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Abstract: Despite the benefits of wind and solar photovoltaic generation, its stochastic characteristic
imposes uncertainties on the electric power system’s transient stability. The dynamics considering
large synchronous generators has been studied for many decades, and its behavior is well known.
On the other hand, the penetration of renewable sources has reached records, showing that it is still
vital to study their impact. The present work proposes computer modeling and simulations for the
dynamic analysis of electromechanical stability in a transmission system with significant renewable
generation. In general, the literature does not propose solutions to the electromechanical stability
analysis, proving that there are gaps to be filled. Therefore, the main work contribution consists of
designing and coupling a battery energy storage system to a solar plant to smooth power variations.
A significant innovation is the proposition of different scenarios that replicate disturbance situations,
where the analyses were carried out using the Brazilian grid code. It was possible to evaluate the
robustness of the proposed system and the efficiency of the storage system in mitigating the impacts
of renewable generation. Thus, it is possible to achieve high levels of renewable penetration if
extensive and rigorous studies are carried out.

Keywords: electromechanical stability; energy storage system; grid codes; power systems analysis;
renewable energy

1. Introduction

Electricity generation through renewable sources, especially wind and solar photo-
voltaic (PV) energy, has brought several systemic and environmental benefits. On the
other hand, this generation brings negative impacts from a technical, operational, and
regulatory point of view compared to large synchronous generators, traditionally used
in the electric power system (EPS) [1,2]. These plants have limitations in attenuating the
disturbances occurring in the grid since they do not have the kinetic energy contained in
the rotor, such as conventional generators, being coupled to the grid through electronic
power converters [3–5].

The stochastic characteristics of wind and solar generation impose uncertainties about
quality and reliability, in addition to which they tend to compromise the transient stability
of the system in short periods (seconds to minutes) [6,7]. With the large-scale replacement
of large generators, the general inertia of the system is reduced, implying the compromise
of stability and making the system more dynamic and oscillatory. Thus, the disturbances
may start to affect the voltage and frequency levels [8–10].

Although the efforts of the scientific community and the industry are high, the contin-
uous innovations and speed of penetration of new technologies are a challenge to favor
the transition from EPS to a low-carbon matrix considering the technical and economic
feasibility [2]. With so many variables at stake, planners, operators, and investors must
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carry out rigorous preoperational and commissioning studies, essential for the system’s
stable operation [2].

1.1. Energy Storage Systems in the Expansion of Renewable Sources

Among the alternatives proposed to mitigate the negative impacts of intermittent
sources, the growth in the application of energy storage systems (ESS) stands out, especially
with the use of batteries (battery energy storage system, BESS) [9,11]. Recent data obtained
from the International Energy Agency (IEA) show that several storage technologies are
already consolidated in the commercialization phase, while others are in the research and
development stage: electrochemical batteries, flywheel, compressed air, and supercapac-
itors, among others [12]. The range of applications is diverse, which has attracted the
attention of distribution and transmission agents and sector investors for benefits related to
regulatory compliance, i.e., extra support for conformation with the strict standards of EPS
regulators [9,11,13].

The literature is extensive regarding the application of (ESS). The authors of [2,5,14–16]
showed the use of ESS for smoothing the power delivered to the grid, highlighting the
fact that it is possible to solve the intermittence of renewable sources and stabilizing the
energy supply. Frequency regulation using an ESS was studied by [4,8,11,17,18], it has been
the subject of much investigation, especially in the context of intelligent microgrids and in
response to disturbances. EPS operators and regulators have required ancillary services
from large renewable generating units. In this sense, the authors of [17,19,20] showed
how it is possible to associate the ESS with renewable sources to adapt to the operational
requirements. Despite their considerable contributions, the studies analyzed did not
consider the regulator’s requirements or the grid codes for the operation of renewable
generators in the EPS.

Additionally, many studies have been developed to propose optimization techniques
applied to electrical grid technical and economic management with the penetration of
renewable sources considering ESS. In [21], energy storage was used as a backup op-
tion to reduce energy fluctuation in a distributed hybrid generation system. A particle
swarm-based method was proposed to improve performance, reduce costs, and improve
availability. Factors such as optimal capacity, energy dispatch, and techno-economic aspects
were considered in [22]. The study proposed a framework for optimizing the design and
management of a hybrid and autonomous microgrid. In [23], an optimization strategy was
proposed applied to energy quality issues to improve the integration of renewables with the
grid. A comprehensive analysis was performed considering technical and economic factors,
power quality, and the effects of renewable energy and FACTS devices. The analysis of the
cited articles shows that the approach for determining technological solutions that aim to
overcome the adverse effects of renewables is diverse. This area can consider short-term
variations and uncertainties, as proposed in this work, or they can accommodate issues
related to long-term variations. The focus for approaching the problem is distinct, requiring
appropriate solutions on a case-by-case basis.

