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Abstract: Photovoltaic (PV) systems-based energy generation is relatively easy to install, even at a
large scale, because it is scalable in size and is thus easy to transport. Harnessing maximum power
is only possible if maximum power tracking (MPPT) functionality is available as part of the power
converter control that interfaces the PV panels to the grid. Solar exposure covering all PV panels
is unlikely to happen all the time, which is known as a partial shading (PS) phenomenon. As a
result, depending on the MPPT algorithm adopted, it may fail to find a maximum global power
peak, being locked into a local power peak. This research work discusses an alternative MPPT
control technique inspired in the social group optimization (SGO) algorithm. SGO belongs to the
meta-heuristic optimization techniques family. In this sense, the SGO method ability for solving
global optimization problems is explored to find the global maximum power point (GMPP) under
the presence of local MPPs. The introduced SGO–MPPT was subjected to different PS conditions
and complex shading patterns. Then, its performance was compared to other global search MPPT
techniques, which include particle swarm optimization (PSO), the dragon fly algorithm (DFO) and the
artificial bee colony algorithm (ABC). The simulation outcomes for the SGO–MPPT characterization
showed good results, namely rapid global power tracking in less than 0.2 s with reduced oscillation;
the efficiency of solar energy harness was slightly above 99%.

Keywords: photovoltaic; partial shading; maximum power point tracking; social group algorithm;
soft computing; DC-DC converter

1. Introduction

The rate of deployment of new PV power plants has not decelerated over the last few
years. The most recent figures for the year 2020 show a world-wide growth rate of 22%.
Presently, the installed PV power in the electricity grid is ranked third, below hydroelectric
and wind power generation [1,2]. As in the Western societies that are taking the first
steps for a non-carbon economy, developing countries are making efforts in this direction
as well. India, for example, with its huge population and vast solar resources, has an
ambitious clean energy target of 175 GW, which is to be deployed by 2022 [3]. Therefore,
PV technology will play a significant role in a future carbon-free society since wind power
resources, despite their abundant availability, is limited by its natural intermittence and
requires suitable areas for the erection of wind farms. COVID-19 has indirectly impacted
the growth of the PV industry also, as supply chain disruption, closure of sites, and power
purchase agreements have taken a back seat [4]. Despite several hurdles, the investment in
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PV and research interest in PV power enhancement will not fade away, as PV possesses
unique advantages of being clean and green, scalable and portable. The power output of
PV cannot be constant and continuous due to the variations in temperature and irradiation.
However, the usage of a power converter as an interface between the PV and the load is
indispensable. The power converter facilitates the following two important functions:

1. Voltage regulations and enhanced compatibility between the PV and load;
2. Ensuring maximum power point tracking (MPPT).

MPPT is a controller that is integrated with a converter which operates the PV panel
to yield maximum available power in the PV at any given point in time. MPPT relies on a
control algorithm that caters to the operating peak voltage (Vmp) at which the PV power is
maximum in the nonlinear power–voltage (P–V) curves [5]. The most prominent MPPT
algorithm is P&O, which is reliable and easy to execute. Here, a small perturbation is
introduced in the P–V curves and the search travels along the curve to find the peak of
the curve for the given irradiation and temperature [6]. If the power yield through the
search is not progressive, then a change in the direction of search is introduced. Conversely,
the major drawback of P&O is that even after grasping the peak, it tends to hover around
the peak power, which makes the system sluggish. The other reliable technique which
discards the oscillation is the incremental conductance (INC), where the peak power is
tracked through the maximum slope method. Here, through appropriate sensors and
processes, the ratio between incremental conductance and instantaneous conductance of
the PV module is equated. This technique is prone to error when irradiation changes
dynamically. Therefore, improved versions of both the P&O and INC have attracted much
attention among researchers. There are also few simpler power tracking schemes such
as open circuit voltage (OCV) and short circuit current (SCC) [7,8]. Among these, the
OCV method is preferable for lower power-rated applications and where there is minimal
temperature variations. However, these conventional algorithms face a huge setback when
they are bound to search the power curves, having multiple power peaks due to partial
shading. Partial shading (PS) is a phenomenon in which the PV panels in a PV array
receives irradiation in an inhomogeneous way, i.e., few panels receive full irradiation,
whereas the remaining panels receive irradiation only partially. The PV curves of the
shaded array exhibit multiple power peaks, and the conventional MPPTs above stick to the
local maximum. Most of the time, they will not grasp the global power peak, which in turn
results in significant losses and hot spot formation on the panels [9,10].

