only have a small step on the basis
of normal data; thus, it is difficult to detect and monitor the working state of the equipment.
This paper mainly detects these three types of abnormal data.
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2.2. Anomaly Detection Method Based on Clustering
2.2.1. Improved Composite Timeseries Similarity Measure

The measurement data of LTUs in the distribution Internet of Things involve typical
timeseries data. For two given LTU nodes, Ωi and Ωj, the measurement sequence aggre-
gated every m minutes until the time instant t could be expressed as shown in Equation (1).

Fi = { fi,1, fi,2, . . . , fi,t},
Fj =

{
f j,1, f j,2, . . . , f j,t

} (1)

where Fi and Fj are the univariate observation timeseries of LTUs, and fi,t and fj,t are the
corresponding data points.

First, in order to understand the statistical structure of the LTU datasets, a composite
timeseries similarity measure was defined to measure the similarity between the output
data from two LTUs. The Euclidean distance is the most used in similarity measurements
between data, but it has a poor effect on the similarity measurement of high-dimensional
data and is not a comprehensive distance measurement method. Therefore, a composite
timeseries similarity measure matrix D = {di,j}n×n was proposed in this paper, where di,j is
composed of three distances as shown in Equation (2).

di,j =
1
2

dcos
i,j

+
1
4

djsd
i,j

+
1
2

dmis
i,j

. (2)

Distances dcos, djsd, and dmis are defined as shown in Equations (3)–(5).

dcos
i,j

= 1− cos(FΩi,t , FΩj,t) = 1−
FΩi,t•FΩj,t∥∥∥FΩi,t

∥∥∥•∥∥∥FΩj,t

∥∥∥ , (3)

dKL(Pi ‖ Pj) = ∑
i

pi( f ) ln pi( f )
pj( f )

M = 1
2 (Pi + Pj)

djsd
i,j = 1

2 dKL(Pi ‖ M) + 1
2 dKL(Pj ‖ M)

, (4)

ϕi =

{
1, i f∃x ∈ {1, . . . t}, fi,x < 0∨ fi,x = NaN

0, otherwise

Dmis
i,j

=

{
0, i f ϕi = ϕj

1, otherwise

, (5)

where dcos is the cosine similarity, which is different from the Euclidean distance; it needs
to reflect the difference in the size of the value and it is suitable for high-dimensional data.
djsd is calculated by the JS divergence (Jensen–Shannon), which represents the similarity
of the probability density distribution between two sequences Fi and Fj. dmis is the error
mode distance, which represents whether Fi and Fj have or do not have missing values in
the sampled data stream or have data less than 0, where Pi = pi(f ) is the probability density
function obtained by estimating the kernel density of the Ωi data sequence.

The improved composite timeseries similarity measure proposed in this paper com-
prehensively measures the similarity of LTU timeseries from three aspects—the amplitude,
probability distribution, and error mode, making it suitable for mining timeseries data
from the distribution Internet of Things; thus, providing an accurate information input for
the cluster analysis as described later. The error mode distance was calculated using the
data stream without data padding, whereas the Euclidean distance and JS divergence were
calculated using the data stream after data cleaning.

Then, the distance matrix calculated from the preprocessed LTU historical measure-
ment data was used as an input to cluster the LTU measurement data. The specific pre-
processing method is given in Section 5.1. In this paper, a density-based spatial clustering
of applications with the noise (DBSCAN) algorithm was used to cluster the LTU node
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data. DBSCAN is a typical density-based clustering algorithm, which can distinguish data
into boundary points, core points, and noise points according to the tightness of the data
distribution. It has the following characteristics:

• The calculation speed is fast and can be used for larger datasets;
• It can find classes of any shape in the dataset;
• The clustering effect is better when the density gap between various types is small.

Distribution IoT data have the characteristics of a large quantity, compact spatial dis-
tribution, and high density, while abnormal data distribution is discrete and the proportion
of data volume in the dataset is very low; hence, DBSCAN is very suitable for this scenario.