1.2. Transient and Electromechanical Stability

A system is robust and has electromechanical stability when, even after a disturbance
has occurred (unpredictable events such as a short-circuit, closing or opening of a switch,
and output or input of a load), it operates within the voltage limits and frequency, while
the generators, contained in this system, are kept in sync with the electrical grid [1,24]. The
stability is conventionally classified into three areas: angular stability, frequency stability,
and voltage stability, all of which are contemplated and analyzed in this work [25,26].

Several studies related to these questions have been developed. The authors of [27–31]
analyzed the impacts related to stability considering the penetration of renewable sources
and power electronic devices. The authors agreed that the high penetration of renewable
sources decreases the resilience of EPS, imposing a series of challenges in the integration
of these resources. Only [9] promoted mitigation measures for the problems found in
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the works analyzed. Nevertheless, the results were not analyzed considering connection,
operational, and regulatory requirements. The analysis of these works shows gaps that can
be filled, highlighting the contributions of the present work.

1.3. Grid Codes

In EPS, specific procedures and standards for the connection and operation of wind and
solar plants are common. In many cases, they need to operate within predetermined voltage
and frequency limits, even if critical. In addition, depending on the rated power, they must
contribute to providing ancillary services and support in disturbance events [32,33].

Many regions have already reached appreciable maturity levels when it comes to oper-
ating with intermittent sources, as can be seen in Europe, Asia, and the United States [33–35].
The technical premises establish requirements related to voltage stability, frequency stability,
withstanding undervoltage and transient overvoltages (low-voltage ride through, LVRT),
power quality, and regulation of active and reactive power injection [36,37]. In Brazil, for
example, the National System Operator (ONS in Portuguese), the body responsible for the
operation of the National Interconnected System (SIN in Portuguese), has well-established
technical requirements for access and operation of intermittent generating units to the
transmission system [38].

In this sense, whenever a new power generation plant needs to be connected to the
electricity grid, the regulator requires several studies through modeling and computer
simulations. These studies seek to emulate the behavior of this plant when connected
to the grid, considering several parameters and contingency scenarios. The literature
review showed a lack of consideration of this aspect in developing studies, where only [37]
made contributions in this area. In this work, a generic grid code was defined considering
requirements for future scenarios with high shares of renewable energies. However, the
tests and results were performed considering only one wind generator, neglecting the
complex interrelationship characteristic of real systems.

1.4. Work Objectives and Contributions

The dynamics and electromechanical stability of EPS considering large synchronous
generators have been studied for many decades; therefore, they already own well-defined
operating patterns. On the other hand, high penetration levels of renewable sources have
been achieved in recent years. Thus, the system behavior needs to be understood to make it
possible to improve operating standards. The literature is unanimous in the understanding
that uncertainties are intrinsic to systems with high penetration of renewable generation,
requiring investigations to verify their impact on the stability of the EPS [4].

For this reason, the focus of this work was on performing a dynamic analysis of elec-
tromechanical stability in a transmission system with significant penetration of renewable
generation. Wind and solar generation sources were used to characterize the work because
they are described as great allies in the current context of the energy transition, being the
most promising in the future world energy matrix [5].

The study was based on computer modeling and simulations, having as a great
advantage the use of mathematical models, norms, and consolidated and internationally
accepted standards. This guarantees the reliability of the proposed analysis in future
reproductions of the work. The simulation and analysis of multiple renewable energy
sources acting in the transmission system stand out. Additionally, the construction of
scenarios and analyses were carried out considering the normative determined by the
Brazilian regulator and can be replicated utilizing regulations of the other countries.

Thus, the contributions of this work are as follows:

• Evolution of studies related to the joint and simultaneous operation of renewable sources,
storage systems, and electrical systems. Three-phase modeling of the transmission
system, allowing more excellent coverage in the analysis of electromechanical stability.

• Modeling, simulations, and analyses carried out considering the current Brazilian grid
codes with the possibility of replication in other countries.



Energies 2022, 15, 2060 4 of 23

• Design, control, and coupling of BESS to the solar plant, contributing to smoothing
the power delivered to the grid and minimizing the operational uncertainties.

2. Proposed Modeling for Transient Analysis
2.1. Wind Power Plant

Among the different types of generators used in the wind energy conversion system,
the DFIG, illustrated in Figure 1, is the most applied today, having dominance in the market
and being selected for this work. The control contained in these wind turbines seeks to
operate in maximum power point tracking (MPPT) for each wind speed [39]. In addition, it
stands out for its many advantages related to the technical and economic aspects [40,41].
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Figure 1. Simplified DFIG diagram.