To overcome this pertinent issue, bio-inspired and artificial intelligence (AI)-aided
MPPT schemes are proposed in the PV research arena. These intelligent algorithms have
the rationale to evade the local power peak and grasp the global one. Genetic algorithm
(GA) [11] and particle swarm optimization algorithms (PSO) were the first ones to address
the failure MPPT during shading [12–15]. These algorithms initialize its searching parame-
ters over the search space randomly, and during the search, there exists a communication
between the particles and a sharing of the cognizance acquired through the travel [16].
In the PSO MPPT, the randomly initiated particles over the searching space obtain their
updated position and then share that knowledge on position among themselves. After
each iteration, finally, all particles reach the global power peak [17]. The randomness of
PSO particle initialization with unwanted oscillations gives scope for further deep research
in PSO MPPT, where a modified version of the PSO such as improved PSO and hybrid
PSO MPPT are introduced. The gravitational search inclusion along with the PSO makes a
new algorithm termed as hybrid particle swarm optimization gravitation search (PSOGS),
which is effective in convergence with a smaller number of iterations. However, the PSOGS
increases the number of parameters involved and results in coding complexity. Among the
evolutionary algorithms, artificial neural network (ANN) [18] rendered its contribution to
the MPPT in many aspects. The datasets needed for training will either voltage–current or
irradiation–temperature. Differential evolution (DE) MPPT was preferred since it has mini-
mum parameters, but a major drawback is its inability to specify the searching direction of
the candidates involved. Tey et al. [19] proposed a modified DE MPPT where the search
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direction is given during the mutation phase. However, overall, the DEMPPT is not often
used for MPPT owing to its sluggish nature and random search, which causes high variance
in the output power. Ant colony algorithm (ACO) [20], conversely, has attracted much
attention among PV researchers, who intended to effectively charge the batteries through
partially shaded PV panels. Another interesting work on global MPPT was proposed by
Benyoucef et al. [21], where the authors used a two-stage control scheme, blending the
conventional P&O scheme and inventive artificial bee colony (ABC) algorithm. However,
the ABC did not render a complete solution, as the convergence was not effective for con-
necting more strings of the PV panels. Again, the grey wolf optimizer (GWO) [22], known
for its higher efficiency, needs more population. Numerous bio-inspired algorithms have
been archived in the research arena, which defends its own competency on convergence
and efficacy. Still, the quest for proposing a new algorithm for MPPT in a partially shaded
PV array continues with the same vigour. In addition, to prevail over the rapidly varying
irradiation pattern and to grasp the global peak, more communal thinking is needed. The
research arena has recently witnessed a group teaching algorithm [23–26] in which teachers
teach the students to make them knowledgeable. The knowledge-acquiring capability will
vary from one student to another, and the peer group also helps to enhance the knowl-
edge. However, it needs more people to form the group effectively, and the time taken for
improving the worst person with respect to converging towards the best will increase.

