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Abstract: This paper proposes an extended structure of a programmable low-pass filter (PLPF)
for direct filtering of three-phase variables in automotive AC drives. The PLPF adjusts its cut-off
frequency according to the synchronous frequency of the AC motors. Moreover, it compensates
gain attenuation and phase delay of the fundamental component signal. The conventional PLPF can
only be applied to variables in the stationary reference frame. In order to obtain filtered three-phase
variables, an inverse reference frame transformation is required. However, the extended structure,
which includes reference frame transformations, can be directly applied to three-phase variables and
remove the noise in the earlier stage before transformation. The extended PLPF is more useful for
making signal flows clear and intuitive when organizing an algorithm that directly requires three-
phase variables. The extended PLPF requires a moderate computational load corresponding with that
of the conventional PLPF because its formula is simplified by use of Kirchhoff’s law. The reduction in
the execution time is critical for implementing the filter based on low-cost microcontrollers. Using
case studies, dead-time compensations and open-phase fault detection for AC drives show the
effectiveness of the extended PLPF.

Keywords: programmable low-pass filter; noise; AC drives; motor; delay; dead-time

1. Introduction

Accurate rotor position information is indispensable for high-performance alternating
current (AC) electric drives in automotive applications. Moreover, it is also a prerequisite
to measure three-phase variables such as phase currents, phase voltages, and back Electro
Motive Forces (EMFs) [1–3]. The three-phase variables are an AC quantity whose funda-
mental frequency synchronously varies with the rotor position and speed of the AC motor
in the case of variable frequency drives [4].

However, the inherent characteristics of the LPF cause gain attenuation and phase
delay of the fundamental component. The gain attenuation and phase delay become larger
as the fundamental frequency of the measured three-phase variables approaches the cut-off
frequency of the LPF, i.e., at increasingly higher frequency.

A programmable LPF (PLPF) was first proposed as an alternative solution to direct
current (DC)-drift errors of a pure integrator-based flux vector synthesis for sensorless
drives [5–9]. The PLPF can also be applied as a noise filter instead of the LPF [10]. In
contrast with the general LPF, the PLPF adjusts its cut-off frequency according to the
synchronous frequency of the AC motors. Moreover, it compensates for gain attenuation
and phase delay of the fundamental component signal [7]. The phase delay strongly affects
not only the system performance but also the stability of the AC drives [11,12].
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The conventional PLPF can only be applied to variables in the stationary reference
frame. In order to obtain filtered three-phase variables, an inverse reference frame transfor-
mation is required.

For traditional vector controls and sensorless drives of AC motors, transformed vari-
ables in the synchronous reference frame or stationary reference frame are more popularly
used than the original three-phase variables [1]. Recently, novel algorithms that directly
use three-phase variables without variable transformation have been developed for var-
ious purposes in not only closed-loop but also open-loop cases, e.g., inverter dead-time
compensation based on a polarity check of phase currents [13,14], and inverter open-switch
fault detection based on measurements of phase voltages [15].

Use of the conventional PLPF and inverse transforms to obtain filtered three-phase
variables results in complicated signal flows that include both three-phase variables and
variables in the stationary reference frame.

This paper proposes an extended structure of a programmable low-pass filter (PLPF)
for direct filtering of three-phase variables in AC drives. The extended structure includes
reference frame transformations and can remove the noise at the earlier stage before these
transformations. The extended PLPF is more useful for making signal flows clear and
intuitive when organizing an algorithm that directly requires three-phase variables.

2. Variable Measurements for AC Drives
2.1. AC Drive Systems

Figure 1 shows a general scheme of an AC drive system that consists of a controller,
inverter, AC motor, and various sensors.
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Figure 1. Control signal flow diagram of an AC drive system.

The controller executes a vector control algorithm for driving the AC motor. For ease
of control, the electrical variables such as voltage, current, and flux in the a, b, and c phases
of a three-phase system can be transformed to variables in orthogonal d and q axes of the
synchronous reference frame. In addition to the vector control algorithm, high performance
control and fault diagnosis algorithms are introduced. These methods use not only variables
in the synchronous reference frame (mdq) but also variables in the stationary reference
frame (mαβ), and the three-phase variables (mabc) are directly used without transforms.
The variables in the stationary reference frame are widely used for estimation algorithms
based on vector tracking. The rotor position estimation algorithm for a sensorless drive is a
typical case, as shown in Figure 1. The three-phase variables are usually applied for fault
detection and provide distinct information for isolating faulty phases.