The DFIG consists of a wound rotor induction generator connected to the turbine
through a gearbox [39]. In this technology, the stator windings are directly connected to
the three-phase grid and the rotor windings are directly connected to a converter. In this
work, a back-to-back converter composed of a rotor-side converter (RSC) and a grid-side
converter (GSC) was used [39,42]. The GSC acts to keep the voltage on the DC link constant,
generating or absorbing reactive power. The RSC controls the flow of active and reactive
power, making it possible to operate the turbine in the MPPT.

Among the various DFIG control modes found in the literature, the strategy employed
in this work used voltage-oriented vector control (VOC) [42,43]. Among its many ad-
vantages, this control allows a simplified representation of the variables of the electric
generator (given in three-phase coordinates abc) from two-phase coordinates dq [39]. In
the dq reference frame, magnitude decoupling is possible, which results in independent
control of active (P) and reactive (Q) power [43].

For a complete understanding, mathematical equations and further explanations can
be found in [39–44].

2.2. Solar Power Plant

The topology for modeling the PV generation plant was composed of three elementary
parts, as illustrated in Figure 2. The output terminals of the PV array were connected to a
DC/DC converter of boost topology to stabilize the voltage and maintain the system in the
MPPT [45,46]. In the control strategy of this converter, the power output of the PV array
was compared with a reference signal from the MPPT and then fed to a PI (proportional
integral) controller, which generates the duty cycle and the switching for the converter [47].
In this work, the MPPT algorithm applied featured incremental conductance with integral
regulation [48]. The classical technique is based on the principle of perturbation and
observation, being easy to implement with good performance in the steady state and with
a quick response to changes in irradiance. Lastly, the output of the converter is connected
to an electronic DC/AC power inverter, with a VOC-based control strategy, similar to the
one described in Section 2.1 (where the d axis, from the synchronous reference, is aligned
with the mains voltage vector) [42,45–48].
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Figure 2. Simplified solar power plant diagram.

2.3. Hydroelectric Power Plant

Even today, much of the electrical energy generated worldwide comes from syn-
chronous, thermal, or hydraulic machines that can operate in parallel with the grid [49,50].
They have a significant moment of inertia and many attributes favorable to EPS considering
transient stability and reliability [26]. Therefore, a hydroelectric plant with a salient pole
synchronous generator was considered, as shown in Figure 3.
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Figure 3. Simplified hydroelectric power plant diagram.

The input and output variables of the excitation system are Vre f
∗ the reference value

of the stator terminal voltage and Vf the field voltage for the generator. The turbine and
speed governor inputs are We the actual machine speed, Wre f the reference speed, Pe0 the
nominal electrical power of the machine, Pere f the mechanical reference power, and dw
the speed deviation. The inputs are processed by a PID controller (proportional, integral,
derivative), which produces the generator’s output signal (Pm), representing controlled
mechanical power.

The synchronous machine model considered the dynamics of the stator windings, field,
and dampers. Similar to the one presented in Section 2.1, the dq synchronous reference
was applied to conceptualize the equivalent circuit and equate the machine. The rotor
parameters and the electrical quantities were analyzed from the stator in this representation.

The turbine and speed governor modeling was based on the document “Hydraulic
Turbine and Turbine Control Models for Dynamic Studies” found in [51,52]. This model
was chosen by the level of maturity, being very useful in studies such as the one proposed.

The excitation system was implemented as the type 1 model established by [53]. In
this system, the generator terminal voltage (Vf ) is adjusted through a controller where the
comparison of the input signals generates an error that is changed. Finally, the signal is
used in the exciter that operates in the established range. More details about the excitation
system, its working principle, and control theory can be found in [51,53].

2.4. Transmission Grid
2.4.1. Lines, Transformers, and Loads

The transmission lines were represented by the π model (concentrated) in a similar way
to the practices adopted in electromechanical transient stability studies since it has reduced
computational effort and satisfactory accuracy [3,54]. Contrary to the distributed parameter
line model where resistance, inductance, and capacitance are uniformly distributed along
the line, the π model groups the line parameters into a single section [3].
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The transformers used in this study were represented by the classic two-winding
model [55]. The model considers winding resistances (R1 and R2), leakage inductances (L1
and L2), and core magnetization characteristics (Rm and Lm), where losses are considered,
but saturation characteristics are not considered [55].

The loads were represented by three-phase dynamic models expressing the active
and reactive power consumed over time, varying as a function of the magnitude of the
positive sequence voltage of the buses. The premise has been established that load currents
are balanced even under voltage unbalance conditions [3,56]. The active (PL) and reactive
(QL) power of the loads are considered separately, and the voltage dependence is given by
exponential functions [3].