The stochastic social grouping algorithm (SGO) has competencies such as fast conver-
gence and less oscillation. These traits are essential for a nonlinear objective function such
as maximum power point tracking. SGO is a new algorithm which has not been tested
for the MPPT application. Here in this work, SGO is used to have its fullest merits, as it
possesses unique features such as minimal control parameters (only one), and during each
iteration, the best candidate is identified twice. Satapathy and Naik [27] have provided
insights about the implementation of the SGO with respect to acquiring knowledge and
improving knowledge phases for civil infrastructure applications. Although the SGO is
a competent global search algorithm, its fullest efficacy has not been utilized yet in the
research forum. Given the traits of the SGO, it is a suitable candidate for a global power
search in the shaded PV array. This research proposal intends to deploy SGO–MPPT for
an 800 W PV system. In this work, the versatility of the SGO–MPPT is tested for different
shading patterns, and its performance is compared with other bio-inspired counterparts.
This paper is organized in such a way that the details of PV, shading impact and boost
converter design are discussed in Section 2, while the details about the social group op-
timization are presented in Section 3. The SGO–MPPT and its competency is detailed in
Section 4 through various case studies. Finally, Section 5 presents conclusive remarks.

2. PV Cell Modelling and Partial Shading Impact

The knowledge of the mathematical model of PV and the impact of shading on PV
output is fundamental to further analysis. In this section, the PV model and the impact of
partial shading are discussed.

2.1. PV Modelling

An ideal PV cell is represented by a current source in parallel to a PN junction, with
its anode connected to the positive terminal of the current source [28]. A practical PV cell
will be in series and have shunt resistance as shown in

The photoelectric effect is modelled with a current source Iph. The leakage current
takes two paths: one through a PN junction called Id and the other through a parallel
resistor Rsh designated as Ish. The series resistor Rs takes into account cell internal power
dissipation. The output current IPV is expressed as:

IPV = Iph − ID − Ish (1)
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Replacing ID with the diode expression and Ish with VD
Rsh

, Equation (1) is updated
as [29]:

IPV = Iph − IO

exp

 (VPV + IPV × Rs)(
ηkbT

q

)
− 1

− VPV + IPV × Rs

Rsh
(2)

where IO refers to the diode reverse saturation current, q is the electron charge
(1.602 × 10−19 C), kb is the Boltzmann constant (1.3806503 × 10−23 J/K), T takes into
account cell temperature in kelvin, and η is the ideality factor. Any practical evaluation in a
simulation scenario requires a more complete circuit to reproduce a solar panel I–V curve,
normally made up of parallel strings of cells. In Figure 2, Ns and Np refer to the number of
cells connected in series and parallel. respectively. In this work, four PV panels (PV1, PV2,
PV3 and PV4) of 200 W are connected in series to form a PV array of 800 W. Figure 1.
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Then, the panel behaviour can be approximated as:

IPV = Np Iph − Np IO

exp


(

VPV + IPV × Rs
Ns
Np

)
Ns ∗

(
ηkbT

q

)
− 1

−
VPV + IPV × Rs

Ns
Np

Ns
Np

Rsh
(3)

2.2. Partial Shading Effects

Solar panels provide maximum power when the irradiation is uniform over the panels.
Partial shading is a phenomenon which occurs due to the proximity of physical objects
such as trees, electric power transmission poles or building facades that may project a
partial shadow over PV panels. Major impacts of the partial shading are reduced output
power, hotspots on the PV panels and panel lifetime degradation [30]. As soon as some of
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PV panels that comprise a renewable power plant are partially shaded, the voltage–current
(I–V) and power–voltage (P–V) curves will have multiple maxima. Since in these operating
conditions the P–V curve has multiple local peaks, the MPPT scheme may have difficulty
distinguishing between a local peak and a maximum global power peak, thus causing
significant power generation loss. Figure 3a refers to the arrangement of the PV panels
without shading presence (left) and with partial shading (right). The corresponding output
characteristic curves are depicted in Figure 3b,c.
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The MPPT mechanism ensures the extraction of maximum available power for each
combination of solar irradiation and panel temperature. A PV panel rated at nominal
power can only supply that value at STC, i.e., the irradiation is 1000 W/m2, and the
cell temperature is 25 ◦C. From Figure 3b, it is inferred that the peak power of the array
changes according to the irradiation level. The operating point that allows maximum
power generation is denoted by Pmp and the corresponding pair of voltage and current
quantities are designated as Vmp and Imp, respectively.