2.2. General LPF

AC electric drive systems fed by a pulse width modulation (PWM) inverter include
noise signals such as switching noise, sampling noise, and analog to digital conversion
(ADC) noise. A digital low-pass filter (LPF) enhances signal integrity by eliminating
undesirable frequency and noise components.



Energies 2022, 15, 2096 3 of 13

However, the inherent characteristics of the LPF cause gain attenuation and phase
delay of the fundamental component. The gain attenuation and phase delay become larger
as the fundamental frequency of the measured three-phase variables approaches the cut-off
frequency of the LPF, i.e., as the frequency becomes higher.

The transfer characteristic of the first order LPF is given by:

mLPF
abc =

ωc

s + ωc
·mabc. (1)

where ωc is the cut-off frequency.
The gain attenuation and phase delay of the LPF at synchronous frequency ωe can be

respectively given as (2) and (3) [5–9]:

Me = |GL(jωe)| =
ωc√

ω2
e + ω2

c
(2)

φe = ∠GL(jωe) = − tan−1(
ωe

ωc
). (3)

The phase delay results in cross-coupling of the current dynamics of the d-q axis in
the synchronous reference frame. Moreover, the current regulation performance will be
degraded and, in an extreme case, the current regulation loop may be unstable.

As the drive has to operate over a wide speed range, such frequency-sensitive gain
attenuation and phase delay should be avoided. In addition, the cut-off frequency of the
filter should be adjusted according to the synchronous frequency of the AC motors.

3. Programmable LPF (PLPF)
3.1. AC Drive Systems

Differently from the LPF, the PLPF adjusts its cut-off frequency according to the
synchronous frequency. Moreover, it compensates for gain attenuation and phase delay of
the fundamental component signal, which are caused by the LPF.

Gain compensation G and phase compensation P can be expressed by the inverse
relationship of (2) and (3) as:

G =
1

Me
(4)

P = ejφe = cos φe + j sin φe. (5)

The gain attenuation and phase delay are compensated for by multiplying (4) and (5)
by (1) as follows:

mPLPF
αβ =

√
ω2

e + ω2
c

ωc
· [cos φe + j sin φe] ·

ωc

s + ωc
mαβ (6)

By use of the relationships of (7), (6) can be simplified as (8):

cos φe =
ωc√

ω2
e + ω2

c
, sin φe =

ωe√
ω2

e + ω2
c

(7)

mPLPF
αβ =

ωc

s + ωc
· (1 + j

ωe

ωc
) ·mαβ (8)

Equation (8) can be expressed using the orthogonal property of each axis in the
stationary reference frames, as (9):[

mPLPF
α

mPLPF
β

]
=

ωc

s + ωc
·
[

1 −ωe
ωc

ωe
ωc

1

]
·
[

mα

mβ

]
(9)
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The cut-off frequency ωc is determined to vary proportionally to the synchronous
frequency ωe of the AC motor as delineated in (10):

K =
ωe

ωc
(10)

Finally, the PLPF is expressed as:[
mPLPF

α

mPLPF
β

]
=

ωe/K
s + ωe/K

·
[

1 −K
K 1

]
·
[

mα

mβ

]
. (11)

This conventional PLPF can only be applied to variables in the stationary reference
frame. In order to obtain filtered three-phase variables, an inverse reference frame transfor-
mation is required, as shown in Figure 2.

[
mα

mβ

]
= T

 ma
mb
mc

,

 ma
mb
mc

 = T−1
[

mα

mβ

]
,

T = 2
3

[
1 − 1

2 − 1
2

0
√

3
2 −

√
3

2

]
, T−1 =

 1 0
− 1

2

√
3

2

− 1
2 −

√
3

2

.