2.2.2. Improved DBSCAN Algorithm for Adaptive Generation of Clustering Parameters

The selection of clustering parameters would have a direct impact on the clustering
results of the DBSCAN algorithm. If the neighborhood radius Eps is too large, the abnormal
data in the measurement dataset is hard to effectively identify; if the Eps is too small, the
normal data in the dataset may be misjudged as abnormal. Therefore, the inappropriate
setting of clustering parameters may cause the problem of false detection and missed
detection in the abnormal detection of the DBSCAN algorithm, resulting in poor stability. In
order to solve this problem, this section proposes a DBSCAN algorithm that can adaptively
generate clustering parameters according to the historical measurement data of each LTU.
According to the characteristics of discreteness and the low proportion of abnormal data in
the LTU measurement data, the algorithm performed a statistical analysis on the distance
distribution of each data point in the preprocessed LTU historical measurement data, so as
to realize the segmentation of normal data and abnormal data.

The algorithm first calculated the statistical distance between each data point and
other data points in the dataset using Equation (2). For a dataset with N data points, the
statistical distance matrix between N × N data points could be obtained. Next, the distance
values of each row of the distance matrix could be sorted in ascending order to obtain a
new sorted distance matrix. At this time, each row of the distance matrix was stated to
represent the distance curve between the data point corresponding to the row and the
remaining data points. The distance curve graph is shown in Figure 1. The dataset used to
calculate the distance curve is introduced in Section 5.

Figure 1. Distance curve graph.

In the measurement data of the LTU, the distance between the normal data points
and data points in other clusters was small and stable. Therefore, the front end of the
distance curve appeared relatively smooth, and the abnormal data had the characteristics
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of a low proportion and high discrete distribution in the entire dataset. Thus, the normal
data points were farther away from abnormal data points, and there was a steeper point
from the end of the curve, as can be seen in Figure 1. Therefore, the position of the steep
point in the distance curve could be used to calculate the clustering parameters (the size of
the distance of the steep point could be used to calculate the neighborhood radius Eps, and
the number of data points at the steep point could be used to calculate the neighborhood
density threshold MinPts).

From the calculated distance curve, all distance values at N/2 sample points were
selected in the order from largest to smallest at every other curve, and a total of four
evaluation curves was selected, as shown in Figure 2.

Figure 2. Selected evaluation curves.

disti(x) = pix4 + qix3 + rix2 + six4 + ti. (6)

The second derivative could be derived, and the steep point location could be computed.

disti
′′ (x) = 12pix2 + 6qix + 2ri. (7)

Polynomial curve fitting was performed on the selected four evaluation curves, and the
location of the steep point was analyzed. The polynomial fitting curve equation is shown
in Equations (6) and (7), where pi, qi, ri, si, and ti are the parameters of the fitted curve.

Eps =
1
n∑ disti(xi). (8)

Let disti
′′
(x) = 0 solve the two roots x1 and x2 of Equation (7), and selected the maximum

value of the two roots as the value of the inflection point position xi. Then, the mean of all
evaluation curves disti(xi) was taken as the value of Eps, as shown in Equation (8).

disti
(
xi
′) = Eps. (9)

Bringing disti(xi
′
) into Equation (6), we could calculate xi

′
, as shown in Equation (9).

MinPts =
1
n∑ xi

′. (10)

As the minimum number of sample points for the i-th evaluation curve, the average
value of all evaluation curves was used, as shown in Equation (10).
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2.2.3. Anomaly Identification Method Design

The idea of the anomaly identification method based on DBSCAN clustering was
to use the core data points and clustering parameters obtained by clustering training on
historical data, identify abnormal data from the collected data, and regularly identify and
update core data points and clustering parameters on the basis of recent databases to ensure
the dynamic nature of the detection algorithm.

The anomaly identification program architecture based on DBSCAN clustering is
shown in Figure 3. The framework could adaptively generate Eps and MinPts parameters
according to the historical measurement data of LTU, and then obtain the core data points
of each working condition through the DBSCAN clustering program; in the process of
data measurement, the program used Equation (2) to calculate the distance between the
measurement data and the core data points, and then compared it with Eps. If the distance
between the data point and any core data point was less than Eps, the data were judged
as normal; otherwise, they were considered abnormal. Every time the system ran, the
detection model was updated using the database, and the global density parameters and
core data points were updated.