2.3. Boost Converter Design

The boost converter provides two functions [31,32]. First, it provides an interface
between the PV array and the load. Second, it provides the controlling action for the MPPT
controller. The output of the boost converter is adjusted according to the duty cycle of the
PWM signal to operate the PV system at GM. The output–input voltages, output–input
capacitances, operational frequency, and other electrical parameters are calculated using
Equations (4)–(7).

Duty Cycle, D = 1 − Vin
Vout

(4)

Capacitor, Cin =
iILD

8∆Vi fs
(5)

Inductor, L =
VinD

2∆iL fs
(6)

Capacitor, Cout =
ioD

8∆Vo fs
(7)
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where Vin and Vout stand for the input and output voltages, D is the duty cycle calculated by
Equation (4), L is the inductance, Cin is the input capacitance, Cout is the output capacitances,
fs is the switching frequency, ∆Vi is the 1% of input ripple voltage, and ∆iL is the inductor
ripple current of the boost converter.

3. SGO-Based MPPT
3.1. SGO Principles

The SGO algorithm [27] emerged from making most of the individual excellence and
by leveraging the competencies of individuals in a group. Some individuals possess the
capability of solving complex problems and yielding optimized solutions in life. When
these individuals are part of a social group, the team members will acquire the cognizance
of their fellow mates and emulate the same successful path of problem solving. In SGO,
each person is considered to be the candidate solution with traits of having some knowledge
of problem solving. This problem-solving capacity is termed as fitness. The best person in
the group produces the best solution. The knowledge of problem solving by the best person
is transferred as knowledge transfer to other candidates in the group to uplift themselves
and in turn results in the group’s overall uplift.

The SGO algorithm consists of two phases, where in the first phase, the knowledge
of each individual candidate is improved through impact acquired from the best person
within the group. In the second phase, each candidate will improve their knowledge
through mutual influence from fellow candidates of the group and also from the overall
best person within the group. The first phase is called the improving phase, and the second
phase is called the acquiring phase. The number of members in the group is termed as N,
each individual is termed as Xk, where k represents the number of specific candidates in
that group. XkD refers to the dimension of the candidate, which is a reference to the qualities
of the individual, and fk (k = 1, 2, . . . N) is their associated fitness shown in Figure 4.
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3.1.1. Improving Phase

In this phase, each social group’s best candidate is called the global best (gbestg) and
intends to disseminate the knowledge to other team members. The team members that
participate in this learning will enhance their knowledge.

The fitness function for maximization is gbestg = max {fj, j = 1, 2, . . . , N}. In addition,
during this phase, for every iteration, the knowledge between the candidates is shared and
updated, which can be represented by Equation (8).

Xnew_jk = C × Xold_jk + r × (gbest(k) − Xoldjk) (8)

where r is random selection, Xnew is the fitness after each iteration, and Xnew replaces Xold if
Xnew presents better fitness, as shown in Figure 5.
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3.1.2. Acquiring Phase

In this phase, each member of the group obtains knowledge from a highly knowledge-
able person and also interacts with other members at random. The candidates will acquire
new knowledge from each other as well from the most knowledgeable person (gbestg). If
another individual has more knowledge than gbestg, then he will replace the best candidate
by himself, as shown in Figure 6.

Randomly selecting one person Xr, where j = r
If f(Xk) > f (Xr)

Xnewj,k = X oldj,k, + r1 × (Xj,k − Xj,k) + r2 × (gbestk − Xj,k) (9)

If f(Xk) < f (Xr)

Xnewj,k = X oldj,k − r1 × (Xj,k − Xj,k) + r2 × (gbestk − Xj,k) (10)

Accept Xnew if it gives a better fitness function value, where r1 and r2 are two indepen-
dent random sequences. As indicated in Equation (10), these sequences are employed to
influence the algorithm’s stochastic nature.
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3.2. SGO–MPPT Implementation

Due to the singular properties of the SGO algorithm, an alternative approach for
tracking global maximum power point (GMPP) is discussed for the first time. The execution
of SGO–MPPT is shown in Figure 7. The SGO–MPPT arrangement consists of a PV array
connected to the load through a boost converter. The control signal for the boost converter
is obtained from the SGO algorithm, whose processing runs inside a dedicated controller.
The algorithm processes instantaneous voltage and current as inputs to find the optimal
duty cycle for GMPP location.
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This section explains how to implement the SGO in a step-by-step manner.

