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Abstract: Renewable resources integration through distributed generation (DG) affects conventional
consideration of power system performance and confronts deterministic load flow (DLF) analysis
with serious challenges. The DLF gives a snapshot of the system state neglecting all of the uncer-
tainties arising from intermittent DG driven by variable weather conditions or volatile consumption.
Therefore, with the aim of finer tracking and presentation of system variables, a probabilistic load
flow (PLF) approach should be adopted. First, this article gives a literature overview of different
PLF techniques. It focuses on numerical techniques examining them for simple random and Latin
Hypercube sampling, vastly applied in previous works, and proposes a method combining Monte
Carlo simulations with Halton quasi-random numbers. Stochastic modelling is performed for solar
and wind power output. For method comparison and confirmation of the applicability of suggested
PLF method with Halton sequences, different IEEE test cases were used, all modified by attaching
DGs. More profound method assessment is conducted through discussing different renewables
penetration levels and processing time. The overall simulation outcomes have shown that results of
Halton method are of similar precision as the generally used Latin Hypercube method and therefore
indicated the relevance of the proposed method and its potential for application in contemporary
system analysis.

Keywords: distributed generation; Halton sequences; load flow; Monte Carlo methods; probabilistic
logic; uncertainty

1. Introduction

Reliable supply of consumers with electrical energy of the prescribed quality is one of
the basic goals of electrical power systems. Segmentation of vertically integrated power
corporations along with the establishment of liberal electricity markets have additionally
emphasized the importance of power quality and maintaining voltage parameters within
the specified ranges [1].

Modern trends in the development of electrical power systems have brought an in-
creasing demand for distributed generation (DG) based on renewable energy resources,
conditioned by the requirements for slowing down climate changes through reducing green-
house gases emitted by outdated conventional fossil fuels-based power plants. Among
renewable DGs, wind farms and solar power plants have the largest share in the energy
mix [2]. Their energy production capability is highly intermittent and strongly dependent
on variable meteorological phenomena such as wind speed and solar irradiance, which
makes them non-dispatchable units [3]. Emerging of DGs has also established a whole
new category of power system elements–prosumers (i.e., consumers with the ability of
generating electricity for themselves or potentially for neighboring power system).
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COVID-19 crises and 2020 lock down measures in Europe have also proven the
significance of renewable generation. During a period of exceptional load drop throughout
the continent and lowering of nuclear and coal-based plants power output, renewable
sources have taken the lead and shown their value without outstanding curtailments [4],
indicating that now they are crucial and inevitable part of electrical grid.

Besides renewables, electrical vehicles (EV) have to be taken into account in analysis of
the modern power systems. Their ability to be both consumers, which successfully tackle
environmental requests, and storage systems, with potential to contribute to peak load
shaving [5], makes EVs very useful, but also challenging in terms of their integration into
power systems [6].

Bearing all previously mentioned information in mind, it is pretty clear that with every
new day modern power systems have less and less in common with traditional power
systems. In this regard, traditional, deterministic concept of power flow analysis (DLF),
based on fixed values, can non yield an adequate accuracy of obtained results if applied
on modern power systems. Simply, DLF does not take into account the uncertainties
in electricity generation and consumption typical for the modern power systems with
significant share of non-dispatchable units. In other words, the DLF can provide results
which are valid only for a certain moment [7].

Above-mentioned novelties which gradually take greater role in electricity network
demand finer tracking and presentation of systems variables. The application of a prob-
abilistic load flow approach (PLF) could resolve this issue. Including uncertainties into
calculation, the PLF application provides stochastic ranges of variables (e.g., bus voltages),
which is opposed to the ranges of fixed values [8].

This article is structured as follows: Section 2 explains the main ideas, methods, and
aims of load flow calculation in general. Extensive literature overview of different PLF
techniques, divided into three large groups (analytical, numerical, and approximation
techniques) is presented in Section 3. It focuses on Monte Carlo simulation–based numer-
ical techniques, examining their behavior in cases of different sampling methods. First,
the most basic method-simple random sampling and one of the stratified sampling meth-
ods (Latin Hypercube sampling), which were vastly applied in previous works on PLF
analysis, are presented. Then a quasi-Monte Carlo PLF method combining Monte Carlo
simulations with Halton quasi-random numbers is proposed with the clear intention to
show its value, considering a fairly reduced number of simulation necessary for precise
calculation. The theoretical background of the Halton quasi-random sequences is given in
Section 4. Moreover, Section 5 provides case study simulation of the proposed methods.
First, the procedure of stochastic modelling of uncertainties is shown for system variables.
Actual historical meteorological records (i.e., solar and wind data) have been used and
modelled by following chosen probability distribution functions (which were then sampled
accordingly). For the purposes of method comparison and eventually confirmation of the
applicability of the suggested PLF method, all analyses have been performed in MATLAB
by using several different IEEE test cases (i.e., 14, 30 and 118 bus systems), all modified
by attaching certain amount of DGs throughout the examined network. Additionally, for
the sake of more profound method assessment, different penetration levels of renewable
sources are considered too. Apart from results evaluation in terms of precision, they have
also been discussed with regard to the processing time. Finally, our conclusions are drawn
in Section 6.

