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Abstract: Faults on individual modules within a photovoltaic (PV) array can have a significant det-

rimental effect on the power efficiency and reliability of the entire PV system. In addition, PV mod-

ule faults can create risks to personnel safety and fire hazards if they are not detected quickly. As 

IoT hardware capabilities increase and machine learning frameworks mature, better fault detection 

performance may be possible using low-cost sensors running machine learning (ML) models that 

monitor electrical and thermal parameters at an individual module level. In this paper, to evaluate 

the performance of ML models that are suitable for embedding in low-cost hardware at the module 

level, eight different PV module faults and their impacts on PV module output are discussed based 

on a literature review and simulation. The faults are emulated and applied to a real PV system, 

allowing the collection and labelling of panel-level measurement data. Then, different ML methods 

are used to classify these faults in comparison to the normal condition. Results confirm that NN 

obtain 93% classification accuracy for seven selected classes. 

Keywords: photovoltaic system; PV faults; edge computing; machine learning; IOT; fault detection 

techniques; fault classification 

 

1. Introduction 

Photovoltaic systems have been developing quickly around the world over the last 

decade, and the global market is growing exponentially. However, this development has 

not been matched by advances in system monitoring or fault detection, especially in PV 

systems with output power of less than 25 kW [1]. A health monitoring system is im-

portant to increase the efficiency and reliability of PV systems. Moreover, PV faults may 

lead to safety problems and fire hazards. Several fault types are possible in PV modules, 

and they are caused by a range of different factors. These faults should be diagnosed 

quickly and accurately. machine learning (ML) is a useful tool for PV system fault detec-

tion and classification, and, in recent years, several ML methods have been developed for 

this purpose. Most of the developed ML techniques are based on supervised learning, 

which needs labelled data for model training. However, creating a labelled dataset based 

on actual measured data for fault classification is time-consuming and costly. Accord-

ingly, most of the previous research has been done based on theorical assumptions [2], on 

data generated by simulation [3,4], or on limited recorded data from laboratory tests [5]. 

Moreover, in most of these studies, only electrical faults such as line to line (LL), line to 

ground (LG), and open circuit (OC) were considered for detection [5–10]. Non-electrical 

faults such as glass breakage were not considered and only a limited number of studies 

were undertaken to detect some of the physical faults such as connector faults [3,11] or 

potential induced degradation (PID) faults [4,7,12]. A review of different methods and 

technologies for different PV fault detections and classifications is investigated and pro-

vided in Table 1. 
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A classical fault detection technique based on the tracing of module I-V curves [4,12] 

detects and accurately locates faulty modules at module level. Recently, [6] presented an-

other detection technique based on P-V curve tracing for electrical fault detection and 

classification only at module level. This technique was tested in a laboratory with a small 

stand-alone PV system (600 W). Another tool for fault detection is the comparison be-

tween measured and simulated expected current, voltage and power values. Such com-

parisons were used in fault detection algorithms described in [11,13]. This involves a lot 

of equipment and time delay. Nonelectrical methods (e.g., infrared, thermal imagining, 

and thermal IR video) have been presented in different works, including [2,14,15]. The 

most common techniques based on image analysis can detect and localize faults, but ther-

mography requires a high initial investment in cameras. Moreover, the computational cost 

of image post-processing is high because of the size of the dataset and the complexity of 

the images [16]. Thus, robust and advanced methods are required to study the thermo-

grams for PV fault detection and classification. Another third category of technique for 

PV fault detection is the application of ML using actual electrical measurement data, such 

as PV array current and voltage, on the DC side of the PV system. However, this technique 

has only been tested for limited electrical faults [4,5] or some environmental faults like 

partial shading conditions [4,6,17–19], and soiling [17].  

Table 1. Review of various types of PV fault detection using different methods and technology. 