2.4.2. Test Transmission Grid

The single-line model diagram is illustrated in Figure 4 and represents a transmission
grid that operates at high voltage (230 kV), defined in Brazil as the primary or basic grid.
Although it is a relatively small model compared to other systems also used, it allowed the
application of all the concepts proposed by the present work [50].
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Figure 4. Single-line transmission system diagram.

The test grid was obtained by adapting the famous Western System Coordinating
Council (WSCC), usually discussed in the literature [1,25,49,50], with parameters obtained
from [57]. The system consists of six buses, eight lines, and three generation sources, with
bus 1 being the reference bus (slack). Adaptations were carried out to make the proposed
studies viable, highlighting the addition of the wind power plant (165 MW), the solar PV
plant (20 MW), and the hydroelectric plant (100 MW).

3. Proposal for Coupling BESS to the Solar PV Plant

Solar PV generation is subject to weather conditions such as passing clouds and sudden
weather changes, which causes uncertainties and sudden variations in generation [47,58].
For this reason, when the penetration of this source in the EPS is high, the oscillation in the
generation can cause the loss of large blocks of power, implying impacts on the transient
stability [47].

For the reasons explained, a BESS was designed to smooth the solar plant output,
aiming to mitigate the variation in the power delivered to the grid and eliminate sudden
drops in energy generation. The coupling of the BESS with the power plant is illustrated in
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Figure 5 and was carried out by integrating three components: battery bank, bidirectional
DC/DC buck–boost converter, and control unit.
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Figure 5. BESS-equipped PV solar plant diagram.

A lithium ion (Li-ion) battery was chosen because it is the technology with the most
significant application in EPS, according to IEA data [12]. Some advantages are its com-
position of sealed cells that do not require maintenance, long life cycle, wide operating
temperature range, fast charging, high efficiency in charge and discharge mode, high energy
density, flexibility, modularity, and speedy response time (in milliseconds) [9,11,13].

3.1. Modeling the Lithium-Ion Battery Bank

The modeling of the batteries was carried out using the model presented by Tremblay
et al. [59]. This model can accurately represent the characteristic curves of electrochemical
batteries when compared with the manufacturer datasheet [60,61]. According to tests,
the accuracy for the lithium battery corresponded to a margin of error of ±3% [59]. The
mathematical model is given by different equations for charge and discharge [62].

Vbat = V0 − K
Q

it + 0.1 · Q
i∗ − K

Q
Q − it

it + Aexp(−Bit), (1)

Vbat = V0 − K
Q

Q − it
i∗ − K

Q
Q − it

it + Aexp(−Bit), (2)

where Vbat is the battery voltage, V0 is the voltage constant (V), v is the polarization constant,
Q is the battery capacity, it is the capacity extracted, i∗ is the filtered reference current, A is
the exponential voltage zone, and B is the exponential capacity.

The battery state of charge (SOC) (which ranges from 0 to 100%) is given by

SOC = 100
(

1 − 1
Q

∫ t

0
i(t) dt

)
. (3)

3.2. Bidirectional Buck–Boost Converter

The converter topology employed is illustrated in Figure 6, which allows current and
power to flow from the battery to the DC link and vice versa, ensuring the reversal of
power flow between the two systems as needed [45,60].
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3.2.1. Converter Switching and Control Strategy

The management of the charging and discharging stages of the battery bank takes
place by controlling the current flowing through the inductor L (Figure 6). The converter
must operate in continuous conduction mode, acting in two stages since the current flowing
through the circuit can be positive or negative. For this, the switch S1 is controlled in a
complementary way to S2 , and they never operate simultaneously. Their activation is
performed by a train of PWM pulses, causing the switches to turn on in the first subinterval
and turn off in the following subinterval [45].

In the considered system, the DC link voltage of the PV plant is higher than the BESS
voltage. Thus, the converter acts in buck mode in the charging process, lowering the voltage
to the BESS level. Otherwise, in the discharge process, the converter operates in boost
mode, raising the voltage level to the nominal value of the DC link. The details of these
two stages are presented in Figure 7.
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The operating steps of this converter were similarly addressed by [63] and can be
described as follows:

• Stage 1 (discharge, boost), power flow from the battery bank (Veq) to the DC link
(Vdc): When switch S1 is on, the diode D2 is reverse-polarized, and then the batteries
deliver current to inductor L (Figure 7a). When switch S2 is on, the diode D1 is
reverse-polarized, and inductor S1 supplies power to the DC link (Figure 7b).