3.2.1. Initialization Phase

Step 1: Generate random population (Candidate/Duty Cycle).

3.2.2. Improving Phase

Step 2: Evaluate Power Dnew(k) of each candidate and identify Gbest. Candidate with
best power is the best candidate of the group with highest knowledge.

Step 3: In this phase, the knowledge level of each candidate in the group is enhanced
by the knowledge of the best candidate (gbest) in the group as defined by Equation (11).

Dnewjk = C × Doldjk + r × (Gbest(k) − Doldjk) (11)

where:

Dnewjk—New Solution of Candidate;
C—Self Introspection (0 to 1);
Doldjk—Existing Solution;
r—Random Number (0 to 1);
(Gbest(k) − Doldjk)—Influence of the best Candidate.

A new Solution is accepted if better than existing solution Doldjk. While tracking the
global power peak, the values of C and r randomly change.

3.2.3. Acquiring Phase

Step 4: In this phase, every Candidate shall enhance its knowledge by interaction with
another random Candidate in the group and the best Candidate in the group.

If Dnewj,k is better than Drand,

Dnewj,k = Doldj,k + r1 × (Dj,k − Drandj,k) + r2 × (Gbestk − Dj,k) (12)

If Drand is better than Dnewj,k,

Dnewj,k = Doldj,k − r1 × (Dj,k − Drandj,k) + r2 × (Gbestk − Dj,k) (13)

Dnewj,k is accepted if better than existing solution Doldj,k.
Step 5: Update the new Gbest.
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The optimal duty cycle was detected through the sequence of processes where the
first stage involved the initialization of four duty cycles (d1, d2, d3, d4). The value of each
duty cycle was computed using Equation (11). The respective power instants for these
duty cycles were also recorded. The duty cycle at which maximum power occurred was
assigned as the global best (Gbest), and the powers corresponding to the individual duty
cycles were considered to be the candidate best (Dbest). The knowledge sharing of the Gbest
and Drand happened within the candidates through Equations (12) and (13). The updated
duty cycle (candidates) was applied to the power converter, which in turn delivered the
respective power after each iteration. The search process was sustained for the whole of
the subjected iteration value. If the current position of the candidate remained as the best,
then the peak power value was unchanged. This procedure of identifying the best duty
cycle continued until all the candidates converged to MPP.

To better understand the SGO–MPPT operation, a flow chart is documented in Figure 8.
The chart clearly presents how the duty cycle convergence takes place with respect to
instantaneous voltage and current during partial shading of the PV panels in a PV array.
The flow chart explains the two phases in the SGO–MPPT, namely the improving and
acquiring phase.

Initialization of Population
 (Candidates) ki(i = 1,2...N), Cmax, Cmin, 

Iteration  Imax

Read Voltage (VPV) and Current (IPV) of each 
candidates in Population

Calculate the fitness of each 
candidate 

i = 1

Update the position of each 
candidate ki using Eq. (11)

All Candidates are 
Evaluated?i = i+1

Pnew - Pold / Pold ≥ Ppv

Yes

No

Yes

No

Calculate distance between 
candidates

Update the candidate position 
using Eq. (12) and Eq. (13)

If I = ImaxIter = Iter+1

Duty Cycle Dnewj,k = Dbest

Yes No

 

Figure 8. Operational flow chart of the SGO–MPPT process.
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4. Results and Discussion

In this section, a detailed analysis of the performance of the SGO–MPPT control is
presented.