Ref Method Technology Faults 
Classification 

Accuracy 

[15] SVM Thermal image 

Cell crack, soiling, and hot 

spot caused by shading con-

ditions 

97 

[14] 
Curve modeling & 

FUZZY 
Thermal image 

Different partial shading 

conditions 
98.8 

[3] ANN 
Electrical measurement 

(V, I, and P) in DC side 

Connector fault, SC, bypass 

diode, and partial shading 

conditions 

94 

[2] CNN Thermal image 

Bypass diode, hot spot, soil-

ing, cell crack, and shading 

conditions 

92.5 

[13] ANN 

Impp and Vmpp from 

measurement & simu-

lation 

SC NA 

[8] 
Fuzzy 

logic control (FLC) 

Electrical measurement 

(V, I, and P) in DC side 
SC, OC, and snow cover NA 

[18] ResNet Thermal IR video SC, OC, hot spot, PID 90 

[6] V-P 
Measuring and analyz-

ing V-P in AC side 
LL, LG, OC 94.4 

[19] 
Fuzzy logic and RBF 

ANN 

Electrical measurement 

in DC side 

Different partial shading 

conditions 
92.1 

[11] ANN 

Comparing simulation 

and electrical measure-

ment in DC side 

Partial shading conditions, 

connector fault 
90.3 

[20] ANN, SVM, KNN Thermal image 
Faulty and normal condi-

tions 
92.8 

[5] 
Hierarchical 

classification 

I-V characteristics of 

PV array 
LL & LG 96.66 

[7] 
Outlier detection 

rules 
String current 

LL, OC, degradation, and 

partial shading condition 
NA 

[21] SVM 
Electrical measurement 

in DC side 

SC, OC, partial shading con-

dition 
NA 
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[4] RBF-kernel ELM I-V curve tracing 
SC, OC, degradation, and 

partial shading condition 
NA 

[17] 

Feedback 

enhanced MLR 

(MLRf) 

Electrical measurement 

in DC side 

SC, soiling, partial shading 

condition 
NA 

[12] 
Loss factors model 

(LFM) 
I-V curve tracing 

Partial shading condition, 

degradation 
NA 

[9,10] 
Diode-based fault 

detection 

Voltage measurement 

(array voltage, voltage 

at the positive node of 

the top and bottom 

module of a string) 

LG, LL within a string, LL 

between two strings and par-

tial shading condition 

NA 

In this experimental research, the behavior of eight physical and environmental PV 

faults was investigated at the individual module level based on literature and simulation 

and compared with data collected from faults that were emulated on a real PV system. 

Sensor devices were installed to measure voltage, current, and temperature of PV mod-

ules under normal and faulty operating conditions at module level. This not only helps to 

detect the type of fault but also identifies the location of the fault. At the same time, PV 

irradiance was collected by a pyranometer installed at the PV system location. The exper-

imental data from fault emulation were processed and used for PV fault diagnosis. Cur-

rent, voltage, temperature, and irradiation data were combined with PV system name-

plate information to detect PV faults using supervised ML techniques. Finally, using the 

results on the test set, we determined the most suitable algorithm to deploy on the edge 

to classify faults in real time. Some of the advantages of the edge computation is a reduc-

tion of the data processing cost, reduction of latency, increase of the network speed, 

greater reliability, and security. 

The contributions of this paper are: 

• Investigation, discussion, emulation, simulation, classification, and implementation 

of a combination of important physical and environmental faults that affect PV mod-

ules; 

• Identification of the main features for module-level classification by analyzing the 

variations of the I-V and P-V characteristics of PV modules under normal and fault 

events using a Simulink-based model and literature review; 

• Identification of the main features for module-level classification by analyzing the 

variations of the I-V and P-V characteristics of PV modules under normal and fault 

events using a Simulink-based model and literature review; 

• Development of a PV fault detection process at the level of the PV module at the edge 

using ML techniques, based on measured data; 

• Training, evaluation, and comparison of several supervised learning algorithms to 

define the best one to use for the edge computation of PV fault detection; 

• Completion of a comparative study to further demonstrate the superiority of the pro-

posed method for the detection and classification of faults; 

• Selection of the best-performing algorithm to test on the real PV system. 