(12)
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3.2. Extended PLPF

In this paper, an extended structure of the PLPF is proposed for direct filtering of
three-phase variables. The details are as follows. If (12) is substituted into (8) and both
sides are multiplied by T−1, the extended PLPF is expressed as: mPLPF

a
mPLPF

b
mPLPF

c

 =
ωc

s + ωc
· T−1

[
1 −ωe

ωc
ωe
ωc

1

]
· T

 ma
mb
mc

 (13)

It is easy to show that:

T−1

[
1 −ωe

ωc
ωe
ωc

1

]
· T = 2

3

 1 A B
B 1 A
A B 1

,

A = − 1
2 −

√
3

2 ·
ωe
ωc

, B = − 1
2 +

√
3

2 ·
ωe
ωc

.

(14)

By applying Kirchhoff’s law, i.e., ma + mb + mc = 0, (13) can be written as (15): mPLPF
a

mPLPF
b

mPLPF
c

 = ωe/K
s+ωe/K

 1 −K′ K′

K′ 1 −K′

−K′ K′ 1

 ma
mb
mc


K′ = 1√

3
· ωe

ωc

(15)
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Equation (15) can be simplified further using two-phase information through mb =−mb – mc as:[
mPLPF

a
mPLPF

c

]
= ωe/K

s+ωe/K

[
(1− K′) −2K′

2K′ (1 + K′)

][
ma
mc

]
mPLPF

b = −mPLPF
a −mPLPF

c

(16)

Figure 3 shows a block diagram of the final form for the extended PLPF.
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4. Comparison between Two PLPFs

Figure 4 compares the bode plots among the general LPF, conventional PLPF, and
extended PLPF. In an extreme case where the cut-off frequency is twice the synchronous
frequency, the general LPF results in gain attenuation and phase delay of approximately
−1 dB and 30 degrees, respectively. However, the conventional PLPF and extended PLPF
provide the fundamental component without distortion by compensating for the gain
attenuation and phase delay.
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Figure 5 shows experimentally measured signals for phase currents. A 16-bit micro-
controller, which has a 12-bit ADC and 16 kHz sampling rate, measures the signal from
current sensors whose maximum rating is 150 A. The raw signal ia includes high-level noise
components. The PLPF eliminates the noise without gain attenuation and phase delay, in
contrast with the LPF.
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Figure 5. The filtering performance of the LPF and two PLPFs.

The conventional PLPF and extended PLPF are identical from the standpoints of filter
performance and compensation performance, as shown in the above results. However,
from a signal flow perspective, there is a difference between the two PLPFs.

As shown in Figure 6a, the conventional PLPF requires an inverse reference frame
transformation in order to obtain filtered three-phase variables. Therefore, the signal flows
are complicated and mix both three-phase variables and variables in the stationary reference
frame when adding an algorithm that directly requires three-phase variables.
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Figure 6. Comparison of signal flows between (a) the conventional PLPF and (b) the extended PLPF.

In contrast to the conventional PLPF, the extended PLPF can directly provide the
filtered three-phase variables to the algorithm. The extended PLPF is more useful for
making signal flows clear and intuitive when organizing the algorithm, as shown in
Figure 6b.

Table 1 compares the implementation equation between two PLPFs. The equations of
the PLPF are discretized by using the backward Euler approximate method.



Energies 2022, 15, 2096 7 of 13

Table 1. Comparison between the conventional PLPF and Extended PLPF.

Descriptions Conventional PLPF Extended PLPF

Varying Filter
Coefficient a = (1− b), b = 1

1+(Ts/K)×ωe

LPF iLPF
α (n) = a× iLPF

α (n− 1) + b× iα(n)
iLPF
β (n) = a× iLPF

β (n− 1) + b× iβ(n)
iLPF
a (n) = a× iLPF

a (n− 1) + b× ia(n)
iLPF
c (n) = a× iLPF

c (n− 1) + b× ic(n)

Compensate Gain and Phase
iPLPF
α (n) = 1× iLPF

α (n)− K× iLPF
β (n)

iPLPF
β (n) = 1× iLPF

β (n) + K× iLPF
a (n)

iPLPF
a (n) = (1− K′)× iLPF

a (n)− 2K′ × iLPF
c (n)

iPLPF
c (n) = (1 + K′)× iLPF

c (n) + 2K′ × iLPF
a (n)

T−1 iPLPF
a (n) = iPLPF

α (n)
iPLPF
c (n) = − 1

2 × iPLPF
α (n) +

√
3

2 × iPLPF
β (n)

Do not need

Third Phase Calculation iPLPF
b (n) = −iPLPF

a (n)− iPLPF
c (n)

In recent years, commercial digital signal processors (DSPs) and microcontrollers have
multiply and accumulate (MAC) instructions, which are useful for the calculation of digital
signal processing, as follows:

y = a× b + c× d (17)

The execution load between two PLPFs can be analyzed by counting the execution
number of MAC instructions. The filter coefficient part, third phase calculation part, LPF,
and gain and phase-compensation part in Table 1 are commonly executed and required the
same execution load in the two PLPFs. The case of the inverse transformation, T−1 is not
required in the extended PLPF because it deals with three-phase variables directly.