This article is the extension of our research paper previously published in Interna-
tional Conference on Electrical, Computer, Communications and Mechatronics Engineering
(ICECCME 2021) at Mauritius [9] and presented at 21st International Symposium on Power
Electronics (Ee2021) at Novi Sad. Several new contributions have been added to the
previous research:

• A literature review of numerical PLF analysis has been enlarged by vast number
of different techniques. The article also provides substantial overview of other PLF
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methods, specifically analytical and approximation, establishing a systematic summary
of PLF approaches which indicates their usefulness, strengths, and weaknesses;

• Furthermore, the renewable generation models of wind and solar plants have been
exposed in more thorough way;

• Finally, more advanced case study simulations have been performed in terms of
considered electrical system size and energy sources structure.

2. Load Flow Analyses

Load flow analysis is one of the most important and most used calculations in the
field of power system analysis. The results of this calculation are crucial for the adequate
planning of new and exploitation of existing parts of electrical systems. Based on the
data obtained by this analysis, the needs for the construction of new system elements are
considered, such as the optimal location and capacities of additional production units,
transformers, power lines, reactive energy compensators, etc. It also ensures that existing
elements can withstand stresses during steady-state operation. The conclusions obtained by
the analysis serve to determine the optimal operation of the system with regard to economic
dispatching. In addition, although the obtained data refer to the system steady-state, its
algorithm is the basis for dynamic analyses of the system stability [10].

The analysis includes determination of the modules and phase angles of the bus
voltages, as well as calculation of active and reactive power in the transmission (distribution)
lines. The requested input data are network configuration and related parameters, power
consumption and rated power and characteristics of generators.

The mathematical formulation of load flow problem is as follows [11]:

Pi= Ui

n

∑
j=1

UjYij cos
(
θi−θ j − ϑij

)
(1)

Qi= Ui

n

∑
j=1

UjYij sin
(
θi−θ j − ϑij

)
(2)

where Pi and Qi are the active and reactive power injected into node i, Ui and Uj voltage
amplitudes at nodes i and j, n the total number of nodes in the system, θi and θj the phase
angles of voltages at nodes i and j, and Yij and ϑij are the amplitudes and phase angles of
the corresponding nodal admittance matrix.

These formulations result in system of non-linear algebraic equations, exactly two per
each node, with the exception of slack bus which has specified voltage values during the
calculation. Therefore, the total number of equations is 2(n–1).

Its solution is basically achievable through some iteration processes performed by
digital computers. At first, the Gauss-Seidel iterative method based on nodal admittance
matrix was used. Later on, the Newton-Raphson procedure was more preferred by virtue
of better convergence. One of the popular approaches is the fast P–Q decoupled method.
There are also applications using the forward-backward sweep approach [12], artificial
neural networks, and fuzzy algorithms [13].

In the simulation performed for the case study section of this article, the Newton-
Raphson procedure was conducted. It transforms Equations (1) and (2) to a set of linear
equations that connect power mismatches with voltage amplitudes and phase angles by
the Jacobian system matrix:



∆P1
. . .

∆Pn−1
∆Q1
. . .

∆Qn−1

 =



∂P1
∂θ1

· · · ∂P1
∂θn−1

∂P1
∂U1

· · · ∂P1
∂Un−1

· · · · · ·
∂Pn−1

∂θ1
· · · ∂Pn−1

∂θn−1

∂Pn−1
∂U1

· · · ∂Pn−1
∂Un−1

∂Q1
∂θ1

· · · ∂Q1
∂θn−1

∂Q1
∂U1

· · · ∂Q1
∂Un−1

· · · · · ·
∂Qn−1

∂θ1
· · · ∂Qn−1

∂θn−1

∂Qn−1
∂U1

· · · ∂Qn−1
∂Un−1





∆θ1
. . .

∆θn−1
∆U1
. . .

∆Un−1

 (3)
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System (3) can be expressed via block matrices:[
∆P
∆Q

]
=

[
J1 J2
J3 J4

][
∆θ
∆U

]
(4)

where J1, J2, J3 and J4 are block matrices of Jacobian whose elements are calculated as partial
derivatives of Equations (1) and (2).

