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Abstract: In this paper, a new method for the balancing of rotor-bearing systems supported on fluid
film bearings is proposed. The influence coefficients necessary for balancing are calculated using a
novel simulation method called the Numerical Assembly Technique. The advantages of this approach
are quasi-analytical solutions for the equations of motion of complex rotor-bearing systems and
very low computation times. The Numerical Assembly Technique is extended by speed-dependent
stiffness and damping coefficients approximated by the short-bearing theory to model the behavior
of rotor systems supported on fluid film bearings. The rotating circular shaft is modeled according
to the Rayleigh beam theory. The Numerical Assembly Technique is used to calculate the steady-
state harmonic response, influence coefficients, eigenvalues, and the Campbell diagram of the rotor.
These values are compared to simulations with the Finite Element Method to show the accuracy of
the procedure. Two numerical examples of rotor-bearing systems are successfully balanced by the
proposed balancing method.

Keywords: rotor dynamics; fluid film bearings; influence coefficient method; numerical assembly
technique

1. Introduction

Rotary machines are always subject to imbalances, leading to an excitation of the
rotor and the surrounding structure. This excitation causes audible noises and reduces the
lifespan of the system. At spin speeds above 70% of the first flexural critical speed, the
displacement of the shaft cannot be neglected, and the system is considered flexible [1].
In this case, flexible balancing is used to minimize the elastic displacement of the rotor
throughout the whole length of the shaft and all operating speeds. There are two main
groups of methods for the balancing of flexible rotors: modal balancing methods and
influence coefficient methods. Combined methods are also frequently applied [2]. The
modal balancing method requires only a small set of test runs and is accurate up to higher
modes [3]. However, it can only be properly applied to rotor-bearing systems with roller
bearings, where modal analysis is possible [4]. The influence coefficient method, on the
other hand, requires only the assumption of linear relations between the unbalance forces
and the vibration responses [5]. Usually, many test runs are necessary to determine the
influence coefficients, which may be very time consuming and expensive. This can be
avoided with calculated influence coefficients, as long as a very accurate model for the
rotor-bearing system is used, including all rotor dynamic effects [6]. In this paper, the
Numerical Assembly Technique (NAT) is used to generate a suitable model.

NAT is an efficient, quasianalytic method to calculate the steady-state harmonic re-
sponse, influence coefficients, eigenvalues, and the Campbell diagram of rotor-bearing
systems. NAT was introduced by Wu and Chou [7]. In its original form, it is applicable
to harmonic vibrations of one-dimensional structures. In subsequent years, the method
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has been extended to additional applications in mechanics, especially in the field of ro-
tor dynamics. Wu and Chen extended the method to the Timoshenko beam theory [8]
and analyzed the natural frequencies of various nonuniform beams using continuum
models [9–11]. The effects of multiple lumped masses, multiple-pinned supports, and ro-
tary inertias on the calculation of Euler–Bernoulli beams were discussed in [12–14]. In [15],
these approaches were applied to the Timoshenko beam theory, and the effect of the slender-
ness ratio and the shear coefficient were investigated. Lin combined various concentrated
elements including point masses, rotary inertias, linear springs, rotational springs, and
spring-mass systems for the calculation of Euler–Bernoulli and Timoshenko beams [16,17].
The effects of axial forces on Timoshenko [18,19] and Reddy-Bickford beams [20] were stud-
ied by Yesilce. In [21], NAT was used to calculate forward and backward whirling speeds
of rotor systems, and the gyroscopic effects were analyzed. The method was extended to
include Euler–Bernoulli beams with variable geometry or material discontinuities in [22].
Timoshenko beams with elastic supports were examined in [23]. In recent years, Klanner
et al. introduced distributed loading [24], unbalance [25], and fractional derivative damp-
ing [26] in the NAT scheme. The advantages of NAT are that it leads to quasi-analytical
solutions, and it is computationally more efficient than the Finite Element Method (FEM).
In [25], numerical comparisons showed a reduction in computational time by a factor of
ten compared to FEM. This research builds upon the previous work of Quinz et al. [27],
where a balancing method using NAT was proposed, which was limited to isotropic
rotor-bearing systems.