Figure 3. Anomaly data detection program architecture based on DBSCAN clustering.

The program flow chart is shown in Figure 4. The historical measurement data of
the LTU were used to adaptively generate the clustering parameters Eps and MinPts, and
then the DBSCAN clustering program was called to obtain the core data points, using
Equation (2) to calculate the distance between the real-time measurement data and the core
data points. If the distance was greater than Eps, the data were determined to be abnormal,
and the LTU node of the timeseries was marked as the LTU node with abnormal data.

This section realized the abnormal detection of LTU nodes in the distribution Internet
of Things system. The sources of abnormal changes in these node data were divided into
two aspects, LTU failure or line events, which cannot be distinguished only by detection
methods. Therefore, it was also necessary to identify the sources of abnormal changes
in data.
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Figure 4. Anomaly detection program flow.

3. Anomaly Source Detection Based on Fuzzy Logic System

The second stage was to use a fuzzy logic system to identify abnormal sources on
the basis of the spatiotemporal correlation of distribution Internet of Things data. The
LTU in the distribution Internet of Things system has the characteristics of multiple points
and wide areas, as well as a high deployment density. Therefore, under the condition of
dense distribution, when a line event occurs in a certain area, multiple LTUs would jointly
monitor the occurrence of this event. For example, when an event such as a short-circuit
occurs in a certain area, the measurement data would have different degrees of mutation,
where a smaller distance between nodes would indicate a stronger spatial correlation.
However, if the LTU with abnormal data changes does not have spatial correlation with its
neighboring LTUs, this indicates that the data with abnormal changes in the LTU node are
relatively isolated; thus, it is a faulty LTU. The method is shown in Figure 5, divided into
four steps. The first three steps were to analyze the spatiotemporal correlation between the
LTUs with abnormal changes in data detected in the previous section and their adjacent
LTUs, before extracting the spatial cross-correlation features as the input of the fourth step
of the fuzzy logic system based on spatiotemporal correlations. In this process, each LTU
node that generated abnormal data was analyzed, and the spatiotemporal correlation index
Q of the node was obtained, which represented a fuzzy evaluation of the spatial correlation
degree of the node in the overall time dimension.
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Figure 5. Stepwise structure of anomaly identification stage.

3.1. Extract System Inputs from Correlations

In order to derive the input of the fuzzy logic system from the spatiotemporal cor-
relation, the first step, as shown in Figure 5, was to calculate the spatial cross-correlation
coefficient of the abnormal node and its neighboring nodes.

Ck(a)(τ) = Fk(a)
Ωi,t
⊗ Fk(a−τ)

Ωi+1,t (11)

The node Ωi+1 adjacent to the LTU node Ωi, where the data changed abnormally, was
identified. According to the characteristics of the dataset, the two timeseries were equally
divided into several subsequences. Let Fk

Ωi,t
represent the k-th sub-series of FΩi,t

. Then, the
spatial cross-correlation coefficient Ck(a)(τ) was calculated according to each sliding window
Wa−τ of the given window Wa and Fk

Ωi+1,t in Fk
Ωi,t

, as shown in Equation (11). Next, a sliding
time window Wa was designed with window size T and window start moment a, where
Wa is the sliding time window whose window size is L and whose starting time is a, and τ
introduces the delay of any integer size between windows Wa and Wa−τ of Wa−τ ∈ Fk

Ωi+1,t.

rX,Y = X⊗Y =
∑n

i=1 (xi − x)(yi − y)√
∑n

i=1(xi − x)2
√

∑n
i=1(yi − y)2

. (12)

For any two vectors X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn}, the cross-correlation
coefficient between them was defined as shown in Equation (12), where x = 1

n ∑n
i=1 xi, and

y = 1
n ∑n

i=1 yi.
According to the above calculation principle of the spatial cross-correlation coefficient,

it was considered asymmetric in this paper. For example, when the LTU node Ωi+1 was also
the closest node in space to the Ωi node, the spatial cross-correlation coefficient between
nodes Ωi and Ωi+1 was completely different from the calculation result of the spatial cross-
correlation coefficient between nodes Ωi+1 and Ωi. Therefore, for a certain LTU node,
whether its selected neighbor node was or was not an abnormal node did not affect the
obtained level of the spatial cross-correlation coefficient of the LTU node.