Newton-Raphson algorithm consists of the following steps:

1. Initial values of voltage amplitudes and angles are assumed for all PQ and PV buses
except for the slack bus.

2. Active and reactive powers are calculated based on the assumed voltage values for all
buses except the slack bus.

3. Since active and reactive powers are known for PQ buses, power mismatches are
calculated.

4. Elements of Jacobian matrices J1, J2, J3, and J4 are calculated based on the latest
available voltage and power values.

5. System (3) is solved by Gaussian elimination method and voltage corrections ∆θ and
∆U are obtained.

6. Obtained voltage corrections are used for updating voltage values for the next iteration.
7. New assumed values of voltages resulting from step 6 are used for steps 2–7. The

procedure continues until power mismatch does not satisfy certain accuracy criteria.

The traditional calculation of load flow is based on a deterministic approach. This
approach takes as input variables the specific values of generation and consumption (most
often the average expected values), while specific values of buses voltages are provided
as output variables. Based on the researchers’ experience [14], input data values for some
critical regimes may be analyzed as well. The deterministic approach gives only a snapshot
of the state of the system, ignoring the uncertainties arising from variable consumption or
generation from renewable resources.

3. Probabilistic Load Flow

The need for a different approach in the load flow analysis and voltage quality analysis
was highlighted by the European standard EN-50160 [15]. The standard promotes and
requires from distribution systems certain stochastic ranges of voltages, as opposed to the
ranges of fixed values.

As a possible solution, some authors have proposed the so-called stochastic calculation
of load flow based on the assumption that the distributions of probabilities of the system
states and the results of the load flow analysis are normally distributed. Although this
assumption greatly simplifies the calculation, it has been dismissed over years as very
unreliable [16].

On the other hand, a PLF analysis can take into account uncertainties regarding
network configuration, consumption, weather data related to generation capability of
renewable resources, equipment failure rates, etc. by the calculation based on the probability
distribution of mentioned variables obtained through statistical analysis of their historical
data. As a result, the states of the system (e.g., voltages) will be stochastically described too.
The probabilistic approach to the calculation of load flow was first proposed in the mid-
1970s [17], but has become especially popular after the growing penetration of renewable
resources [18].

There are three groups of methods of probabilistic approach to the load flow calcu-
lation. Analytical methods, based on the convolution of probability density functions,
are mathematically elegant but include a number of approximations over real systems.
Numerical methods perform a large number of DLF calculations using the Monte Carlo
simulation, which randomly selects input variables based on their probability density
distribution functions. They are very precise but the achieving of high results accuracy is
closely related to large number of iterations making these methods time-consuming. Finally,
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approximation methods, based on point estimation technique, mitigate the computational
burden of numerical methods by statistical approximations.

Figure 1 presents the classification of different approaches to the load flow calculation.

Figure 1. Load flow analysis approaches.

3.1. Analytical Methods

The main concept of analytical approach is strictly mathematical, performing the
convolution of known probability density distribution functions of produced and consumed
power and obtaining the probability density distribution functions of the corresponding
stochastic variable system states [19]. Nevertheless, the load flow equations are nonlinear
and the input variables in various buses of electrical grid are often dependent. Therefore,
the application of convolution of probability functions demands some approximations
such as linearization of load flow equations; assumptions about complete independence
or at least linear dependence between input variables; modelling of generation and load
with Gaussian distribution; and consideration of the grid configuration and parameters
as constant.

Load flow equations linearization by developing them in the Taylor series is primarily
performed for certain expected values of input variables [20]. The results precision is
evidently becoming deteriorated for values that are far from the corresponding average
values. These errors are mostly notable at the ends of the voltage distribution curve, which
can lead to misleading conclusions about the voltage quality and eventually bad decisions
affecting system development process.

With the aim of mitigating the effects of linearization, several methods have been
proposed, particularly those involving multilinearization [21], i.e., equation linearization
around several values (instead of only one), with convolution being performed for each
of them in order to obtain the probability distributions of the results, which are even-
tually combined into a single result. This approach yields more reliable results than
simple linearization. Additional accuracy is achieved by applying the method presented
in [22] which combines multilinearization and Monte Carlo method by conducting multi-
linearization based on the total active load of the system and then performing DLF for the
considered points.

When it comes to the efficiency of the convolution process, the initial procedures were
based on the application of the Laplace transformation [23]. Improving efficiency, in terms
of processing time required, can be achieved by applying a fast Fourier transformation [24],
although the calculation is still very extensive.

Another analytical approach to power flow calculation considers the analysis of input
variables that are discretely distributed or not represented by a Gaussian distribution by
approximating them by the weighted sum of the components modelled by the Gaussian
distribution [25]. However, this method is neither faster than the application of Fourier
transformation nor more precise than multilinearization techniques.