The main aim of this work is to find an analytic method that allows for a significant
reduction in the vibration of rotor-bearing systems supported on fluid bearings, without the
need for expensive and time-consuming test runs, and to prove its accuracy and numerical
efficiency. The novelty of the introduced research is the extension of NAT to perform the
balancing of rotor-bearing systems supported on fluid film bearings, the implementation of
an improved search algorithm to calculate Campbell diagrams with NAT, and the validation
of these techniques with numerical tests. The original in-house software was created based
on the presented methodology.

The remainder of this paper is organized as follows: Section 2 describes the calculation
and the balancing method. Section 3 presents the numeric tests and the obtained results.
Section 4 discusses the advantages of the proposed method and other state-of-the-art
techniques. Finally, Section 5 concludes the paper.

2. Material and Methods

In Figure 1, the general rotor problem is shown.

Figure 1. General rotor problem.
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The space fixed coordinate system Oxyz is chosen so that Oz passes the undeflected
axis of the rotor in its bearings. Ox and Oy are perpendicular to each other and transverse
to Oz. The rotor is supported on fluid film bearings modeled as anisotropic springs and
dampers including cross-coupling terms and rotates at a constant spin speed Ω. Several
disks are mounted on the shaft. Each disk has a mass m(i), a mass moment of inertia
about the x- and y-axis Θ(i)

t , a mass moment of inertia about the z-axis Θ(i)
p , an amount

of eccentricity ε(i), and an angular position of eccentricity β(i). The rotor may also have a
distributed unbalance defined by ε(z) and β(z).

The simulation of the rotor-bearing system is carried out with NAT. The method
gathers all the parameters necessary to describe the system in two arrays: one for the
stations of the rotor bearings system and the other one for its segments. Stations represent
disks, bearings, steps, and the ends of the rotor. Segments describe the cylindrical elements
between the stations.

The rotor segments are modeled according to the Rayleigh beam theory. This theory
is based on the same assumption as the Euler–Bernoulli beam theory but includes rotary
inertias and gyroscopic effects [28]. In the following, the formulation of Klanner et al. [25]
is extended to include the behavior of fluid film bearings.

The method is quasi-analytical in the sense that the governing equations are fulfilled
exactly. Minor errors are introduced only at the interface conditions due to double-precision
floating-point arithmetic when solving the system of linear equations. The application
of the Fourier extension method in the case of distributed unbalances results also in
small numerical errors. This is not the case for the proposed balancing technique, since
the influence coefficients are calculated as reaction to a point force, which is calculated
analytically.

2.1. Equations of Motion

The state of the rotor is represented by the displacements ux and uy, the rotations of
the cross section ϕx and ϕy, the bending moments Mx and My and the shear forces Qx and
Qy. The equilibrium conditions lead to the equations of motion for each segment (index `)

E` I`
∂4ux`(z`, t)

∂z4
`

− ρ` I`
∂4ux`(z`, t)

∂z2
`∂t2

+ ρ`A`
∂2ux`(z`, t)

∂t2 − 2ρ` I`Ω
∂3uy`(z`, t)

∂t∂z2
`

=

qx(z`, t) + ρ`A`ε(z`)Ω2 cos(Ωt + β(z`)),

(1a)

E` I`
∂4uy`(z`, t)

∂z4
`

− ρ` I`
∂4uy`(z`, t)

∂z2
`∂t2

+ ρ`A`

∂2uy`(z`, t)
∂t2 + 2ρ` I`Ω

∂3ux`(z`, t)
∂t∂z2

`

=

qy(z`, t) + ρ`A`ε(z`)Ω2 sin(Ωt + β(z`)),

(1b)

where E is the Young’s modulus, I is the diametric moment of area of the cross-section
about the x- and y-axis, ρ is the density, q• are the external distributed forces, A is the
area of the cross-section, ε is the amount of eccentricity, and β is its angular position. The
rotations of the cross-section are defined by