The microcontroller, from the DSC56F8xxx family of Freescale Semiconductor, Inc.,
provides software libraries for the forward and inverse transformations, T and T−1. Both
libraries require approximately 80 clock cycles. In consideration of the 40 MHz clock
frequency of the microcontroller, execution time of approximately 2µ seconds is required
for the execution of T−1. The minimum requirement for implementing vector control of AC
motor drives is 40 MHz, considering a nominal PWM frequency range from 10 to 20 kHz.
This PWM frequency requires 50–100µ seconds of sampling time and execution time dead
line. Adding filters having the same sampling time of PWM may be critical for keeping
real-time properties. The extended PLPF can reduce this amount of time in comparison
with the conventional PLPF.

5. Case Studies
5.1. Phase Current Measurement Based Dead-Time Compensation

To perform the correct status change of the power switches in the inverter leg, a PWM
generator should insert a small amount of time between the required switching edges for
top and bottom switches. This time is called dead time. The dead time results in a distortion
between the actual voltage, vx

act, and the reference voltage, vx
ref, as in (18) and (19):

vact
x = vre f

x − ∆Vdead·sgn(ix)

sgn(ix) =

{
1 i f ix ≥ 0
−1 i f ix < 0

(18)

∆Vdead =
Tdead
Tpwm

Vdc (19)

where Tdead is dead time, Tpwm is PWM period, Vdc is DC bus voltage.
This distortion due to the dead time is one of main factors of 5 and 7th order harmonic

components for three-phase current of electric motors [16]. The harmonic components result
as a torque ripple and zipper noise, which are critical technical issues in high performance
electric control systems such as an electric power steering system.
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For the dead-time compensation, the LPF and hysteresis band are generally used
as shown in Figure 7. However, the LPF and hysteresis band has limitations when the
current value is relatively small, as shown in Figure 8b. The polarity detection using the
PLPF is an alternative solution of a conventional method which uses a general low-pass
filter and hysteresis bands in order to avoid jittering due to noises as shown in Figure 8c.
Figure 9 shows Total Harmonic Distortion (THD) analysis of phase currents according to
compensation methods.
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Figure 9. THD analysis results of phase currents according to the compensation methods.

When applying PLPF to the dead-time compensation, the extended PLPF is more
intuitive and efficient than the conventional PLPF because the measured three-phase
currents are directly used for compensating three-phase voltages, as explained in Figure 10.
All algorithms are implemented in one layer of three-phase variables without any cross-
layer signal flow.
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Figure 10. Comparison of signal flows between conventional PLPF and extended PLPF for dead-time
compensation.

Figure 11 shows d- and q-axis current during start-up tests. The distortion of phase
current results in d- and q-axis current ripples. As shown in Figure 11b, the proposed PLPF
can be effectively applied during the start-up and transient state. However, for the tran-
sient performance, the fractional value K between the cut-off frequency and synchronous
frequency in Equation (10) should be carefully determined. If higher speed dynamics is
required, a smaller value of K should be selected.
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5.2. Phase Voltage Measurement Based Open-Phase Fault Detection

There have been many studies on the detection of the open-switch faults. The detection
methods for open-switch faults are largely classified into two categories, according to
whether the methods are current-based or voltage-based [15]. In current-based methods, it
is difficult to isolate if a fault has occurred in the inverter from within the machine under
fast dynamic load conditions. In contrast, the voltage-based method has the advantage
of isolating the source of faults. However, the voltage-based method requires additional
conditioning circuits, including voltage dividers and filtering circuits, in order to remove
high frequency switching components of a pulse width modulation (PWM) inverter.