An interesting idea is the application of sequence operation theory proposed in [26]. In-
put variables are represented as probability sequences which are processed using standard
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sequence operations. The results indicate the efficiency of the method in case of discrete
input variables, while the main drawback is the inability to establish variable interdependency.

One big subgroup of analytical methods consists of techniques based on cumulants
combined with series expansion. Their major advantage is the reduction of calculation time
in comparison to classical convolution methods due to the usage of algebraic operations
rather than convolution procedures [27]. Gram–Charlier expansion is widely used [28,29],
but it works with unimodal distributions only [27]. On the other hand, Cornish–Fisher
expansion performs better with non-Gaussian distributions [30]. Nevertheless, its usage
might cause precision problems in side regions of the obtained probability distribution [31].

It should be noted that problems with cumulant methods occur when working with
dependent random variables. Improvement in [32] proposes modelling of dependent
variables as functions of several independent variables by using Cholesky decomposition.

An additional problem with cumulants can be the error caused by great fluctuations of
input variables (e.g., wind speed) [33]. This article suggests generating samples of random
variables by inverse Nataf transformation and grouping these samples into clusters by
k-means algorithm. This leads to mitigation of sample variance inside a cluster. The
procedure continues with cumulant operations.

Besides combining cumulants with series expansion, there are proposals of combing
them with maximum entropy algorithm [34], Laplace transformation [35] or multiple
integrals [36].

3.2. Approximation Methods

Approximation methods calculate general statistical features describing considered
stochastic variables. The most of them is based on point estimation technique which
was first proposed in [37]. Their key advantage over classical Monte Carlo simulation-
based numerical methods is the computational simplicity despite the fact they also use
DLF calculation. Moreover, for using point estimation it is enough to know the basic
characteristics of random variable, such as mean value, variance, skewness and kurtosis
coefficients. Aim of the method is to calculate moments of distribution of output variables
as functions of initially known moments of input variables. At the end it is necessary to
apply one of the series expansion techniques, e.g., Gram–Charlier or Cornish–Fisher.

There have been many improvements to the basic method. In [38] it was extended
for the application for non-symmetrical random variables, while in [39] the precision was
enhanced in case of small number of input variables. In [40] the method was used to analyse
an unbalanced three-phase system. The use of asymmetric point estimation for systems
with wind turbines and photovoltaic panels is presented in [41]. Improving accuracy can
be achieved by covering a larger number of points. However, this requires the calculation
of higher-order moments which can be very challenging. In contrast, in [42] the accuracy
was improved by adding a new pair of points with the first three known moments.

Some other approximation methods are the application of unscented transformation
which is useful due to the ease of working with dependent random variables and nonlinear
equations [43] as well as the usage of Taguchi’s orthogonal arrays requiring fewer DLF
calculations when applied to balanced systems with renewables [44] or to three-phase
systems with dependencies between variables [45].

3.3. Numerical Methods

Numerical methods of PLF calculation are based on applying Monte Carlo simulation–
the procedure consisting of stochastic simulations using random variables. Taking the
calculated probability density functions of input variables as a base, values of generated
power coming from renewable power plants and the consumption values are randomly
selected and then the DLF calculation is performed for them. The simulation must be
repeated for a certain number of times so that the obtained values (e.g., node voltages) can
be statistically processed and presented in form of their probability density functions.
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The key advantage of numerical methods is their precision which originates from
the ability to apply nonlinear equations for load flows analysis, in contrast to analytical
methods when these equations have to be transformed into a computationally simpler form.
Due to the accuracy, these methods are used for comparison with all other probabilistic
methods and for assessing their adequacy. Nevertheless, applying the Monte Carlo method
and completing the required number of iterations can take a significant amount of time.
With the development of computer technology, this shortcoming is slowly being alleviated
but still remains very problematic.

As for the number of iterations that need to be performed when using this method,
that number does not depend on the size of the analyzed system. It can be a fixed number
assumed on the basis of experience or be related to a certain coefficient of variation which
determines the convergence of the method.

Monte Carlo simulation-based methods can be grouped based on sampling tech-
nique [46]. The most basic one is simple random sampling. Its main drawback is the
possibility of sampling a value that is very similar to the values from previous iterations.
This is the reason of extremely big number of iterations needed to cover the analyzed set
of data correctly. In order to improve the efficiency of calculations, quasi-random sam-
pling methods based on low discrepancy sequences have been introduced. One of them
is the Latin Hypercube technique which samples one value from the interval and then
removes that whole interval from further analysis. However, the usage of this sampling
technique generates undesired dependencies between sampled values. This is solved by
various permutation methods (e.g., Cholesky decomposition) [47]. In [48] Latin Hypercube
sampling is combined with copula method which allows predefining the dependencies
between random variables. Additionally, Ref. [49] analyses the application of correlation
matrices which are not positively definite by combining Nataf transformation, Latin Hy-
percube sampling and matrices decomposition to singular values. One of the quasi-Monte
Carlo methods, the Latin Supercube, which is in fact a combination of digital nets and the
Latin Hypercube method is presented in [50] showing the results of satisfactory accuracy
compared to similar numerical methods.