This paper is organized as follows: Section 2 introduces a definition of PV faults and 

explains the results of PV module fault simulation. Section 3 explains the experimental 

setup. Feature extraction and data analysis are discussed in Section 4. Section 5 shows the 

results and discusses fault detection and classification. Finally, a conclusion and future 

work will be discussed in Section 6. 
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2. PV Module Fault Definition and Simulation Approach 

Generally, PV faults can be classified in three main groups, these being electrical, 

environmental, and physical faults (Table 2). In this research, we have limited our work 

to the detection of the important physical and environmental faults. The main electrical 

faults in PV modules are arc, line-to-line, ground, and open circuit faults. Environmental 

faults can be divided into temporary and permanent faults: dust accumulation, soiling, 

and bird drops are temporary, whereas a hot spot is classified as a permanent environ-

mental fault. Partial shading is a commonly reported condition that affects PV modules. 

This condition is considered a temporary environmental PV fault in many references. Par-

tial shading can be caused by snow covering, passing clouds, trees, or nearby buildings. 

The partial shading condition is of particular interest for PV owners in areas where there 

are rapid changes to the local built environment, or in remote areas with high vegetation 

growth, and where regular visual inspections are not possible. Figure 1 shows the typical 

layer structure of a PV module. Physical faults can happen in different layers. EVA and 

bypass diode faults are the main internal physical faults of a PV module. Typical external 

physical faults include connector faults, cell cracks, glass breakage, and degradation of 

the PV module. 

 

Figure 1. PV module layers [22]. 

Table 2. PV module fault classification. 

A PV module was created in simulation using MATLAB-Simulink (Figure 2) in order 

to analyze the impact of various faults on the output of the PV module under standard 

test conditions (STC). The PV module characteristics were defined to reflect the physical 

modules used in real-world fault emulation (Table 3). In general, the output of a PV mod-

ule depends on the inputs to the PV module (namely irradiance and temperature), and 

PV module parameters. Important PV module parameters are described by PV 

PV Module Faults 

Physical 

Internal EVA 

External 

connector 

glass breakage 

cell crack 

degradation/PID 

Environmental 
Temporary 

dust accumulation 

soiling 

Permanent hot spot 

Electrical 

Internal bypass diode faults 

 open circuit (OC) 

External line-line fault (LLF) 

  arc fault 

  ground fault 
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manufacturers in the PV datasheet. In addition, other features (as listed in Table 4) can be 

defined to give more detail relating to the operating characteristics of the PV module. 

Normal conditions and different faults were simulated, as described in Table 5. For 

example, for F1 (connector fault), a 1Ω resistor was added in series to the PV system sim-

ulation in Figure 2, and for F8 (glass breakage), a 91% irradiance filter was added after the 

irradiance block. Figure 3 represents the I-V and P-V curves for the PV module that was 

used for the simulation and experiment under normal and fault conditions. As is clear in 

Figure 3b, the main impact of the applied faults on the PV output is the reduction of out-

put power. Output power, or power at the maximum power point (MPP), depends on the 

voltage and current at the MPP. Therefore, these two factors change when different faults 

occur. The simulation results (Figure 3) show that the most reduction in current at MPP is 

observed during building shadow. Short circuit current (Isc) and open circuit voltage 

(Voc) are two module parameters that are also affected by PV faults. For example, when 

glass breakage occurs, a decrease in Isc will be clearly observed, and in the case of build-

ing shadow, Isc is drastically reduced. Furthermore, open circuit voltage and voltage at 

MPP (Vmpp) are reduced significantly for SC faults compared to the normal operation. 

All these parameters can be considered as a feature for PV fault detection using machine 

learning models. Moreover, based on these parameters, other features can be calculated. 

One such feature is fill factor (FF), which is calculated as follows: 

FF = (Impp ∗ Vmpp)/(ISC ∗ VOC)      (1) 

where Impp  and Vmpp are current and voltage at MPP, respectively. 