4.1. Simulation Methodology

Three simulation scenarios with distinct operating conditions were generated in
Matlab tool. MPPT strategies based on particle swarm optimization (PSO), particle swarm
optimization gravitation search (PSOGS), artificial bee colony algorithm (ABC) and dragon
fly algorithm (DFO) optimization algorithms served as the basis for measuring SGO–MPPT
effectiveness in finding GMPP.

For accurate modelling of a real PV panel, KC200GT solar panel data from the Kyocera
manufacturer were used. Table 1 presents the main specifications of the standard test
conditions (STC).

Table 1. Kyocera KC200GT 200 W.

Specifications Values

Maximum Power (Pmax) 200.143 W
Maximum Power Voltage (Vmp) 26.3 V
Maximum Power Current (Imp) 7.61 A

Open Circuit Voltage (Voc) 32.9 V
Short Circuit Current (Isc) 8.21 A

Temperature Coefficient of Voc −0.1230 V/K
Temperature Coefficient of Isc 0.0032 A/K
Number of Cells per Module 54

Simulation parameters of boost converter is Cin = 15 µF, L = 369.25 µH, Cout = 14.45 µF
and R = 13.83 Ω. Table 2 shows the tuning parameters of SGO, DFO, ABC, PSOGS and
PSO. An initial population size of four was considered for all MPPT algorithms.

Table 2. Tuning parameters for MPPT algorithms under comparison.

MPPT Method Tuning Parameters

SGO Cmin = 0.1, Cmax = 0.9
ABC [21] Wmax = 0.9, Wmin = 0.4

PSOGS [33] C1 = 0.5, C2 = 1.5, G0 = 1, W = 0.9
DFO [34] S = 0.1, a = 0.1, c = 0.7, f = 1, e = 1
PSO [35] C1max = C2max = 2, C1min = C2min = 1, Wmax = 1, Wmin = 0.1

To test the competency of the SGO algorithm, the shading pattern of the four PV panels
in the array was varied dynamically. Three dynamical shading cases were considered as
shown in Table 3. Each shading pattern exhibited its own PV peak power. Case 1 provided
a fast-changing irradiance profile, whereas Cases 2 and 3 dealt with different partial
shading circumstances.

Table 3. PV panels configuration and insolation levels.

Case Study
Solar Irradiance (W/m2)

Pmax (W)
PV 1 PV 2 PV 3 PV 4

Case 1 1000; 700; 300 * 1000; 700; 300 1000; 700; 300 1000; 700; 300 798; 557.8; 227.3
Case 2 500 800 1000 900 504.2
Case 3 800 300 700 500 322.2

* Changes in radiation after every 2 s.

When there is a change in irradiation, the current increases or decreases linearly,
whereas for the temperature change, the voltage changes logarithmically. As a result,



Energies 2022, 15, 2105 11 of 17

the power variation is minimum [36]. Therefore, it is sufficient to take into account the
irradiation alone. Furthermore, the SGO–MPPT suggested here is capable of finding the
peak power even if the analysis includes temperature variation, since the output P–V curve
embodies the change and the SGO–MPPT is competent enough to grasp the peak power
for any nonlinear P–V curves.

4.2. Case Studies
4.2.1. Case 1

In this scenario, the solar irradiance changes quickly in a short period of time. The time
profile comprises three irradiance levels. Solar exposition starts at 1000 W/m2 and stays for
2 s. Then, it drops to 700 W/m2 and lasts for 2 s. Again, it is reduced to 300 W/m2. Figure 9a
shows the maximum power tracking transient response of the four MPPT control variants
plus the SGO–MPPT mechanism. Theoretical GMPPs, as a function of the solar radiation
levels, were 798, 557.8 and 227.3 W, respectively. The measured solar energy harnessed by
operating the MPPT control with SGO, DFO, ABC, PSOGS and PSO versions were 797.5,
797, 796, 795 and 794 W, respectively. Consequently, the harness efficiency numbers were
99.93%, 99.87%, 99.74%, 99.62% and 99.49%, respectively. Tracking performance in terms
of settling time was also an important parameter. Therefore, the time recorded for SGO,
DFO, ABC, PSOGS and PSO MPPTs to track maximum power was 0.22, 0.30, 0.38, 0.60 and
0.70 s, respectively. Figure 9b–d describes Vp, Ip and duty cycle d time evolution during the
dynamic tracking process.
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ABC, PSOGS, and PSO.