• Stage 2 (load, buck), power flow from the DC link (Vdc) to the battery bank (Veq): When
switch S2 is on, diode D1 is reverse-polarized, and the DC link supplies current to
inductor L (Figure 7c). When switch S1 is on, diode D2 is reverse-polarized, and the
inductor L delivers power to the batteries (Figure 7d).

The converter, battery, and control set must manage the power delivered to the grid.
For this, the converter operates in buck mode (charging the battery) at power levels above
the established reference. On the other hand, the converter operates in boost mode for
power below the reference, discharging the battery to maintain the power level at the
reference as proposed in [64]. The adopted control strategy is illustrated in Figure 8.
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The reference power P∗ is compared with the active power (Ppv) produced by the
PV array [65], generating a signal that is divided by the value of the battery voltage (Vbat)
and producing the current reference I∗. It is compared to the battery current (Ibat) and
processed by the PI controller. The result is compared to a 12 kHz constant frequency
triangular producing the pulses for switches S1 (boost signal) and S2 (buck signal). A
better understanding can be obtained by analyzing in Figure 7 together. In this control
strategy, the logic is established by Equation (4).{

i f P∗ > Ppv, the battery is charged, absorbing energy f rom the DC link;
i f P∗ ≤ Ppv, the battery is discharged, injecting energy into the DC link.

(4)

4. Tests and Results
4.1. Electromechanical Stability Analysis: Initial Guidelines and Assumptions

The simulations were proposed in the time domain considering the transmission sys-
tem illustrated in Figure 4. All grid components, including alternating current generators,
wind power plant, solar power plant, transformers, and loads, were represented by detailed
three-phase models, and the parameters used are available in Appendix A. Modeling and
simulations were performed with Matlab® and Simulink® software [66]. Some guidelines
and assumptions are presented below.

• The analyses were conducted on the basis of the current Brazilian grid code, Grid
Proceedings [38]. The main tables and figures used for the analysis are in Appendix B,
and the sign convention is illustrated in Figure 9;

• According to guidelines for electrical studies obtained, all simulations were performed
under a time horizon of 15 s (using an initial state vector to start the system in the
steady state) [38];

• In the variables calculated and presented in pu (values per unit), the base power was
100 MW, and the base voltage was equal to the rated voltage of the bus itself;
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• The Brazilian standard frequency is 60 Hz where, as established in [38], under normal
conditions (permanent regime, without the occurrence of disturbances), it should not
exceed ±0.1 Hz. Its means that deviations from the nominal regime frequency must be
within the limits of 59.9 Hz to 60.1 Hz. The literature defines as steady-state oscillation
dead zone or dead band [4];

• Regarding voltage, the operating limit in the steady state is understood by the ratio
0.95 < V < 1.05, and the generators need to operate in this range without being turned
off [38]. To this end, the graphs contain a red dotted line showing the upper (1.05) and
lower (0.95) limits;

• The scenarios were designed to cover different operating conditions of the EPS, fol-
lowing the preoperational studies required by the ONS to request access to the grid
commissioning, among others [38].
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4.2. Scenario 1: Three-Phase Fault at Wind Power Plant Terminals

In the first scenario, one symmetrical and balanced three-phase fault involving earth
occurred at the wind power plant terminals (Bus 4, Figure 4). The event was transient,
starting at 3 s and ending at 3.1 s (duration 100 ms).

As used in studies of transient stability in significant disturbances, variations in
wind speed (wind plant), irradiance and temperature values (solar plant), and inflow
(hydroelectric plant) were not considered [67]. All generating units continued to deliver
their rated active power to the grid, with the reactive power adjusted to 0 Mvar (unit
power factor).

In the wind farm, the wind speed was constant at 15 m/s (speed relative to the
extraction of rated power), with the pitch angle of the turbines set at 8.7◦ and the generator
speed at 1.2 pu. The irradiance and temperature values of the solar plant were 1000 W/m2

and 25 ◦C, respectively.

4.2.1. Generators Analysis

In the wind farm (Figure 10a), the solar plant (Figure 10b), and the hydroelectric
plant (Figure 10c), the occurrence of short-term voltage variations (STVVs) can be noticed
according to Table A11 (Appendix B). The Brazilian operator classifies this disturbance as a
momentary voltage sag (MVS), where the voltage value is between 0.1 and 0.9 pu for an
interval ≥1 cycle and ≤3 s [38]. In the proposed graphs, the red dotted line shows the upper
and lower limits within which the voltage must remain in a steady state (0.95 < V < 1.05).