Based on the literature review and simulation results, FF will reduce when any fault 

happens in a PV module. However, it is more obvious in the case of partial shading and 

building shading conditions. In this paper, the impact of different faults on PV module 

features are investigated and summarized in Table 4. To obtain these results, various sim-

ulations were conducted, as well as results from other work, including [3,5,14,23]. 

Table 3. PV module parameters used in simulation and experiment. 

Parameter Value 

Pmax 245 

Isc 8.58 

Voc 37.80 

Impp 7.94 

Vmpp 30.85 

cells per module 60 

temperature coefficient of Voc −0.34 

temperature coefficient of Isc 0.05 
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Figure 2. PV system simulation. 

 

                               (a) 

 

                                     (b) 

Figure 3. PV module outputs under faults and normal conditions: (a) I-V curve, and (b) P-V curve. 
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Table 4. Impacts of different faults on different PV features. 

Type of fault Label Effects 

  Isc Voc Imp Vmp Rs Rsh Np 3 FF Pmax 

Connector fault (corro-

sion of cell connection) 
F1 ↓ 1 ↓↓ ↑ 2 ↓↓ ↑ − 1 ↓↓ ↓↓ 

PID F2 ↓ ↓ ↓ ↓ − ↓ 1 ↓ ↓ 

Partial shading condi-

tion 
F3 ↓ − ↓ ↓ − − ˃1 ↓↓↓ ↓↓↓ 

Building shading con-

dition 
F5 ↓↓↓ ↓↓ ↓↓↓ ↓↓ − − 1 ↓↓↓ ↓↓↓ 

Failing bypass di-

ode/short circuit (SC) 
F6 − ↓↓↓ − ↓↓↓ − − 1 ↓↓ ↓↓ 

Partial soiling F7 ↓ − ↓ ↓↓↓ − − ˃1 ↓ ↓ 

Glass breakage F8 ↓↓ − ↓↓ − − − 1 ↓ ↓ 
1 and 2 indicate a reduction and increase in the parameter values respectively. 3 is the number of 

peaks in I-V or P-V characteristic. 

3. Experimental Setup 

A small-scale grid-connected PV system was set up to create and record current and 

voltage outputs related to different PV faults under various conditions at the University 

of Applied Sciences and Arts of Southern Switzerland (SUPSI) in Ticino, Switzerland. This 

PV system included 12 “SoliTek G/G 245W” PV modules divided into two parallel strings 

of six in-series modules (Figure 4). Each string was connected to an “SMA Sunny Boy” 

inverter. 

Eight faults plus the normal condition were applied: connector fault (F1), PID fault 

(F2), partial shading condition/activated bypass diode (F3), pole shading condition (F4), 

building shading condition (F5), short circuit (F6), soiling (F7), glass breakage (F8), and 

normal condition (F0). All faults were emulated and implemented according to the de-

scriptions in Table 5. In general, when a PV fault is applied, the PV array may experience 

some transients and it could operate off its nominal MPP. However, after a few seconds, 

the maximum power point tracking (MPPT) algorithm will make the PV array operate at 

a new MPP [24]. This is called the post-fault steady state. Therefore, it is observed that the 

current and voltage of the PV array at MPP changes depending on the fault condition. 

All experiments were undertaken under natural weather conditions; thus, their du-

ration depended on the occurrence of a significant number of clear sky days. Each exper-

iment consisted of at least 8 hours under clear sky irradiance. For collecting data, four 

HealthHelio (HH) sensors were installed on four modules (Figure 4) to measure voltage, 

current, and temperature during the summertime from 16 June 2020 to 16 September 2020. 