ϕy`(z`, t) =
∂ux`(z`, t)

∂z`
, (2a)

ϕx`(z`, t) = −
∂uy`(z`, t)

∂z`
, (2b)
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the bending moments are defined by

My`(z`, t) = E` I`
∂2ux`(z`, t)

∂z2
`

, (3a)

Mx`(z`, t) = −E` I`
∂2uy`(z`, t)

∂z2
`

, (3b)

and the shear forces can be computed by

Qx`(z`, t) =ρ` I`
∂3ux`(z`, t)

∂t2∂z`
+ 2ρ` I`Ω

∂2uy`(z`, t)
∂t∂z`

− E` I`
∂3ux`(z`, t)

∂z3
`

, (4a)

Qy`(z`, t) =ρ` I`
∂3uy`(z`, t)

∂t2∂z`
− 2ρ` I`Ω

∂2ux`(z`, t)
∂t∂z`

− E` I`
∂3uy`(z`, t)

∂z3
`

. (4b)

The proposed method assumes a solution of the form

ux`(z`, t) = ũ+
x`(z`)e

iωt + ũ−x`(z`)e
−iωt, (5a)

uy`(z`, t) = ũ+
y`(z`)e

iωt + ũ−y`(z`)e
−iωt, (5b)

which leads to four ordinary differential equations, where ω is the complex eigenvalue. The
solutions of u+

•`(z`) and u−•`(z`) have to be complex conjugated to yield the real solutions
for u•`(z`, t). Therefore, the differential equations for u+

•`(z`) and u−•`(z`) are completely
decoupled, and only two of these equations

∂4ũ+
x`(z`)
∂z4

`

+ ρ`ω
2 ∂2ũ+

x`(z`)
E`∂z2

`

− ρ`A`ω
2

E` I`
ũ+

x`(z`)− 2iρ`Ωω
∂2ũ+

y`(z`)

E`∂z2
`

=
ρ`A`Ω2

2E` I`
ε(z`)eiβ(z`),

(6a)

∂4ũ+
y`(z`)

∂z4
`

+ ρ`ω
2

∂2ũ+
y`(z)

E`∂z2
`

− ρ`A`ω
2

E` I`
ũ+

y`(z`) + 2iρ`Ωω
∂2ũ+

x`(z`)
E`∂z2

`

= − iρ`A`Ω2

2E` I`
ε(z`)eiβ(z`),

(6b)

are sufficient to solve the system of equations. If steady-state vibrations due to unbalance
are analyzed, it is apparent that Ω = ω. External distributed loadings q• = 0 can also be
neglected in this case.

2.2. Speed Dependent Parameters of Fluid Film Bearings

The stiffness and damping parameters of fluid film bearings depend on the geometry
of the bearing, the viscosity of the lubricant, the static load of the bearing, and the spin
speed of the rotor. For this paper, laminar flow, incompressible fluid, and short journal
bearings are assumed. To find the equations to define the behavior of fluid-film bearings, an
additional reference frame is introduced. The rotating reference frame O′x′y′z′ is coincident
with the center of the bearing. The directions of the axes of this reference frame, whose axis
x′ contains the center of the bearing C, are not fixed in space if point C moves around point
O′, as is visualized in Figure 2.
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Figure 2. Geometrical definitions of a fluid-film bearing (adapted from [29]).