Moreover, Uniform Design sampling technique was used in [51]. First, random numbers
following uniform distribution between 0 and 1 are generated by this technique. Then,
the marginal transformation is used for transforming the generated numbers to values of
desired distribution of input random variables. Finally, values are permuted based on rank
correlations in order to reflect correlations between them.

In [52], improved Sobol generator of quasi-random numbers assuring the efficiency in
one hand and Johnson system giving the precision of modelled probability distribution in
the other hand were utilized.

Improvement of the efficiency of Monte Carlo method is also analyzed through the
application of non-parametric density estimations of load flow calculation results. Their
advantage is the flexibility of modelling a given dataset which cannot give analytical
solution or the solution would be too complicated. One of the estimation methods is
the adaptive kernel density estimation based on smoothing features of linear diffusion
demonstrated in [53], which gave the results faster than classical Monte Carlo method.
In [54], the application of Parzen Window density estimation was suggested indicating the
simplicity of approach in situations with limited input data.

An overview of developed different PLF methods which have been discussed above is
presented in Table 1.

3.4. Research Gap

Having considered above-listed set of approaches to PLF analysis, it can be observed
that in cases of numerical techniques usage, the biggest challenge is the balance between
accuracy and number of analyzed samples. As opposed to simple random sampling, low
discrepancy sequences sampling has usually been performed. One of the most used and
described methods is Latin Hypercube sampling.
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On the other hand, the viability of application of Halton quasi-random sequences,
which provide better uniformity over the Latin Hypercube technique, has been diminished
and very slightly analyzed.

Table 1. Overview of developed PLF methods.

Analytical
methods

Linearization using Taylor series
Multilinearization
Laplace transformation
Fast Fourier transformation
Cumulant methods:
- Gram–Charlier expansion
- Cornish–Fisher expansion
- Cholesky decomposition
- Inverse Nataf transformation and k-means clustering
- Maximum entropy algorithm
- Laplace transformation
- Multiple integrals
Sequence operation theory
Approximation of variables by the weighted sum of the
Gauss-modelled components

Approximation
methods

Point estimation technique
Asymmetric point estimation
Unscented transformation
Taguchi’s orthogonal arrays

Numerical
methods

Simple random sampling
Latin Hypercube:
- Cholesky decomposition
- Copula method
- Nataf transformation
Latin Supercube
Uniform Design sampling
Sobol quasi-random numbers
Adaptive kernel density estimation
Parzen Window density estimation

Halton sequences are usually implemented for the evaluation of integrals. They are
considered to be easy to calculate but have issues with regards to output stability [55].

The central point of this article is to examine their feasibility for PLF problem solving
by comparing them to the commonly used numerical methods–namely, simple random
sampling–as the reference method and Latin Hypercube sampling–as widely utilized
method in similar research works.

4. Halton Sequences

Halton sequence is one of the classical statistical sequences used for generating points
for Monte Carlo simulation. It was first described in [56]. Despite being deterministic, by
virtue of its low-discrepancy it can be considered random for various applications. This
sequence generalizes van der Corput sequence and is very easy to implement [57] since it
is based on the radical inverse function:

φp(n) ≡
b0

p
+

b1

p
+ . . .+

bm

pm+1 (5)

where p is a prime number, and the p-ary expansion of n is given as n = b0 + b1p + . . . +
bmpm, with integers 0 ≤ bj < p.

The Halton sequence, Xn, in s-dimensions is then defined as:

Xn= (φp1(n),φp2(n), . . . ,φps(n)) (6)



Energies 2022, 15, 2038 9 of 20

where the dimensional bases p1, p2, . . . , ps are pairwise coprime. In practice, always the
first s primes are used as the bases.

One of the main disadvantages of the Halton sequence is that its quality becomes
easily degraded in case of large dimensional problems. The root of this problem comes
from the correlations between the radical inverse functions for different dimensions [58].
One option to overcome the issue is to leap over the specific number of points and omit
them for each point taken. It is important that the number of point leaped over is different
from all bases.

Additionally, in order to avoid correlations among different dimensions and other
undesirable properties related to initial points of a sequence, first 1000 values were skipped
in all simulations presented in this article.