The HH sensor is a low-cost device developed by SmartHelio in Lausanne, Switzerland 

to measure current, voltage, and temperature at a PV module and then transmit the data 

through a short messaging protocol (e.g., SMS). The HH sensor is a PCB-based IoT device 

that includes sensors for voltage, current, and temperature, and a microcontroller. Meas-

ured data are logged and, in the experimental setup, transmitted to a central cloud-based 

repository for analysis. Under their commercial model, the information gathered by the 

sensor is used at the grid edge to assess PV system performance and detect abnormal be-

havior on the IoT device itself. The data from sensors were combined with irradiance data 

collected from a local pyranometer to complete the dataset. 
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.  

(a)                                  (b) 

 

(c) 

Figure 4. Setup of the experimental PV system: (a) PV installation, (b) HH device in the experimental 

setup, and (c) connecting HH device to the PV module. 

Table 5. PV module fault simulation and emulation. 

4. Feature Extraction and Data Analysis 

In this research, data collected from the experiment was used to provide a labelled 

dataset (F0 to F8) that could be utilized to develop a fault detection and classification al-

gorithm. Figure 5 presents a flowchart of the methodology applied for PV fault detection 

and classification in this paper. The first step is data collection: for this reason, voltage, 

current, and temperature measurements were collected by the HH sensors, as described 

in Section 3. The second step of the methodology (Figure 5) is feature extraction and data 

Symbol Type of Fault Fault Simulation Fault Emulation 

F1 Connector 
Connect 1 Ω resistor in series with 

the module 

Connect 1Ω resistor in series with the 

module 

F2 PID 
Add 100Ω resistor in parallel with 

the PV module 

Add 100Ω resistor in parallel with the 

PV module 

F3 
Partial shading condi-

tion/bypass diode activation 

Use 60% irradiance filter on 1/3 of 

the PV module and 30% irradiance 

filter on 1/3 of the PV module 

 

Use foil to activate the bypass diode on 

the west string 

F4 Pole shading condition − Shading with pole on the east string 

F5 Building shadow condition 
Add a 50% irradiance filter on two 

PV modules in one string 

Shadow on two sub-strings in two PV 

modules  

F6 Short circuit bypass diode Short circuit one bypass diode Short circuit one bypass diode 

F7 Soiling 

Use 90% irradiance filter on 1/3 of 

the module and 80% irradiance fil-

ter on 1/3 of the PV module 

 

• place a strip over the lower string 

• apply black tape on the lower bor-

der of all modules 

• use black band on each 1/3 por-

tion of each module 

F8 Glass breakage Apply 91% irradiance filter 
Place a foil with 91% transparency on 

the whole PV module 
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analysis. A literature study was conducted to identify features that would allow their ac-

curate detection. Based on this study, PV characteristic parameters, information of the in-

stalled PV system, and collected data by installed sensors were used to calculate features. 

Data collected by sensors include PV modules current, voltage, temperature, and average 

global horizontal irradiance (AGHI). In this research, five features, I/Iexp (normalized 

current), V/Vexp (normalized voltage), P/Pexp (normalized power), V/Voc_ref, and PV 

module condition under the experimental test, were selected and calculated for inclusion 

in a model evaluation. I and V are PV module current and voltage, respectively, that are 

measured directly by sensors. P is the output power of the PV module that was calculated 

by the multiplication of current and voltage. Iexp, Vexp, and Pexp are current, voltage, 

and power under normal conditions, respectively. Voc_ref is the open circuit voltage of 

the PV module, which is provided by the PV module datasheet. 

 

Figure 5. PV fault detection and classification flowchart. 

A comparison of the results of data collected from the PV array is provided in this 

section. Normalized PV module current vs. normalized PV module voltage for each faulty 

module is compared with healthy module data (also presented as normalized I-V distri-

bution) in one string are shown in Figure 6 and discussed in the following paragraphs. 

The first fault is corrosion of cell connections or connector fault. It was emulated by adding 

a 1Ω resistor in series with the connector. This fault is labeled as F1 (Table 5). It is observed 

that the connector fault will cause a voltage drop [23] and it can be clearly separated from 

healthy data. Research in [23] identified that parallel resistance will reduce when a PID 

fault (F2) is applied. Therefore, to emulate this fault, a 100Ω resistor is added in parallel 

to the module. Normalized I-V distribution related to the PID vs normal condition in Fig-

ure 6 shows some coincidence of healthy and faulty data. In other words, PID effects are 

very subtle and not easily observable. This may be due to the emulation methods that 

were applied in this experiment. 