First, the stationary operation of the bearing is described, where the center of the
bearing is independent of time t and, therefore, the reference frame O′x′y′z′ is fixed in
space. The pressure is linked to the thickness of the fluid by the Reynolds Equation [30]

1
6

(
1

R2
j

∂

∂θ

(
h3

µ

∂p
∂θ

)
+

∂

∂z

(
h3

µ

∂p
∂z

))
= Ω

∂h
∂θ

+ 2
∂h
∂t

, (7)

where R is the Reynolds number, h the film thickness, p the pressure, and µ the viscosity of
the lubricant. The film thickness is described as a function of the fixed coordinates and the
clearance c

h = c
(
1∇ x

c
cos(θ)∇y

c
sin(θ)

)
, (8)

where ∇ is the Nabla operator. In the case of short bearings, the flow in the circumferential
direction may be neglected [31]. In combination with Equation (8), this leads to

1
6

(
∂

∂z

(
h3

µ

∂p
∂z

))
= (Ωx∇2ẏ) sin(θ)∇(Ωy + 2ẋ) cos(θ). (9)

From Equation (9), the pressure distribution and the forces in static conditions ~fst
are obtained

~fst =
µRjb3Ω

2c2


∫ θ2

θ1
Λ cos(θ)dθ

∫ θ2
θ1

Λ sin(θ)dθ

, (10)

where

Λ =
xst sin(θ)− yst cos(θ)

c h∗st
3 , h∗st = 1− xst

c
cos(θ)− yst

c
sin(θ),
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and b is the length of the bearing. After the stationary conditions have been defined, the
linearized dynamic system is computed. Assuming that the bearing is displaced by only a
small quantity ∆x, ∆y from the static equilibrium position and moves with speed ẋ, ẏ, the
force of the fluid film on the journal is described as

~f = ~fst −
[ Fx

ẋ
Fx
ẏ

Fy
ẋ

Fy
ẏ

]
xst ,yst

[
ẋ
ẏ

]
−
[ Fx

x
Fx
y

Fy
x

Fy
y

]
xst ,yst

[
∆x
∆y

]
, (11)

as long as the inertia of the oil film is neglected. The linearized behavior of the bearings for
a given spin speed is expressed by eight coefficients (four stiffness coefficients k• and four
damping coefficients d•), which are used to describe the boundary and interface conditions
of NAT. These values are obtained by[

kxx kxy
kyx kyy

]
xst ,yst

= −µRjb3Ω
2c3

[
I1 + I2 −I4 + I5
I6 + I5 −I1 + I3

]
, (12a)

[
dxx dxy
dyx dyy

]
xst ,yst

= −µRjb3

c3

[
I4 I1
I1 I6

]
, (12b)

where

I1 =
∫ θ2

θ1

sin(θ) cos(θ)
h∗st

3 dθ, I2 = 3
∫ θ2

θ1

Λcos(θ)2

h∗st
dθ,

I3 = 3
∫ θ2

θ1

Λsin(θ)2

h∗st
dθ, I4 =

∫ θ2

θ1

cos(θ)2

h∗st
3 dθ,

I5 = 3
∫ θ2

θ1

Λ sin(θ) cos(θ)
h∗st

dθ, I6 =
∫ θ2

θ1

sin(θ)2

h∗st
3 dθ.

For a detailed description of these steps, the reader is referred to Genta [29] and
Someya [32].

2.3. Boundary and Interface Conditions

To yield a unique solution, the governing equations require certain boundary con-
ditions. Since Equation (6a,b) are fourth-order equations, eight boundary or interface
conditions are necessary for each segment. The boundary conditions on the left end
(station (1)) are defined by(

−ω2m(1) + jωd(1)xx (Ω) + k(1)xx (Ω)
)
ũ+

x1(0)+(
+ jωd(1)xy (Ω) + k(1)xy (Ω)

)
ũ+

y1(0)− Q̃+
x1(0) =

m(1) ε̃
(1)
+ Ω2

2
,

(13a)

(
−ω2m(1) + jωd(1)yy (Ω) + k(1)yy (Ω)

)
ũ+

y1(0)+(
+ jωd(1)yx (Ω) + k(1)yx (Ω)

)
ũ+

x1(0)− Q̃+
x1(0) = −j

m(1) ε̃
(1)
+ Ω2

2
,

(13b)