In the second step, the change law of the spatial correlation coefficient Ck(a)(τ) of time
window Wa with respect to Wa−τ following the time delay τ was roughly as shown in the
graph in the second step. In the curve, v1 represents the peak point where Ck(a)(τ) achieves
the maximum value, while v2 and v3 represent the two valley points below v1. A triangle
was formed by these three vertices, from which three geometric features were extracted:
Ck(a)

max is the peak point value corresponding to Ck(a)(τ) at time delay τmax, cos(θk(a)
max) of v1v2

and v2v3 constitute the cosine value of the included angle reflecting the rate of change from
the peak point to the valley point, and Sk(a)

max is the area of the triangle.
The third step in Figure 5 was the process of calculating the input of the fuzzy logic

system through timeseries using the above features.
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We can see from the time dimension that Ck(a)
max, cos(θk(a)

max), and Sk(a)
max represent the

current temporal segment within the spatial cross-correlation of LTU nodes in order to
conduct a comprehensive analysis of the spatial cross-correlation properties within the
segments of historical events as the input of the fuzzy logic system. Furthermore, the
history of Fk

Ωi,t
and Fk

Ωi+1,t subseries could be used to calculate the parameters and the
historical difference of characteristic parameters. There were n historical subseries, and the
calculation formula is as shown in Equation (13).

C
kpre
max = 1/n∑n

i=1 C
kpre_i
max

cos (θ)
kpre
max = 1/n∑n

i=1 cos(θ
kpre_i
max )

S
kpre
max = 1/n∑n

i=1 S
kpre_i
max

. (13)

∆C =
∣∣∣Ck

max −C
kpre
max

∣∣∣
∆ cos(θ) =

∣∣∣cos (θ)k
max − cos (θ)

kpre
max

∣∣∣
∆S =

∣∣∣Sk
max − S

kpre
max

∣∣∣
. (14)

In the third step, we used the characteristic parameters Ck
max, cos(θk

max), and Sk
max to

determine the difference between the current temporal segment and the historical temporal
segment as the input of the fourth step of the fuzzy logic system, as shown in Equation (14).

3.2. Design Fuzzy Logic System Structure

A set of spatial correlation characteristics of LTU nodes proposed by the comprehensive
analysis could be used as a basis for measuring the level of spatial correlation. However,
since the evaluation of the spatial correlation of nodes could not be obtained through a
certain quantitative calculation equation, fuzzy logic could process imprecise information
on the basis of the fuzzy set theory, express facts through non-numeric linguistic variables,
and, finally, output numerical results. Therefore, this paper designed a cascaded fuzzy
logic system. The fuzzy logic system adopts the Mamdani fuzzy inference system, which
consists of two cascaded fuzzy logic systems. The fuzzy state of the input/output is defined
as strong, moderate, or weak. The membership functions selected in this paper consisted
of triangle type and Gaussian type membership functions, as shown in Figure 6. The mean
and variance of the Gaussian membership function were 0.5 and 0.2, respectively. For the
fuzzy calculation and defuzzification method of the fuzzy set, the cross-operator calculation
and the area center of the gravity method were used to solve the fuzzy processing.

Figure 6. Mixture member function adopted.

In the first layer of the fuzzy logic system, the Qk of system A evaluated the spatial
correlation of the current temporal segment, and the Q∆ of output of system B evaluated
the difference in spatial correlation between the historical temporal sequence segment and
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the current temporal segment. Both systems used spatial correlation fuzzy rules, as shown
in Table 1.

Q5 = f (Qk) =
1

1 + e|Qk |
, (15)

where Q5 is the intermediate index of the LTU space intercorrelation that represents the
change rate of Qk, as shown in Equation (15); Qk and Q∆ are spatial correlation indicators.