Usually, a difference of 20% between the light hitting the surfaces of different cells in 

a substring is enough to activate the bypass diode of the substring [1]. This will happen in 

the case of partial shading, pole shading, or cell crack. In this experiment, a foil was used 

to activate the bypass diode on the west string. An SC fault can reduce PV array power 

efficiency by an estimated 22.34 to 27.58% [17]. The results in Figure 6 show that the mod-

ule voltage drops to two-thirds of the normal module voltage in both partial shading con-

dition (F3) and short-circuited bypass diode (F6), and that they can be clearly differenti-

ated from healthy data. However, this is not the case for pole shading (F4) and building 

shadow (F5) conditions, as shown in Figure 6. This can be a serious problem for their 
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classification by supervised learning methods, especially when the size of the labeling 

data is low in these cases (Figure 7b). 

In the experiment, soiling was emulated in three different ways: a) adding a strip 

over the lower string of cells to emulate partial soiling in a single module, b) applying a 

black tape on the lower border of all modules in the west PV string, and c) using a black 

band on each one-third portion of each PV module to emulate increasing levels of soiling. 

The impact of the soiling on the border of all modules is similar to general soiling, i.e., a 

reduction in current. Soiling in a single module also creates a small voltage drop in the 

module [23]. The effects can be clearly observed in Figure 6. Finally, foil with a transpar-

ency of 91% was used on top of the whole module to emulate a glass breakage fault. The 

main effect of this fault is current reduction at MPP and a short circuited current (see Table 

4). Figure 6 demonstrates that this fault also can be recognized when the output of the PV 

module is compared with the normal PV module. The normalized (I-V) dataset and the 

sizing of labeling data for various conditions are given in Figure 7. 
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Figure 6. Normalized PV module current vs. voltage for various faults compared to the normal con-

dition. 
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(a) 

 
(b) 

Figure 7. Experiment data distribution: (a) normalized current vs. voltage under various conditions; 

(b) distribution of labelled data. 

5. Fault Detection and Classification 

In this section, several supervised learning algorithms were trained and evaluated 

using the labelled data generated from emulating faults on the PV array at SUPSI. The 

randomized training set comprised 70% of the collected data, whilst 30% were retained as 

an unseen test set. Training examples can be denoted as feature and label vectors X and Y, 

respectively, containing a labeled sample, (𝑥𝑖 , 𝑦𝑖)𝑖=1
𝑛 ∈  X × Y , given a set of hypotheses 

ℋ containing functions mapping X to Y, and a loss function ℒ representing a non-nega-

tive function indicating the deviation between the value predicted by the hypothesis being 
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tested and the true sample. Thus, the goal is to find a hypothesis h with the smallest pos-

sible loss as is shown below: 

 ℒ(ℎ(𝑥), 𝑦))ℎ∈ℋ
𝑚𝑖𝑛  (2) 

For this reason, seven different supervised machine learning models using the py-

thon scikit-learn [25] and TensorFlow frameworks [26] were compared. The baseline 

model is a multinomial logistic regression model with L2 regularisation, with the objec-

tive function to minimise the cross-entropy loss as calculated by: 

Llog(Y, P) =  −logPr(Y|P) =  −
1

N
∑ ∑ yi,k log pi,k

K−1

k=0

N−1

i=0

 (3) 

where for a set of samples, Y represents a 1-of-K binary indicator matrix containing true 

labels, whereas P is a matrix of probability estimates. The log-loss is computed for all 

samples in the dataset and parameters updated to minimize L using the limited-memory 