4.2.2. Case 2

Here, a non-uniform irradiation profile (500, 800, 1000 and 900 W/m2) was generated
for emulating a partial shading condition. Figure 10a–d shows the time information
regarding the tracking process. From visual analysis, the PSO and PSOGS techniques
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perform better in locating GMPP, yet the time to settle down was higher. Conversely,
the DFO proved to be less efficient in tracking terms. The harnessed power in these
operating conditions for SGO–MPPT was 503.5 W followed by DFO, ABC, PSO and PSOGS
in descending order of GMPP (503.1, 502.1, 501 and 501.5 W). The settling times of SGO,
DFO, ABC, PSOGS and PSO were 0.24, 0.46, 0.56, 0.62, and 0.87 s, respectively. Efficiencies
achieved by SGO, DFO, ABC, PSO and PSOGS were 99.86%, 99.78%, 99.58%, 99.36%, and
99.46%, respectively.
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4.2.3. Case 3

In the last scenario, the magnitude of the shading on each panel was increased, and
the pattern was 800, 300, 700, and 550 W/m2, respectively. The expected GMPP was 322.2W.
The details concerning the mixed irradiance profile are available in Table 3. The maximum
power tracking responses for the algorithms in comparison are shown in Figure 11. The
power tracked by the SGO, DFO, ABC, PSO, and PSOGS were estimated as 321.5, 320.7,
320.1, 319.6, and 318.5 W, respectively, and their efficiencies were determined as 99.76%,
99.53%, 99.34%, 99.19%, and 98.85%, respectively. The convergence times of the SGO, DFO,
ABC, PSOGS and PSO were 0.26, 0.50, 0.59, 0.69, and 0.89 s, respectively.
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4.3. Comparative Analysis

Statistical performance criteria were applied to evaluate SGO–MPPT vs. the other
algorithm variants that were part of this study. Four statistical performance measurements
were calculated [37], namely, Efficiency (%), relative error (RE), mean absolute error (MAE)
and root mean square error (RMSE), and they are defined by Equations (14)–(17).

E f f iciency (%) =
PVtr

PVp
× 100 (14)

RE =
∑h

i=1
(

PVp − PVtr,i
)

PVtr,i
× 100 (15)

MAE =
∑h

i=1
(

PVp − PVtr,i
)

h
(16)

RMSE =

√
∑h

i=1
(

PVp − PVtr,i
)2

h
(17)

where PVp is the measured global PV power, PVtr,i is the average power over the number
of runs, which is calculated for each run I, and h is the total number of the runs.

Table 4 presents the statistical analysis results applied to the five MPPT algorithms.
The comparison was carried out taking into account the three scenarios.
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Table 4. Statistical analysis results.

Cases Algorithms
Average

Number of
Iteration

GMPP (W) Power Tracked
(W)

Efficiency
(%) RE (%) MAE RMSE Convergence

Time (s)

Case 1

SGO 7.20
798 1,

557.8 2,
227.3 3

797.5, 557.3, 226.8 99.93 0.124 1.464 0.856 0.22
DFO 10.28 797, 556.8, 226.3 99.87 0.249 2.929 1.711 0.3
ABC 11.26 796, 555.8, 225.3 99.74 0.500 5.858 3.423 0.38

PSOGS 12.19 795, 554.8, 224.3 99.62 0.752 8.787 5.134 0.6
PSO 14.33 794, 553.8, 223.3 99.49 1.006 11.716 6.846 0.7

Case 2

SGO 10.68

504.2

503.5 99.86 0.139 2.050 1.198 0.24
DFO 13.45 503.1 99.78 0.219 3.222 1.883 0.46
ABC 14.26 502.1 99.58 0.418 6.151 3.594 0.56