Table 1. Spatial correlation rules of fuzzy systems A and B.

Serial Number Input 1 Input 2 Input 3 Output

1 Strong Weak Strong Strong
2 Strong Moderate Weak Strong
3 Strong Weak Moderate Strong
4 Moderate Weak Weak Weak
5 Strong Weak Weak Weak
6 Moderate Strong Strong Strong
7 Weak Strong Strong Strong
8 Strong Strong Strong Strong
9 Moderate Moderate Moderate Moderate
10 Weak Weak Weak Weak

Fuzzy logic system C used temporal correlation fuzzy rules, as shown in Table 2,
whose output Q ∈ [0, 1] was used to judge the final spatial correlation index of fault nodes
and event nodes. After the final indicator Q was obtained, the self-defined threshold was
set to identify the source of the anomaly. If the duration of the spatial correlation indica-
tor continuously below the threshold exceeded two sliding windows, the LTU anomaly
was judged.

Table 2. Temporal correlation rules of fuzzy system C.

Serial Number Input 1 Input 2 Input 3 Output

1 Weak Weak Weak Weak
2 Weak Moderate Weak Weak
3 Weak Strong Weak Weak
4 Moderate Weak Weak Moderate
5 Moderate Moderate Weak Moderate
6 Moderate Strong Weak Weak
7 Moderate Weak Moderate Moderate
8 Moderate Strong Moderate Weak
9 Moderate Moderate Moderate Moderate
10 Moderate Weak Strong Moderate
11 Moderate Moderate Strong Weak
12 Moderate Strong Strong Weak
13 Strong Weak Weak Strong
14 Strong Moderate Weak Strong
15 Strong Strong Weak Moderate
16 Strong Weak Moderate Strong
17 Strong Moderate Moderate Strong
18 Strong Strong Moderate Moderate
19 Strong Weak Strong Moderate
20 Strong Moderate Strong Moderate
21 Strong Strong Strong Weak

4. Overall Structure of the Algorithm

According to the extraction method of geometric features of the spatial correlation
number in the above two sections, the overall structure of the algorithm for the anomaly
detection and anomaly source analysis of the measured data is shown in Figure 7, which
could be divided into four stages.
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Figure 7. The overall structure of the algorithm.

(I) For the measured data of a single LTU, the distance matrix was calculated according
to the composite temporal series similarity measured in Section 2.2.1. Then, the above
distance matrix was used as the input for clustering the data of LTU nodes, and the
noise points detected in the clustering results were the data with abnormal changes.

(II) For the LTU with abnormal data changes detected, the LTU with the closest physical
distance was searched, and the spatial correlation curves between the two LTUs were
calculated through the sliding time window, from which the geometric features of the
spatial correlation numbers were extracted.

(III) The geometric features of spatial correlation numbers were input into the fuzzy logic
system to obtain the spatial correlation index Q of LTU nodes, and the relationship
between Q and the threshold thre was judged.

(1IV) According to the data of abnormal changes in (III), the source of abnormal changes
was analyzed according to the following logic:

1© If the time length of the spatial correlation index Q lower than the threshold
thre was continuously greater than or equal to two sliding windows, then it
was determined that the abnormal data came from the LTU failure.

2© If Q was continuously lower than the threshold thre for less than two sliding
windows, the LTU was judged to work normally, and it was determined that
the abnormal change data came from the line event within the LTU monitoring
range.

5. Experimental Results

The LTU dataset of a power distribution Internet of Things system built by the Shan-
dong University of Technology was used for simulation verification. The system adopts the
deployment mode of a public cloud to monitor 791 LTUs in all 15 stations of the university.
Part of the data were selected as the experimental dataset in this paper, including the real
measured data of 600 LTU nodes for 44 days in May and June. The sampling period was
15 min/group.