BFGS optimization algorithm (LM-BFGS) [27]. Next, two Support Vector Machines (SVM) 

trained with a linear and polynomial kernel of third degree, respectively, both with L2 

regularisation and regularisation parameter C equal to 1. In addition, a K-nearest neigh-

bor (KNN) classifier trained considering five neighbors at each query point, with equal 

weighting of points in each neighborhood and using Euclidean distance. A single decision 

tree (DT) classifier was trained, as well as a random forest (RF) classifier with 1000 esti-

mators, with both models using the Gini impurity criterion when evaluating the quality 

of a split. Finally, a feed-forward neural network (NN) was also trained. The NN com-

prised two hidden layers (256 and 128 neurons for each layer, respectively, with ReLU 

activation, and a final softmax activation in the output layer). The model was trained for 

500 epochs using minibatch gradient descent with a batch size of 30, the Adam optimizer 

and sparse categorical cross-entropy as the loss function given by: 

−
1

N
∑ yilog (

N

i

pi) (4) 

where N is the number of samples in the minibatch, and yi, and pi represent a one-hot 

encoded vector of true labels and a vector of softmax output probabilities, respectively. 

To evaluate model performance on the test set, a variety of accuracy metrics were 

calculated, and confusion matrices were plotted to demonstrate which models provide 

the best performance in terms of fault classification. According to the comparison of accu-

racy metrics, which are represented in Table 6, the RF, KNN, and NN models show the 

highest performance in terms of accuracy with scores of 89.3%, 88.9%, and 88.6%, respec-

tively. Normalized confusion matrices for these classifiers are plotted in Figure 8b, which 

shows the fraction of samples correctly classified by each model on a class-label basis. As 

is clear, 97.12% of all samples belonging to the normal state are correctly classified, 

whereas for the KNN and NN this is 97.01% and 96.46%, respectively. A similar pattern 

was observed by computing precision and recall metrics for each model, as can be seen in 

Table 6, as well as the harmonic mean of those two metrics, the F1 score. Furthermore, the 

Matthews correlation coefficient (MCC) was also computed for each model, providing an 

improved metric over the F1 score to quantify model performance on a dataset where 

classes are imbalanced, as is the case in our dataset. As with the F1 score, the MCC score 

is highest in the RF model, followed by the KNN and NN models with scores of 0.819, 

0.812, and 0.809, respectively. 
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Out of all fault classes, the worst classification performance across all models is seen 

for pole and building shading conditions. As discussed previously in Section 4, the nor-

malized (I-V) distribution for these two faults is not separated clearly. Moreover, the num-

ber of datapoints available for these two faults is very low (Figure 7b), 16 and 52 points, 

respectively. Therefore, to improve model performance, F4 and F5 were removed from 

the main dataset and the models retrained and re-evaluated. New accuracy metrics were 

extracted and are presented in Table 7. As the results show in this table, the NN now 

shows the highest classification accuracy, F1 score and MCC overall (93%, 0.929, and 

0.880), followed by the RF model (92.5%, 0.924, and 0.873). The confusion matrices of these 

two classifiers are represented in Figure 9. According to the observations from these con-

fusion matrices, both models can identify six faults and the normal state with good pre-

dictive performance. The highest fraction of samples correctly classified is achieved by the 

RF for short-circuit fault (F6) detection at 100%, whilst the lowest fraction of correctly clas-

sified samples being 66.2% for soiling fault (F7) detection. 

Lower classification performance in some categories may be attributed to the dataset 

that was used for training. Figure 7b indicates that this dataset is non-uniformly distrib-

uted. As is discussed in [28], training ML algorithms on an imbalanced dataset (non-uni-

form distribution of labels) may lead to a degradation in model performance. It is expected 

that improved model performance could be achieved with a larger dataset containing 

more samples of each class. Therefore, additional fault data will be collected for future 

research to improve the fault classification performance. 