−ω2Θ(1)
t ϕ̃+

y1(0)− jΩωΘ(1)
p ϕ̃+

x1(0)− M̃+
y1(0) = 0, (14a)

−ω2Θ(1)
t ϕ̃+

x1(0)− jΩωΘ(1)
p ϕ̃+

y1(0)− M̃+
x1(0) = 0. (14b)

The boundary conditions on the right end (station (N)) are considered analogously.
The interface conditions at station (i) are defined by
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ũ+
x`(Z+

i )− ũ+
x`−1(Z−i ) = 0, ũ+

y`(Z+
i )− ũ+

y`−1(Z−i ) = 0, (15)

ϕ̃+
y`(Z+

i )− ϕ̃+
y`−1(Z−i ) = 0, ϕ̃+

x`(Z+
i )− ϕ̃+

x`−1(Z−i ) = 0, (16)

−ω2Θ(i)
t ϕ̃+

y`(Z+
i )− jΩωΘ(i)

p ϕ̃+
x`(Z+

i )− M̃+
y`(Z+

i ) + M̃+
y`−1(Z−i ) = 0, (17a)

−ω2Θ(i)
t ϕ̃+

x`(Z+
i )− jΩωΘ(i)

p ϕ̃+
y`(Z+

i )− M̃+
x`(Z+

i ) + M̃+
x`−1(Z−i ) = 0, (17b)

(
−ω2m(i) + jωd(i)xx (Ω) + k(i)xx(Ω)

)
ũ+

x`(Z+
i ) +

(
jωd(i)xy (Ω)

+ k(i)xy (Ω)
)
ũ+

y`(Z+
i )− Q̃+

x`(Z+
i ) + Q̃+

x`−1(Z−i ) = −j
m(i)ε(z`)eiβ(z`)Ω2

2
,

(18a)

(
−ω2m(i) + jωd(i)yy (Ω) + k(i)yy (Ω)

)
ũ+

y`(Z+
i ) +

(
jωd(i)yx (Ω)

+ k(i)yx (Ω)
)
ũ+

x`(Z+
i )− Q̃+

y`(Z+
i ) + Q̃+

y`−1(Z−i ) = −j
m(i)ε(z`)eiβ(z`)Ω2

2
.

(18b)

The locations Z−i and Z+
i are infinitesimal to the left and right of station (i).

2.4. Homogeneous Solution

The general homogeneous solution of the governing Equation (6a,b) is found by setting
the complex unbalance ε(z`)eiβ(z`) to zero. Thus, assuming a solution in local coordinates
z` of the form

ũ+
hx`(z`) = cux`e

ikz` , ũ+
hy`(z`) = cuy`e

ikz` (19)

leads to a system of equations k4 − ρ`ω2

E`
k2 − ρ`A`ω2

E` I`
2 iρ`Ωω

E`
k2

−2 iρ`Ωω
E`

k2 k4 − ρ`ω2

E`
k2 − ρ`A`ω2

E` I`

[ cux`
cuy`

]
=

[
0
0

]
. (20)

The non trivial solutions are found by setting the determinant to zero(
k4 − ρ`ω

2

E`
k2 − ρ`A`ω

2

E` I`

)2

− 4
ρ2
`Ω2ω2

E2
`

k4 = 0. (21)

In the case of Ω = ω, the eight solutions of the characteristic equation are given by

k1,2 = ±ρ`ω
2

E`

√√√√1
2

(√
1 +

4E`A`

ρ`ω2 I`
− 1
)

, (22a)

k3,4 = ±ρ`ω
2

E`

√√√√1
2

(√
1 +

4E`A`

ρ`ω2 I`
+ 1
)

, (22b)

k5,6 = ±ρ`ω
2

E`

√√√√3
2

(√
1 +

4E`A`

9ρ`ω2 I`
+ 1
)

, (22c)

k7,8 = ±ρ`ω
2

E`

√√√√3
2

(√
1 +

4E`A`

9ρ`ω2 I`
− 1
)