5.1. Data Preprocessing

First, the Z-score normalization method was used to normalize the data, and the
measurement data of different magnitudes were converted into a unified Z-Score score.
Second, the measurement dataset was cleaned. Since the LTU is a resource-constrained
device, its low cost leads to the poor accuracy of its internal time synchronization device,
and there may be a problem that the LTU uploads data at different times, causing the TTU
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or the cloud to analyze the data of a certain time section. It is difficult to obtain the complete
dataset of this time section. Therefore, to solve the problems of the misalignment of data
time points and missing datasets, this paper adopted the linear interpolation method. When
the voltage value was negative, it was judged by the method when setting the threshold
value and repaired by the nearest neighbor interpolation method. The noise data in the
dataset were smoothed by the Gaussian smoothing filtering algorithm. The interpolation
and the smoothing effect of the current and voltage measurement data curves of an LTU in
one day are shown in Figure 8.

Figure 8. Example diagram of current and voltage curve interpolation and smoothing processing.

5.2. Experimental Settings

Due to random measurements, the dataset would not necessarily include all types
of abnormal data; therefore, in this paper, through the existing distribution LTU dataset,
for the artificial simulation of an abnormal state in the Internet of Things, a dataset with
anomalous LTU node labels was obtained for validation, according to the common LTU
anomaly states introduced in Section 2.1. Five LTU anomaly modes were defined: (a) the
constant anomaly, where the measured value of the LTU was approximately a constant that
could not be changed with the actual line operation; (b) the drift anomaly, where the LTU
measured value deviated from the actual value at a certain rate; the error function is shown
in Equation (16), where t0 is the immediate anomaly occurring and k is the gain factor;
(c) the bias anomaly, where the LTU measured value took a step within a certain period of
time; (d) the impact anomaly, which refers to a sudden increase/decrease in the measured
value at a certain time before quickly returning to the original sequencing sequence; (e) the
periodic anomaly, where the measured data were particularly unstable, which could be
represented as a periodic oscillation superimposed on the actual data. The error function is
shown in Equation (17), where a0, an, and φn (n = 1, 2, 3, . . . ) are constants.

e = k(t− t0). (16)

e = a0 + ∑∞
n=0 an sin(nwt + φn). (17)

Following the preprocessing of the LTU measurement dataset, the data of the first
30 days were taken as the algorithm training data. The five abnormal data types described
above were injected into the data of the remaining 14 days to generate a detection dataset.
The ratio of normal data to abnormal data in the detection dataset was 5:5, and LTU nodes
with abnormal data caused by LTU failure accounted for 60% of the abnormal data, while
LTU nodes with abnormal data caused by line events accounted for 40%.

5.3. Evaluation Standard

Abnormal data detection can be converted into a binary classification task. The
classification result can be a positive class P (abnormal data) or a negative class N (normal
data); the confusion matrix of the final classification result is shown in Table 3.
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Table 3. Confusion matrix.

Deal Result
Detect Result

Positive Negative

Positive True positive (TP) False negative (FN)
Negative False positive (FP) True negative (TN)

Due to the uneven distribution of positive and negative classes in the anomaly de-
tection dataset, in order to accurately reflect the anomaly detection performance of each
comparative model, the recall rate, precision rate, and F1-score were used as the evaluation
indicators of the algorithm, as expressed in the following equations:

Recall = TP / (TP + FN)

FNR = FN / (TP + FN)

Precision = TP / (TP + FP)

F1-score = 2×Recall×Precision
Recall+Precision

, (18)

where the recall rate reflects the abnormal data detection model’s ability to detect abnormal
data and the F1-score comprehensively reflects the recall rate and precision rate.

5.4. Results
5.4.1. Anomaly Data Detection

In order to verify the effectiveness of the algorithm for abnormal data detection,
the anomaly detection results of the algorithm in this paper were compared with the
classic DBSCAN anomaly detection algorithm [21], LOF algorithm [22], and one-class SVM
algorithm [23]. The simulation results are shown in Table 4 and Figure 9. The abscissa of
Figure 9 represents the proportion of abnormal data in the detection dataset.

Table 4. Comparison of simulation results to other algorithms in the literature.