As expected, the greater MVS occurred at the wind farm, given its proximity to the
fault point. All generators returned to the steady-state condition within about 2 s of
the disturbance. As regulated by Brazilian grid codes, wind and solar generation must
avoid shutdown due to voltage instability, operating within limits established by the
LVRT curve observed in Figure A2 (Appendix B). All voltage curves remained within the
permitted zones, and none of the generating plants were shut down. The load angle of
the synchronous generator, illustrated in Figure 10d, oscillated; however, it returned to the
original pre-fault position, indicating angular stability.
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Figure 10. Scenario 1 results for the system generators: voltage (V), active power (P), reactive power
(Q), and voltage zoom. (a) Wind power plant; (b) solar power plant; (c) hydroelectric power plant;
(d) hydroelectric power plant: loading angle and zoom.

4.2.2. Bus and System Frequency Analysis

Results relative to system buses are shown in Figure 11. As with the generators
(Section 4.2.1), there was severe MVS, but with a magnitude and duration shorter than
the time of action of the protection system, which would lead to service interruption [38].
The most expressive MVS occurred in the buses closest to the short circuit, justified by
the influence of the impedances of the transmission lines. All analyzed variables returned
to the normal condition in about 2 s (120 cycles at a frequency of 60 Hz), soon after the
extinction of the fault, after a short oscillatory regime. In conclusion, the system appeared
to be robust, behaving stably.

Lastly, the system frequency is shown in Figure 12, where it is noted that the severity
of the fault did not impose significant disruptions to the system. The frequency amplitude
exceeded the dead band limits by 0.12% (above) and 0.18% (below). The frequency variation
did not exceed the limitations of the buses (Table A10, Appendix B) or the operating
requirements of the generators (Figures A1 and A2, Appendix B).

4.3. Scenario 2: Load Rejection at Bus 5

The load localized at bus 5 (Figure 4) was temporarily disconnected from the system.
Switching occurred at 3 s with a duration of 100 ms. The generation kept up to the
same standards described in scenario 1 (Section 4.2). The load removed from the system
corresponds to approximately 23% of the loading level, and its participation in the energetic
balance is quite significant. Albeit at a lower intensity than recorded in the first scenario,
there was a critical disturbance event in the system.
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Figure 11. Scenario 1, results for the system buses: voltage (V), active power (P), reactive power (Q),
and voltage zoom. (a) Bus 1; (b) bus 2; (c) bus 3; (d) bus 4; (e) bus 5; (f) bus 6.
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Figure 12. Scenario 1, system’s frequency: (a) frequency; (b) frequency (zoom).

4.3.1. Generators Analysis

In the wind farm (Figure 13a) and solar plant (Figure 13b), there was a momentary
voltage rise (MVR): variation in which the amplitude concerning the rated voltage is greater
than 0.1 pu, with an interval ≥1 cycle and ≤3 s (Table A11, Appendix B) [38]. In the
hydroelectric plant (Figure 13c), the level of variation is not expressive, not exceeding
the limits of steady states. The load angle of the synchronous generator (Figure 13d)
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quickly stabilized, returning to the original position. The magnitude of the fault did not
impose large disturbances to the point of compromising the normal operating levels of the
generators as established in the LVRT curve (Figure A3) [38]. In the proposed graphs, the
red dotted line shows the upper and lower limits within which the voltage must remain
when in a steady state (0.95 < V < 1.05).
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Figure 13. Scenario 2 results for the system generators: voltage (V), active power (P), reactive power
(Q), and voltage zoom. (a) Wind power plant; (b) solar power plant; (c) hydroelectric power plant;
(d) hydroelectric power plant: loading angle and zoom.

4.3.2. Bus and System Frequency Analysis

The results for the system buses are illustrated in Figure 14. The impacts of the load
output were reflected in the system, with the MVR observed in all buses [38]. However, the
severity and duration would not result in sudden activation of the protection system (not
considered in this work). The system returned to steady state in 2 s (120 cycles at 60 Hz),
showing electromechanical stability.

The system frequency (Figure 15) was also impacted but with a lower degree of
compromise compared to the occurrence of a three-phase fault. The amplitude of the
variation extrapolated the dead band limits, but not aggressively. The frequency stabilized
in about 2 s, showing that the system has stability for load shedding cases.
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Figure 14. Scenario 2, results for the system buses: voltage (V), active power (P), reactive power (Q),
and voltage zoom. (a) Bus 1; (b) bus 2; (c) bus 3; (d) bus 4; (e) bus 5; (f) bus 6.
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Figure 15. Scenario 2, system’s frequency: (a) frequency; (b) frequency (zoom).