. (22d)
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For k1 − k4, the relation cuy` = −icux`, and for k5 − k8 the relation cuy` = icux` is valid.
Therefore, the constants cux` ans cuy` are not independent, and the general homogeneous
solution is given by

ũ+
hx`(z`) = c1` cos(α1`z`) + c2` sin(α1`z`) + c3`e

α2`(z`−L`) + c4`e
−α2`z`

+c5` cos(α3`z`) + c6` sin(α3`z`) + c7`e
α4`(z`−L`) + c8`e

−α4`z` ,
(23a)

ũ+
hy`(z`) = −i

(
c1` cos(α1`z`) + c2` sin(α1`z`) + c3`e

α2`(z`−L`) + c4`e
−α2`z`

+c5` cos(α3`z`) + c6` sin(α3`z`) + c7`e
α4`(z`−L`) + c8`e

−α4`z`
)
,

(23b)

where L` is the length of the segment, c1` − c8` are arbitrary constants, and α• are the
real-valued wave numbers α1` = k1, α2` = Im(k3), α3` = k5, and α4` = Im(k7), with Im(•)
as the imaginary part. To increase the stability of the numeric implementation, exponential
terms are implemented instead of the commonly used sinh(•) and cosh(•) terms. With
this approach, the amplitude of each function remains smaller or equal to 1 within each
segment. According to Equations (2a,b)–(4a,b) the rotation, moments, and shear forces of
the beam are found. The state within a rotor segment is defined by the matrix equation

~xh`(z`) = B
`
(z`)~c`, (24)

where ~xh` is the homogeneous solution vector, B
`

is the state variable matrix, and ~c` is the
vector of arbitrary constants.

2.5. Particular Solution

Unbalances are either concentrated on singular points or distributed along the whole
length of the rotor described by any arbitrary distribution function. In the case of arbitrarily
distributed unbalance functions, an approximation of the load is given by the Fourier
extension method [33]. This method has the advantage of not suffering from the Gibbs
phenomenon, unlike the classical Fourier series expansion. Therefore, the convergence rate
of the method is very high [33] and very efficient implementations are also available [34].
For a detailed description, the reader is referred to Klanner et al. [25].

2.6. Assembly and Solution Procedure

The total solution vector of a rotor segment is defined as ~x`(z`) = ~xh`(z`) +~xp`(z`).
The total solutions of the segments together with the boundary and interface conditions
lead to a system of linear equations

A~c =~b, (25)

where A is the system matrix, which depends only on the concentrated elements at the
stations. The right-hand side vector ~b also depends on the unbalance. The unknown
constants ~c are the solution of the system of linear equations, which defines the state
variables of the whole rotor.

2.7. Recursive Eigenvalue Search

In this section, a new approach to find the eigenvalues and the Campbell diagram of
a NAT system matrix is implemented. At every eigenvalue, the coefficient matrix of the
NAT model is singular. The prevalent approach in classical root search strategies is based
on a sign change detection of the determinant of the coefficient matrix. If the step size in
this approach is too large, eigenvalues, which are close to each other, or double roots might
be missed.

The recursive algorithm of Bestle et al. [35] solves this problem by reducing the zero
search to a minimization problem. At each local minimum of the absolute value of the
determinant, the algorithm is repeated in an area of one step size in both directions until the



Energies 2022, 15, 2009 9 of 17

desired accuracy is met. The algorithm searches in logarithmic steps, which is better suited
for wide spread frequencies. In the case of a damped rotor-bearing system, the zero search
problem depends on two variables, the damped critical speed ωd and the modal damping
coefficient d, which are the imaginary and the real part of the complex eigenvalues. In
this case, the algorithm scans a matrix of those two variables for values, which are a local
minimum in both directions [35].