The Proportion of
Abnormal Data 1% 2% 5% 10%

Algorithm F1 Recall F1 Recall F1 Recall F1 Recall

Improved DBSCAN
clustering algorithm 0.9152 0.9035 0.9352 0.9260 0.9340 0.9560 0.9388 0.9833

DBSCAN 0.5737 0.8861 0.5656 0.8362 0.5354 0.9251 0.5506 0.9635
LOF 0.5726 0.7745 0.6133 0.7632 0.5319 0.8599 0.4824 0.9345

One-class SVM 0.7630 0.7131 0.7816 0.7829 0.5392 0.5863 0.6352 0.6616

Figure 9. F1-score and recall of improved DBSCAN clustering algorithm, DBSCAN algorithm, LOF
algorithm, and one-class SVM algorithm under different proportions of abnormal data.



Energies 2022, 15, 2151 15 of 19

As can be seen from Table 4 and Figure 9, compared with the classic DBSCAN algo-
rithm, although the recall rate of the anomaly detection model was not much different,
the F1-score of the improved DBSCAN algorithm in each anomaly proportion interval
gained a significant improvement. The higher recall rate indicates a higher detection rate
for abnormal data, but the lower F1-score indicates that the classic DBSCAN algorithm had
a higher false positive rate. Because the improved DBSCAN algorithm effectively utilizes
the temporal correlation of the LTU measurement data, in the algorithm training stage,
the distance curve generated by historical measurement data could more accurately find
the boundary between normal data and abnormal data, and then adaptively generate the
global density parameter, such that the model could more accurately distinguish normal
and abnormal data. Therefore, the F1-score was significantly improved in the datasets with
different proportions of anomalies. The poor experimental performance of the LOF method
was due to the uncertainty of the current and voltage measurement data distribution, which
affected the k-distance of adjacent points and, thus, affected the calculation of the LOF
value, resulting in a high false alarm rate of detection, which became more obvious when
the proportion of anomalies was high. The low F1-score and recall of the one-class SVM
algorithm were low when the proportion of anomalies was high due to the training dataset
not containing all types of abnormal data, resulting in incomplete characteristics of the
abnormal data learned by the detection model. Therefore, when the types and quantities of
artificially simulated abnormal data increased, the types and quantities of abnormal data
not learned by the model in the training set also increased, resulting in a high rate of false
detections and missed detections of abnormal data by the algorithm.

It can be seen from the results that the improved DBSCAN algorithm was more stable
in abnormal data detection and could detect abnormal data well for LTU current and
voltage measurement data with different abnormal data proportions; the algorithm in this
paper achieved a high F1-score and recall rate in abnormal data detection. A high recall
rate indicates that the algorithm has a high detection rate for abnormally changed data,
while a high F1-score indicates a low false detection rate. Therefore, this proves that the
improved DBSCAN clustering algorithm proposed in this paper could accurately detect
abnormal changes in measurement data and provide an accurate information input for the
subsequent analysis of abnormal sources.

5.4.2. Source Identification of Anomaly Data

The abnormal source identification method used the spatial correlation of LTU mea-
surement data in the distribution Internet of Things, and the spatial correlation of LTU
measurement data was directly related to the LTU deployment density. Thus, in the same
monitoring area, when denser LTUs were deployed, there was a smaller distance between
devices and a stronger spatial correlation between measurement data. Therefore, in order
to determine the detection effect of the abnormal data source identification method in
the distribution Internet of Things with different density distributions, the simulation
implemented measurement datasets of 100, 200, 300, 400, 500, and 600 LTU nodes from the
data introduced in this chapter. The algorithm in this paper, the FTAD algorithm [24], and
the classical classification algorithms SVM [25] and CART [26] were used to identify and
analyze abnormal data sources according to the experimental steps described in Section 4.
The simulation results are shown in Figures 10–12.

The Figure 10a shows the spatial correlation index of abnormal data from LTU failures,
while the Figure 10b shows the spatial correlation index of abnormal data from line events.
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1 
 

 

Figure 10. Spatial correlation index curve of abnormal data from LTU failures (a) and abnormal data
from line events (b).