4.4. Scenario 3: Power Variation at the Solar Power Plant and BESS Performance

Lastly, tests related to the integration of BESS to the solar plant were carried out. The
reference of the control P∗ (Section 3.2.1) was adjusted to deliver a constant power of
16 MW, regardless of fluctuations in the PV generation. In this configuration, BESS has
an autonomy of 3 h. Additionally, BESS can support PV system failure events, including
moments of complete generation loss. The generation of wind and hydroelectric plants
remained constant. The irradiance and temperature curves shown in Figure 16 were used
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in the solar plant. As illustrated, from 0 to 4 s, there was considerable variation, and the
generation was entirely zeroed between 4 and 9 s. This situation simulates the effect of full
shading of the plant, which implies the complete loss of power delivered to the grid. After
9 s, the irradiance recovered growth, stabilizing at 800 W/m2.
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4.4.1. Solar Plant in Conjunction with BESS Analysis

In the graph presented in Figure 17, the power curves of the solar plant and BESS were
plotted simultaneously. Note that the solar plant completely lost its generation between
4 and 9 s, as shown in the graph. During this period, it is observed that the power curve
delivered by BESS was complementary to the curve of the solar plant. When the solar plant
completely lost its generation, BESS injected the energy necessary to maintain the power
delivered at the reference level (16 MW). In this way, the storage system mitigated power
variations in power outages.
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Figure 17. Solar plant and BESS curves.

Figure 18 illustrates the behavior of the variables evaluated comparing two cases: with
and without BESS. Regarding voltage, no variations were noticed that could compromise
the standardized indices [38]. Concerning the power, the smoothing promoted by BESS
brought gains to the system since it kept the flow of energy delivered to the grid constant,
contributing to its stability and reliability.
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Figure 18. Solar plant with BESS and without BESS: (a) voltage (V), active power (P), and reactive (Q)
power; (b) active power (zoom).

4.4.2. Bus and System Frequency Analysis

The results for the system buses are illustrated in Figure 19. For both cases (with
and without BESS), all the system buses kept their voltage level within normal conditions
(0.95 < V < 1.05, red dotted line in graphs) [38].
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Figure 19. Scenario 3 results for the system buses: voltage (V), active power (P), reactive power (Q),
and active power zoom. (a) Bus 1; (b) bus 2; (c) bus 3; (d) bus 4; (e) bus 5; (f) bus 6.

It is essential to emphasize the behavior of the active power variation in all the buses. It
can be seen that the BESS coupled to the solar plant could act by mitigating the fluctuations
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in the active power of the solar plant, replicating the benefit of power smoothing for all
the other system buses. BESS’s additional active energy support improved energy export
flows, making the system more stable, reliable, and robust.

5. Conclusions

The present work produced a dynamic analysis study through computational model-
ing and simulation, focusing on electromechanical stability. Three scenarios in a transmis-
sion system with significant penetration of wind, solar, and hydraulic generating plants
were composed and analyzed according to the Brazilian grid code [38]. The coupling of
BESS was also carried out as an alternative to attenuate power fluctuations/variations in
the solar generation unit.

The results were encouraging, verifying that the penetration of intermittent sources in
the considered transmission system did not compromise the standardized limits and did
not bring risks to the transitory stability. This shows that relatively high penetration levels
can be achieved, provided that the due studies are validated.

Like other analysis techniques, as proposed in [21], electromechanical stability anal-
ysis is a tool that can help evaluate the performance of the electrical grid with the wide
application of renewable sources. The results obtained to the proposed system showed
good performance in the joint operation between renewables and the high-voltage trans-
mission grid. Additionally, the application of BESS shows promise for energy fluctuations.
However, this solution may not be technically or economically viable for any grids. In some
cases, the analysis can achieve results that demonstrate the need for a specific solution.

The present is marked by the improvement of technology related to storage systems,
being an opportune moment for applications on a utility scale, primarily to mitigate the
adverse effects of renewables and provision of ancillary services [12]. This improvement
has technical and economic characteristics, generally associated with increased energy
density and price reduction [9]. As the new sources comply with the technical requirements
of connection to the power grid, their expansion in the system is guaranteed. Thus,
modernization and the energy transition become possible starting from technical premises.
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Appendix A

Table A1. Wind power plant parameters.

Description Value Unit

Rated power of a DFIG turbine 1.5 MW
Number of turbines 110 unit
Full power 165 MW
Rated voltage rms (L–L) 575 V
Number of poles 3 unit
Stator resistance 0.023 Ω
Rotor resistance 0.019 Ω
Stator inductance 0.18 H
Rotor inductance 0.16 H
DC link voltage 1150 V
DC link capacitor 10 µF
Wind speed to rated power 15 m/s
Wind turbine inertia constant 4.32 s
Maximum pitch angle 27 ◦

Table A2. Solar power plant parameters.