As an illustration of sampling characteristics and quality, Figure 2 demonstrates
sampling 100 two-dimensional points chosen by simple random, Latin Hypercube and
Halton sampling respectively.

Figure 2. Comparison of 100 samples obtained by: (a) simple random sampling; (b) Latin Hypercube
sampling; and (c) Halton quasi-random sampling.

5. Case Study

For the purpose of simulation of numerical PLF methods used with different sampling
techniques, as well as for the comparison of the obtained results, IEEE test systems of 14,
30, and 118 nodes were considered [59].

All three systems were modified by attaching additional wind and solar generators to
specific bus loads. They were modelled as negative load quantities and attached to specific
bus loads as follows:

Pi= Pi, load − PDG (7)

Qi= Qi, load −QDG (8)
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where Pi, load and Qi, load are initial active and reactive power values at bus i as specified
by the chosen test system configuration, PDG and QDG active and reactive power of DGs
attached to bus i and Pi and Qi total active and reactive power values at bus i. The reactive
power of DGs is calculated based on assumed power factor cos(ϕ) = 0.95.

Renewable sources penetration levels of 30% and 60% of total consumption load
were examined.

No specific advanced generator model has been implemented for conventional gener-
ators. They have been fully approximated and treated as PV buses.

Figure 3 shows the configuration of the IEEE 14 [60], 30 [61], and 118 [62] bus
test systems.

Figure 3. Configuration of IEEE (a) 14 bus system; (b) 30 bus system; and (c) 118 bus system.
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5.1. Modeling Uncertainties
5.1.1. Load Model

The load was stochastically modelled by the normal distribution [63], taking the
deterministic value of the load as the mean value and 5 per cent of the assumed mean value
as the value of the standard deviation. Therefore, the probability density function of the
load can be expressed as:

f (x) =
1

σ
√

2π
·e
−(x−µ)2

2σ2 (9)

where x is the bus load, µ the mean value, and σ the standard deviation of load.

5.1.2. Wind Speed and Generator Model

For purposes of this simulation, real wind speed data were used. They had been taken
from the online historical weather reports [64], for the period from 24 May to 7 June 2020,
for the site Krnovo (meteorologically interesting area in Montenegro, altitude-1500 m), at
the height of 80 metres above the ground. Figure 4 shows a graph of wind speed during
the above-mentioned time period.

Figure 4. Wind speed graph for the chosen time period.

Firstly, the histogram representing wind speed was created using the Distribution
Fitting Tool in the MATLAB software package (MATLAB R2016a, The MathWorks, Inc.,
Natick, MA, USA). Secondly, the wind speed was stochastically modelled by the Weibull
distribution [65] and the parameters of scale and shape of the probability distribution
density function were obtained.

The histogram with the modelled wind density probability distribution function
obtained through the MATLAB distribution fitting tool is given in Figure 5.

Rated power of wind turbine is chosen considering voltage level and size of the used
IEEE test systems. Based on the chosen rated power, an average onshore wind turbine is
selected for the simulation. Its characteristics are shown in Table 2.

The generation model used in this article has been based on doubly fed induction
generator which is vastly used for wind turbines. Its scheme is presented in Figure 6. The
main idea of this model is that stator windings are directly connected to the electrical
network while rotor winding are connected via back-to-back voltage source convertor. It
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enables the generator to remain synchronized with the grid while its speed (i.e., frequency)
can differ from the grid frequency. It also offers control of rotor speed by the variation
of frequencies of currents that feed the rotor, which is important for maintaining power
system stability.

Figure 5. Histogram and modelled wind speed probability density distribution function.

Table 2. Wind turbine characteristics.

Parameters Values

Rated power 2.8 MW
Rated speed 12 m/s
Cut-in speed 2.5 m/s

Cut-out speed 25 m/s
Blade length 50 m

Power coefficient 0.4
Power factor 0.95

Figure 6. Wind turbine with doubly fed induction generator.

The output power of wind generator P is determined by the Equation (10):

P(v) =


0, v < vin

1
2 ·Cp·Nb·Ng·ρ·A·v3, vin< v < vr

Pr, vr< v < vout
0, vout< v

(10)

where v is wind speed, vin cut-in speed, vout cut-out speed, vr rated wind speed, Pr rated
wind generator power, Cp power coefficient, Nb generator efficiency, Ng gearbox/bearings
efficiency, ρ air density, and A surface affected by wind. The dependence of output power
of wind generator on wind speed calculated based on above mentioned characteristics is
shown in Figure 7.
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Figure 7. The dependence of output power of wind generator on wind speed.

For purposes of this simulation, the power output of a wind farm is considered to be
the sum of power outputs of multiple wind generators constituting the farm.