For the generation of Campbell diagrams, the algorithm is adapted in a way that the
eigenvalue search is performed at a defined spin speed. To increase numeric efficiency, the
search area for the eigenvalues at a specific excitation frequency is chosen to be the value of
this eigenfrequency at the previous excitation frequency plus or minus a small percentage,
depending on the step size. Since Campbell diagrams consist of continuous lines, the
efficiency can be increased significantly with this approach, without missing eigenvalues.

2.8. Influence Coefficient Method

The influence coefficients αik(Ω) are defined as

αik(Ω) =
xi(Ω)

Uk
, (26)

where xi(Ω) is the displacement at position i caused by an unbalance Uk at position k.
Displacement, influence coefficients, and unbalances are usually complex, whereas the
ratio of the imaginary and the real part contains the information of the angular position. If
the influence coefficients of many combinations of unbalance planes k and measurement
planes i are calculated, this input-output relationship can be described as a system of
linear equations

~x = α~U, (27)

where ~x are the displacements of the rotor bearing system caused by the addition of
test weights, α is the matrix of influence coefficients, and ~U is the unbalance vector. If
the vibrations of the system are measured, and the matrix of the influence coefficients is
calculated, the unbalance of the system can easily be computed by inverting the influence
coefficient matrix

~Uc = −α−1~x0, (28)

where ~Uc are the correction unbalances, and ~x0 are the displacements of the rotor bearings
system without test weights. Thus, the system is balanced by mounting correction masses
proportional to the calculated unbalance on the opposite side of the rotor in the according
balancing planes. Surplus information, on additional measurement planes or spin speeds,
may be used to find the ideal balancing positions or reduce measurement errors with the
least squares method [36].

3. Results

To show the viability of the balancing method, a rotor-bearing system was simulated
in two different states of unbalance. At first, the critical speeds, Campbell diagram, and fre-
quency response function (FRF) were compared with the well-known FEM code by Friswell
et al. [37] to show the accuracy of the NAT simulation. Then, the influence coefficients
of the system were calculated using the proposed method. Usually, the displacements of
the rotor-bearing system are measured on site. As proof of concept, the displacements of
the rotor-bearing system were calculated with the Friswell code in this paper. With these
displacements and the influence coefficients calculated by NAT, the balancing weights were
found, and the balancing success was analyzed.

In the first test, the unbalance was limited to the disks mounted on the shaft. Since all
disks are used as balancing planes, the proposed quasi-analytical method was expected
to find the exact unbalance of the system. The second test also included the arbitrarily
distributed unbalance of the shaft. With a finite number of balancing planes, the vibrations
of the system cannot be eliminated entirely for every position and every spin speed but are
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substantially reduced. The average amplitude of the vibrations before and after balancing
were compared to determine the balancing success. All calculations were performed on an
Intel® CoreTM i7-8700 CPU with 3.2 GHz running on a Windows 10 operating system using
MATLABTM version R2019a.

3.1. Rotor Bearing System

The rotor-bearing system consisted of a stepped shaft with three disks of different
weights, which was supported on two fluid film bearings, as shown in Figure 3. This
geometry was chosen because it included all relevant aspects of the rotor problem including
gyroscopic effects, changing shaft diameter, and the behavior of fluid film bearings. The
parameters of the stations are listed in Table 1, where F is the static load on the fluid film
bearing, b the length of the fluid film bearing, di its inner diameter, c its clearance, and µ the
viscosity of the lubricant. The disks were considered stiff. The stepped shaft had a density
of 7800 kg

m3 and a Young’s modulus of 2.1× 1011 N
m2 .

Table 1. Stations of the numerical example.

z m Θt Θp F b di µ c

m kg kgm2 kgm2 N m m Ns
m2 m

0 0 0 0 0 0 0 0 0
0.13 0 0 0 431 0.04 0.02 0.032 8× 10−5

0.31 14.7 0.0412 0.0735 0 0 0 0 0
0.47 23 0.0966 0.0180 0 0 0 0 0
0.71 33 0.1960 0.3722 0 0 0 0 0
0.91 0 0 0 380 0.04 0.02 0.032 8× 10−5

1.0 0 0 0 0 0 0 0 0

1.00 m

0.91 m

0.71 m

0.47 m

0.31 m 

0.13 m

  0
.0

4 
m

  0
.0

4 
m

  0
.0

5 
m

  0
.0

6 
m

Figure 3. Rotor-bearing system (adapted from [27]).