Description Value Unit

Interconnected power plants in the PCC 2 unit
Rated power (per plant) 10 MW
Rated power (total) 20 MW
PV module model SPR-305-WHT-D -
Number of modules in series (per plant) 50 unit
Number of modules in parallel (per plant) 660 unit
Maximum rated power of the module 30,523 W
Number of cells per module 96 unit
Voltage at the maximum power point 54.7 V
Current at the maximum power point 5.58 A
Open-circuit voltage 64.2 V
Short-circuit current 5.96 A

Table A3. BESS parameters (battery bank).

Description Value Unit

Rated energy 48 MWh
Nominal capacity 40,000 Ah
Rated voltage 1200 V
Voltage at full load 1413.559 V
Rated discharge current 8698.652 A
Initial state of charge 50 %
Capacity at rated voltage 19,230.77 Ah
Voltage constant 1301.5896 V
Internal resistance 0.0006 Ω
Polarization resistance 0.00074744 Ω
Exponential zone 1301; 4000 V; Ah

Table A4. BESS parameters (buck–boost converter).

Description Value Unit

Inductor 5 mH
Output capacitor 8 µF
IGBT resistance 0.001 Ω
Switching frequency 12 kHz
Input voltage 1200 V
Output voltage 5000 V
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Table A5. Hydroelectric power plant parameters (synchronous generator).

Sn
(MVA)

Pm
(pu)

H
(s)

Rs
(pu)

XI
(pu)

Xd
(pu)

X’d
(pu)

100 0.85 3.01 0.0031 0.005 1.3125 0.1813

X”d
(pu)

Xq
(pu)

X”q
(pu)

T′do
(pu)

T”do
(pu)

T′qo
(pu) ρ

0.13 1.2578 0.1 5.89 0.04 0.099 20

Table A6. Hydroelectric power plant parameters (excitation system).

Tr
(s) Ka Ta

(s) Ke Te
(s)

Tb
(s)

Tc
(s) Kf Tf

(s)
Efmax
(pu) Kp

0.005 250 0.1 1 0.65 0 0 0.048 0.95 7 0

Table A7. Hydroelectric power plant parameters (speed governor).

Ta
(s) Ka Rp Kp Ki Kd Td

(s) β
Tw
(s)

0.07 3.33 0.05 1.163 0.105 0 0.01 0 2.67

Table A8. Transmission grid parameters (feeders).

Branch R (pu) X (pu) Bsh (pu)

1–2 0.01 0.085 0.088
1–6 0.039 0.17 0.179
2–3 0.032 0.161 0.153
2–6 0.032 0.161 0.153
3–4 0.0085 0.072 0.0745
3–6 0.032 0.161 0.153
4–5 0.0119 0.1008 0.1045
5–6 0.017 0.092 0.079

Table A9. Transmission grid parameters (transformers).

Sn
(MVA)

V1
(kV)

R1
(pu)

L1
(pu)

V2
(kV)

R2
(pu)

L2
(pu)

Rm
(pu)

Lm
(pu) Tap

Slack 500 16.5 0 0.0576 230 0 0.0576 500 500 1
Hydro 110 13.8 0 0.0576 230 0 0.0576 500 500 1
Wind 200 0.575 0 0.0576 230 0 0.0576 500 500 1
Solar 30 18 0 0.0576 230 0 0.0576 500 500 1

Appendix B

The Brazilian grid codes for the transmission system can be obtained from [38].
The documents are frequently reviewed, and, at the time of writing this article, ver-
sion 2020.12 was considered according to Resolution Nº 903/2020, effective as of January
2020 [68].
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Table A10. System frequency limits in case of perturbation.

Frequency Range (Hz) Maximum Exposure Time (s)

f > 66.0 Hz 0
63.5 Hz < f ≤ 66.0 Hz 30
62.0 Hz < f ≤ 63.5 Hz 150
60.5 Hz < f ≤ 62.0 Hz 270
58.5 Hz ≤ f < 59.5 Hz 390
57.5 Hz ≤ f < 58.5 Hz 45
56.5 Hz ≤ f < 57.5 Hz 15

f < 56.5 Hz 0

Table A11. Short-term voltage variations (STVV).

Type of STVV Duration of STVV
Amplitude of STVV

Concerning the Rated
Voltage (ARV)

Momentary voltage interruption (MVI) ≤3 s ARV < 0.1 pu
Momentary voltage sag (MVS) ≥1 cycle and ≤3 s 0.1 ≤ ARV < 0.9 pu
Momentary voltage rise (MVR) ≥1 cycle and ≤3 s ARV > 1.1 pu
Temporary voltage interruption (TVI) >3 s and ≤1 min ARV < 0.1 pu
Temporary voltage sag (TVS) >3 s and ≤1 min 0.1 ≤ ARV < 0.9 pu
Temporary voltage rise (TVR) >3 s and ≤1 min ARV > 1.1 pu
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