5.1.3. Solar Generation Model

For purposes of modelling solar generator power output based on real data, online
tool NREL’s PWVatts [66] has been used. Hourly values of irradiance and temperature
covering one year for the area of central Montenegro were taken into consideration for
calculating the power output which is defined by formula:

PPVout= η ·L· Itr

1000
·Pdc0·(1 + γ·(T − 25 ◦C)) (11)

where η is inverter efficiency, L system losses, Itr POA irradiance, Pdc0 DC System Size,
γ temperature coefficient and T photovoltaic cell temperature [67]. Characteristics of the
solar generator are shown in Table 3.

Table 3. Solar generator characteristics.

Parameters Values

DC System Size 4 MW
Cell Material Crystalline Silicon

Approximate Nominal Efficiency 15%
Temperature Coefficient of Power −0.47%/◦C

System Losses 14.08%
DC to AC Size Ratio 1.2
Inverter Efficiency 96%

Ground Coverage Ratio 0.4

5.2. Simulation Algorythm

First, 100,000 values of consumption, wind and solar generation data are sampled by
simple random sampling and used for the same number of DLF calculations by applying
MATPOWER, a package of MATLAB M-files prepared for solving power flow and optimal
power flow simulation problems [68].

Having in mind that the focal point of this article is probabilistic performance of power
flow calculation, the simplest form of analyses has been utilized. One bus in each test
system has been declared as slack bus used for handling all power imbalances but also
as reference bus for voltage angle values. By default, nonlinear Equations (1) and (2) are
iteratively solved by standard Newton-Raphson method in polar form using a full Jacobian
which is updated in every iteration. At each iteration step, the method performs calculating
the power mismatch for known PQ nodes, forming the Jacobian based on the sensitivities
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of these mismatches to changes of computed voltage values and solving for an updated set
of these value by factorizing the Jacobian.

It is important to mention that the implemented power flow solver ignores any limits
and constraints related to generators, branch flows, voltage quantities, etc. with intention
to avoid broadening the analyses. Additionally, no frequency regulation has been dealt
with in this research.

The results obtained in all iterations are stored and eventually statistically modelled
by the normal probability distribution based on the calculated mean values and values of
the standard deviation. They are considered as reference values for further simulations.

Then, a specified number of stochastic variable values N is sampled three times by
different sampling techniques: simple random, Latin Hypercube, and Halton quasi-random
sampling methods. All of these datasets are then used for DLF calculation in separate
iterations. The results are compared with reference values and the relative error is calculated
as follows:

εr, N(x) =

∣∣∣∣∣ xN−xre f

xre f

∣∣∣∣∣·100% (12)

where xref is reference value calculated after 100,000 iterations and xN is output value
obtained after N iterations.

It is important to notice that the Latin Hypercube and Halton methods, as quasi-
random, always give the same result for the specific number of iterations, while simple
random sampling is completely random method (i.e., gives different values).

Several simulation scenarios with datasets consisting of 50, 100, 500, and 1000 values
were considered in order to assess the accuracy and calculation time and eventually to
examine methods’ applicability in real life system analysis.

On the other hand, the same simulation is performed for two different levels of
integrated renewable generation (30% and 60% of total consumption load).

Figure 8 shows the algorithm of the applied program.

Figure 8. Scheme of probabilistic load flow algorithm.
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The simulations were performed on HP Pavilion device with Intel Core i-5, 2.5 GHz
processor and 8 GB RAM, using the MATLAB software package, version 2016a.

5.3. Simulation Scenarios

Several simulation scenarios were considered in order to assess the impact of system
size as well as the DG level presence to load flow calculation. Consequently IEEE 14, 30,
and 118 bus test systems were chosen to be compared in terms of system size. On the other
hand, effects of DG were modelled by attaching sets of wind and solar generators to some
nodes of the grid. Review of all simulation scenarios is given in Table 4.

Table 4. Review of simulation scenarios.

IEEE Test System Size DG Penetration Level Sampling Method

14 buses
30%
60%

Simple random sampling
30 buses Latin Hypercube sampling
118 buses Halton sequences

5.4. Results

To compare the results of the application of PLF calculation performed with input
values obtained by different sampling methods, several subtypes of simulations have been
performed for four above mentioned datasets/iteration sizes (50, 100, 500, 1,000) varying
system size and DG penetration level. Figure 9 shows mean relative errors of voltages at
node 14 of IEEE 14 bus system, node 8 of IEEE 30 bus system and node 115 of IEEE 118 bus
test system, respectively, obtained after three subtype simulations–SRS, LHS and Halton,
for all proposed numbers of iterations and DG penetrations.

After adding wind and solar generators to certain buses of the analyzed test system,
a problem in terms of voltage increase is expected in nearby nodes, with exception to the
buses connected to conventional generators and compensators.