According to Table 7, the highest classification accuracy belongs to the NN classifier 

with an overall 93% accuracy for seven classes. To test the effectiveness of the final classi-

fication accuracy obtained by the NN, the proposed method has been compared with the 

other output results in Table 8. As is shown in this table, different accuracy levels were 

achieved, ranging from 77.7% to 94% for various fault classifications from different refer-

ences. Table 8 shows that the network in [3] has a higher accuracy result, but also used a 

larger dataset. The performance of the proposed NN here would be expected to improve 

with a larger dataset. Moreover, the network in [3] was trained on MATLAB-based simu-

lation data considering a single isolated module, rather than real-world data from an in-

service PV array. Nevertheless, the results in Table 8 prove the achievement accuracy of 

the proposed method is in an acceptable range compared to the other existing NNs for PV 

fault detection. 

Table 6. Comparison of the accuracy metrics for supervised algorithms trained and evaluated on 

the dataset with all faults. 

Classifier Accuracy Precision Recall F1 

Matthews 

Correlation 

Coefficient 

Random Forest 0.893 0.885 0.893 0.886 0.819 

Nearest Neighbors 0.889 0.877 0.889 0.879 0.812 

Neural Net 0.886 0.875 0.886 0.878 0.809 

Support Vector Machine 0.883 0.866 0.883 0.871 0.799 

Decision Tree 0.864 0.863 0.864 0.863 0.772 

Linear SVM 0.858 0.851 0.858 0.832 0.758 

Logistic Regression 0.744 0.586 0.744 0.649 0.527 
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Figure 8. Confusion matrices of the three best-performing classifiers trained on all fault data: (a) 

Random Forest; (b) Nearest Neighbors; and (c) Neural Net. 

Table 7. Comparison of the accuracy metrics for supervised algorithms trained and evaluated on a 

dataset without F4 and F5. 

Classifier Accuracy Precision Recall F1 

Matthews 

Correlation 

Coefficient 

Neural Net 0.930 0.930 0.930 0.929 0.880 

Random Forest 0.925 0.924 0.925 0.924 0.873 

Nearest Neighbors 0.923 0.921 0.923 0.921 0.869 

Support Vector Machine 0.917 0.918 0.917 0.915 0.860 

Decision Tree 0.898 0.899 0.898 0.896 0.826 

Linear SVM 0.892 0.895 0.892 0.878 0.816 

Logistic Regression 0.767 0.644 0.767 0.691 0.573 
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Figure 9. Confusion matrices of the three best-performing classifiers trained on all fault data; (a) 

Neural Network, and (b) Random Forest. 
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Table 8. Comparison of the different results of different references from NN classifier for PV fault 

detection. 

Ref No. Samples No. Classification Classification Accuracy % 

[20] 1568 8 92.8 

[3] 52428 10 94 

[19] 720 10 92.1 

[11] − 10 90.3 

[19] 720 5 77.7 

Proposed 

method 
4110 7 93 

6. Conclusions 

In this paper, eight different PV faults were investigated, simulated, and imple-

mented and tested in a real PV system. The purpose of the research was to identify the 

performance of module-level fault detection and classification to allow the development 

of a low-cost IoT-based sensor that could be deployed at large scale in low-power-output 

PV arrays. A panel-level sensor was used to collect current, voltage, and temperature 

readings at the module level, and then combined with local irradiance readings. This da-

taset was used to develop ML models that can be used for automatic fault detection and 

classification at the grid edge. Of all the compared models, the best performing model was 

found to be the NN. The NN was able to detect six PV faults, plus the normal condition 

with a classification accuracy on our unseen test set of 93%. However, the classification 

performance is unsatisfactory for pole shading (F4) and building shading (F5) conditions. 

The variance in performance is most likely related to the non-uniform distribution of the 

dataset that was obtained during fault emulation, and the low ratio of these two specific 

shading conditions (pole and building shading) in comparison to other faults, and the 

normal state that showed significantly higher detection rates in our study (e.g., up to 100% 

in some instances). It is expected that classification performance will be improved with 

the acquisition of additional balanced training data over a larger time horizon and across 

a variety of different weather conditions. For this purpose, additional data are now being 

collected for a future study. 
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