Figure 11. The detection rate of the proposed algorithm and the FTAD algorithm with LTU scales in
the distribution Internet of Things.

Figure 12. The overall accuracy of different algorithms under different LTU scales in a distribution
Internet of Things.

Figure 11 shows the simulation results of the source identification of anomaly data
under different LTU scales in the distribution Internet of Things using the algorithm in
this paper and the FTAD algorithm. It can be seen that the recall and precision of the
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FTAD algorithm were greatly affected by the scale of the LTU in the distribution Internet
of Things, increasing with the increase in the number of LTUs according to the principles
of the FTAD [27]. A node was confirmed to be at the event boundary if the outcome was
the dominant outcome in its neighborhood, which was largely affected by the size of the
LTU. The precision of the algorithm in this chapter for the detection of abnormal data
caused by line events was greatly affected by the scale of LTUs. A greater number of
LTUs in the distribution Internet of Things lowered the false alarm rate, because a lower
LTU deployment density increased the probability of isolated LTU nodes in the feeder,
while the spatial correlation between isolated LTU nodes and other LTUs was weak; thus,
misjudgment could occur. However, the precision and recall of the detection of abnormal
data caused by LTU failures remained above 95% under different LTU scales. Therefore,
from the perspective of LTU abnormal data detection and recognition, the method in
this paper is also suitable for a distribution Internet of Things with low-density LTU
deployment.

Figure 12 provides a comparison of the overall accuracy of different methods under
different LTU scales in the power distribution IoT, where the overall accuracy is the propor-
tion of the total number of correctly classified samples among the total number of samples.
It can be seen that the overall accuracy of the algorithm in this paper was higher than that
of the other two algorithms. This was because the other two algorithms directly used the
original data to train the classification model, which was not conducive to obtaining all
the features of the datal; thus, the detection accuracy was low. In contrast, the algorithm
in this paper extracted the spatiotemporal features of the data as the input features of the
classification model, which effectively improved the detection accuracy.

6. Conclusions

In order to solve the problem that the LTU self-check and the equipment working
status monitoring of the main station struggle to identify abnormal measurement data,
as well as to further improve the accuracy of the LTU measurement data and ensure the
accuracy and reliability of the system fault handling and advanced applications, this paper
proposed an abnormal data detection and recognition method for a distribution Internet of
Things monitoring terminal based on spatiotemporal correlation. Firstly, a distance matrix
was calculated by the improved composite timeseries similarity measure, and the improved
DBSCAN clustering algorithm was used to realize the abnormal data detection. Then, the
spatial cross-correlation characteristics of LTU nodes with abnormal data were extracted
using the spatiotemporal correlation of distribution IoT data, and then combined with the
fuzzy logic algorithm to realize an abnormal source identification. The advantages of the
method in this paper are as follows:

(1) The algorithm proposed using the composite rule of the temporal sequence distance
measurement from the probability distribution, amplitude, and error model enabled
comprehensive measures in three aspects: the LTU sampling data of the timeseries
similarity, the improvement of the traditional Euclidean distance similarity measure
for high-dimensional data, and the improvement of the DBSCAN clustering analysis
as a function of the accuracy of the information input.

(2) Using the spatial correlation of data between adjacent LTUs in the low-voltage distri-
bution network, the geometric characteristics of spatial correlation between abnormal
data changed nodes and their adjacent nodes were extracted as the input of the fuzzy
system, which successfully dealt with the complexity and relationship fuzziness of
the LTU abnormal state.

(3) The improved DBSCAN clustering algorithm based on adaptive parameter determina-
tion overcame the problem of sensitivity to the selection of global density parameters,
as well as improved the flexibility and adaptability of the detection model.

(4) Compared with traditional equipment self-inspection and equipment working state
monitoring, the method in this paper could not only simplify the complex correlation
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of multidimensional parameters, but also identify small step anomalies, thereby
enabling accurate detection.

(5) It can be seen from the comparative simulation results that the precision and recall of
the detection of abnormal data caused by LTU failures remained above 95%, while
the overall accuracy remained above 90% under different LTU scales.
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