Based on the simulation results, we can observe the values of relative errors of voltages
obtained by calculation performed with simple random sampling, Latin Hypercube, or
Halton quasi-random sampling, and it is clear that the latter two approaches give a more
realistic picture of the state of the system after the reasonably small number of iterations.

For example, let’s consider the voltage value at bus 14 of IEEE 14 bus system. At first
the relative error of calculated voltage is approximately seven times bigger after applying
SRS sampling in contrast to two quasi-random methods which almost immediately give
accurate results. Similar conclusion can be drawn if we consider relative error of voltage at
bus 115 of IEEE 118 bus system. The ratio of above-mentioned results is 25:1 in case of 30%
and 47:1 in case of 60% of added renewable resources. The simulations indicate that Halton-
based sampling is comparable to the efficiency of Latin Hypercube and can be applied
equally as numerical PLF approach to power systems with lots of renewable resources.

Furthermore, as to the variation of DG penetration level, we can see that the error
of simple random sampling method rises as more renewable generators are added to the
electrical network. On the other hand, the Latin Hypercube and Halton methods keep
precision despite the increase of uncertainty in the system.

Moreover, it is important to mention that the error of quasi-random sampling becomes
higher for bigger power systems. For example, in IEEE 14 bus system it is around 1%, in
IEEE 30 bus system 3% and in IEEE 118 bus test system up to 8%. However, this error is
minor in contrast to the one occurring in case of simple random sampling.

It is also evident that Halton sampling is more accurate than Latin Hypercube for
smaller systems (e.g., 14 and 30 bus test systems) which indicates its issue with high
dimensional problems. Nevertheless, the difference between the two methods in case of
118 bus system is hardly worth mentioning. This overall suggests equal importance and
the applicability of the proposed Halton sampling-based PLF.

Additionally, Table 5 presents the average calculation time in seconds required for
execution of analyzed simulation scenarios.
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Figure 9. Comparison of voltage value relative errors. (a) 14 bus test system; (b) 14 bus test system;
(c) 30 bus test system; (d) 30 bus test system; (e) 118 bus test system; and (f) 118 bus test system.
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Table 5. Calculation time for different simulation scenarios.

Iteration Simple Random Latin Hypercube Halton

50 2.55 3.07 3.01
100 2.91 3.36 3.43
500 4.71 5.31 5.26

1000 6.72 7.77 7.67
100,000 592.19 - -

It is clear that the simulation time is pretty much similar for the same number of
iterations. Nevertheless, Latin Hypercube and Halton methods offer acceptable results after
three seconds, while simple random sampling provides the results of tolerable accuracy
only after 1000 of iterations which take at least twice as much time.

6. Conclusions

In this article, numerical method for probabilistic load flow calculation based on
Halton quasi-random sequences was proposed and compared to basic simple random
sampling and widely used Latin Hypercube sampling techniques. The focus of the research
was the contemporary power system containing various uncertainties arising from the
renewable resources generation and high variation of consumption due to introduction
of prosumers. At first, an extensive literature review providing wide division of different
probabilistic load flow methods was given. Mathematical background to Halton sequences
was presented too.

Numerous types of simulations, which varied system sizes, sampling techniques and
DG penetration levels, have been performed. The initial idea was that simple random
sampling-based PLF is totally unusable in terms of accuracy, when applied for quick
probabilistic analysis performed by small number of iterations. It was suggested that
Halton sampling could tackle this issue in a similar manner as Latin Hypercube method.

The results confirmed the expectations since the calculated relative errors of bus volt-
ages have proven to be significantly less in case of applying Halton sampling, supporting
the claim of its superiority over basic simple random sampling approach, as well as the ef-
fectiveness of its usage for the load flow analysis, voltage quality assessment, and planning
of modern power system.

Furthermore, performed simulations imply that the dominance of Halton sampling
could be even more noticeable as the renewable generators penetration in the power system
rises. This point positions Halton sampling PLF calculation as one of the methods that we
will count on gradually more in future.

It should be noted that a more realistic model of production and consumption values
could be obtained by analyzing their interdependence, both in terms of meteorological
conditions and by taking into account seasonal trends. Also, further improvement could be
the modelling of wind speed by second resolution, when the values of wind speed are not
independent in time but depend on the previous ones.

In addition, further research on this topic should be performed on real test systems
which could give more genuine review taking into account practical limitations.

Nevertheless, considering current rising penetration of DGs, the forthcoming mass in-
tegration of electric vehicles into the power system and also the very dynamic development
of energy storage systems, a probabilistic approach to load flow analysis supported by
quasi–Monte Carlo techniques can be expected to become an indispensable tool in power
system development.
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