Figure 12a shows the basic concept of detection of open-switch faults of one phase
using voltage measurements. The measured voltage, ûxo, is directly compared with the
reference value, u∗xo, of the controller. The comparison result is used as an instantaneous
residual in order to detect whether the switch state is normal or open faulted.

γx = u∗xo − ûxo (20)Energies 2022, 15, x FOR PEER REVIEW 11 of 13 
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Figure 12. Voltage measurement-based open-switch fault detection: (a) detection concept; (b) detec-
tion results at higher load conditions; and (c) detection results at lighter load conditions.

Figure 12b,c show the experimental results in order to indicate the instantaneous
residual variation both at the normal and at the fault state. The top switch of phase A is
open at zero seconds, and the peak value of the reference voltage is 6 V. Figure 12a shows
the case with a load torque of approximately 0.5 Nm; in Figure 12b the load torque is
0.1 Nm. The specifications and parameters of the sample motor are given in Table 2. The
residual varies according to the operating conditions because the angular velocity and the
back EMF vary according to the amount of applied loads [15].

Table 2. Parameters and specifications of an AC drive system.

Parameters Value Unit

DC Bus Voltage 12 [V]
Current(peak) 15 [A]

Max Speed 3000 [rpm]
Max Load Torque 0.5 [N·m]
Stator resistance 0.048 [Ω]

Stator inductance 0.175 [mH]
Rotor flux linkage 6.55 [mWb]

Number of pole pairs 12 -
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As mentioned in previous sections of this paper, the low-pass filter (LPF) circuit with a
proper cut-off frequency is indispensable but the LPF causes a gain attenuation and phase
delay. To determine proper cut-off frequency is the main consideration to avoid mis-alarms
or false alarms of the open-phase detection, as shown in Figure 13.
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Figure 13. Difference between reference and measured voltage according to filter: (a) low-pass filter
(LPF) with a 3 kHz cut-off frequency; (b) LPF with a 0.3 kHz cut-off frequency; and (c) extended
PLPF with a 0.3 kHz cut-off frequency.

With a higher cut-off frequency of 3 kHz, as shown in Figure 13a, the gain attenuation
and phase delay can be neglected, but it is not enough to remove the switching components
of voltage. Higher harmonic components remain, thus making it difficult to detect normal
or fault conditions under the light load conditions. If the cut-off frequency is reduced to
300 Hz in order to strongly remove the switching components, the gain attenuation and
phase delay effects increase, as shown in Figure 13b.

The proposed extended PLPF is directly applied to the phase voltage measurements
to remove high-frequency switching components and to avoid the gain attenuation and
phase delay effects of low-pass filter, as shown in Figure 13c. In contrast to the conventional
PLPF, the extended PLPF makes the signal flows clear and intuitive only in the three-phase
variable layer, as shown in Figure 14. It also helps to reduce execution time in the same
manner as for dead-time compensation, as discussed in Section 5.1.
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6. Conclusions

This paper proposes an extended structure of a programmable low-pass filter (PLPF)
and compares it with the conventional PLPF. The two PLPFs are identical from a filter per-
formance standpoint, and both filters adjust cut-off frequency according to the synchronous
frequency, and compensates for gain attenuation and phase delay.

The conventional PLPF, however, can only be applied to variables in the stationary
reference frame. In order to obtain filtered three-phase variables, an inverse reference frame
transformation is required. However, the extended structure, which includes reference
frame transformations, can be directly applied to three-phase variables and can remove
the noise in the earlier stage before transformation. The extended PLPF is more useful for
making signal flows clear and intuitive when organizing an algorithm that directly requires
three-phase variables, e.g., inverter dead-time compensation based on a polarity check of
phase currents, and inverter open-switch fault detection based on measurements of phase
voltages for low-cost automotive applications such as electric pump and fans.

From comparison results for the implementation equations between the two PLPFs,
the extended PLPF reduces the execution time by 2–3 µ seconds in comparison with the
conventional PLPF based on a low-cost microcontroller with a 40 MHz clock frequency.
Although this may appear to be a small improvement, the reduction in the execution time
is not a negligible contribution considering that the entire control algorithm should be exe-
cuted within 50–100 µ seconds of the general PWM period (10–20 kHz PWM frequency) and
the software of the AC drive system is becoming more complicated and more integrated.
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