PSOGS 16.05 501.5 99.46 0.538 7.908 4.621 0.62
PSO 18.34 501 99.36 0.639 9.373 5.477 0.87

Case 3

SGO 11.12

322.2

321.5 99.76 0.218 2.053 1.196 0.26
DFO 14.90 320.7 99.53 0.468 4.393 2.567 0.5
ABC 17.22 320.1 99.34 0.656 6.151 3.594 0.59

PSOGS 21.62 319.6 99.19 0.814 7.615 4.450 0.69
PSO 23.18 318.5 98.85 1.162 10.837 6.332 0.89

1: Global maximum power for 1000 W/m2 irradiation; 2: Global maximum power for 700 W/m2; 3: Global
maximum power for 300 W/m2.

The SGO convergence time was lower (0.20−0.26 s) compared to the other algorithms
(0.30–0.80 s). In addition, the global maximum power value tracked by the SGO–MPPT
was slightly higher when compared to other MPPT algorithms. Therefore, the efficiency
acquired by the SGO–MPPT outplayed all the other state-of-the-art algorithms. For Case
2, the SGO algorithm achieved an efficiency of 99.86% with a convergence time of 0.24 s,
despite the presence of partial shading conditions. However, the SGO in Case 3 produced
better performance than the PSO. In all three cases, the average number of iterations of
SGO for achieving global power peak was less than the other algorithms. The SGO–MPPT
carried out here was a unidimensional search where the tracking was capable of finding the
resultant power of the shaded multipower peaks. However, in a multidimensional search,
the cumulative power of each shaded power peak would be added.

Each algorithm was independently run 10 times. It was observed that the RE, MAE,
RMSE values of the PSO for Case 1 were 0.935, 10.642, and 6.218, respectively, which were
much higher than that of the SGO (0.160, 1.856, 1.083). Similarly, error measures of the
other algorithms and for the other cases were also higher than that of the SGO. Therefore,
in terms of error measure, efficiency, average number of iterations and convergence time,
SGO demonstrated the best performance.

5. Conclusions

This research work has presented an MPPT concept by adopting the SGO algorithm,
which emulated individual human performance when they work as a team and prevailed
in successfully tracking the global power peak among the other local peaks in a shaded PV
array. The suggested SGO not only prevailed in grasping the global power peak but also
outperformed the capabilities of the other well-entrenched global search algorithms such
as DFO, ABC, PSOGS, and PSO, in terms of convergence time and efficiency. The versality
of the SGO–MPPT over the other counterparts was proven when all these algorithms were
subjected to an attempt to grasp the peak power under three challenging conditions, such
as abrupt variations in irradiance and nonlinear shading patterns. The convergence time of
SGO–MPPT has a clear edge over other global search counterparts, and notably, it was 26%
and 47% ahead with its closest counterparts DFO and ABC, respectively. The peak power
tracked was always more than that of all the other compared MPPT schemes. In addition,
the SGO–MPPT can be extended for a multidimensional search-distributed MPPT scheme,
which can further increase the net power output.
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Nomenclature

PV Photovoltaic
MPPT Maximum Power Point Tracking
PS Partial Shading
SGO Social Group Optimization
PSO Particle Swarm Optimization
DFO Dragon Fly Algorithm
ABC Artificial Bee Colony Algorithm
Vmp Peak Operating Voltage
P&O Perturb and Observe
INC Incremental Conductance
S Separation
c Cohesion
e Position of the Enemy
w Inertia Weight
OCV Open Circuit Voltage
SCC Short Circuit Current
GA Genetic Algorithm
PSOGS Particle Swarm Optimization Gravitation Search
ANN Artificial Neural Network
DE Differential Evolution
ACO Ant Colony Algorithm
GWO Grey Wolf Optimizer
STC Standard Test Conditions
GMPP Global Maximum Power Point
a Alignment
f Position of the Food
C1, C2 Cognitive Factor
GO Regulatory Co-efficient
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