The fluid film bearing was simulated with cross-coupling effects and speed-dependent
stiffness and damping. The characteristics of the stiffness and damping of the right fluid
film bearing are shown in Figure 4. Dashed lines represent negative values.
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Figure 4. (a) Speed dependent stiffness and (b) speed dependent damping.

The NAT simulation was compared with an FEM model built using the Friswell code,
where the shaft was modeled with 100 elements á 0.01 m. Due to the discretization, FEM
simulations with few elements tend to calculate higher natural frequencies than analytic
calculations. This effect is reduced and nearly eliminated with increasing element count [29].
Therefore, the critical speeds calculated with the FEM model were slightly higher than
those found by the quasi-analytical NAT simulation. As is seen in the Campbell diagram
(Figure 5) and Table 2, the differences between the calculations were negligible.
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Figure 5. Campbell Diagram.

Table 2. Flexural critical speeds in Hz.

NAT FEM Relative Error

43.014 43.015 0.0031%
55.059 55.060 0.0018%
154.28 154.29 0.0031%
160.75 161.76 0.6275%
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3.2. Influence Coefficient Matrix

The influence coefficients were calculated with an NAT model of the rotor-bearing
system at 2000 rpm, without any information about the actual unbalance of the system.

α =

 0.0126− 0.0078i 0.0135− 0.0082i 0.0102− 0.0073i
0.0135− 0.0082i 0.0161− 0.0091i 0.0134− 0.0088i
0.0102− 0.0073i 0.0134− 0.0088i 0.0136− 0.0092i


The measurement positions and also the balancing positions were the planes of the

disks at the positions z = 0.31 m, 0.47 m, and 0.71 m. Since the matrix is symmetric, the
influence coefficients fulfilled the theorem of Maxwell and Betti [38].

3.3. Concentrated Unbalance

In case A, the unbalance was only concentrated at the disks of the rotor bearing system,
according to Table 3.

Table 3. Unbalance of case A.

z U β

m kg m rad

0.31 2.8229× 10−4 0
0.47 5.5135× 10−4 π

2
0.71 2.5994× 10−3 π

The Frequency Response Function (FRF) generated by the proposed method was
congruent with the FRF calculated by the Friswell code, as shown in Figure 6. Displacement
ux and uy represented the average amplitude at all balancing positions.
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Figure 6. (a) FRF comparison in x-direction and (b) FRF comparison in y-direction.

Figure 7 and Table 4 show the relative error of the displacement between NAT and
three FEM models, the aforementioned model with 100 elements, one with 24 elements,
and one with six elements. It is clearly visible that the numeric FEM solutions converged
to the quasianalytic NAT solution with an increasing amount of elements. The relative
error was calculated as the absolute value of the difference in amplitude between the two
simulation methods, divided by the value of the NAT model.
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Figure 7. (a) Error relative to NAT in x-direction and (b) error relative to NAT in y-direction.

Table 4. Average relative error in %.

Number of Elements x-Direction y-Direction

6 1.2965× 10−2 1.3422× 10−2

24 5.6796× 10−5 5.6677× 10−5

100 1.1306× 10−7 1.3352× 10−7

The proposed balancing procedure was used on the rotor system at 2000 rpm. This
led to the balancing weights listed in Table 5, which were equal to the unbalance of the
disks rotated 180°. Since the method was quasianalytic and the balancing occurred at all
unbalance positions, mounting these weights completely eliminated the vibration of the
numeric example. The computation time for the calculation of the influence coefficients
and balancing weights was 0.08752 s.

Table 5. Balancing weights of case A.

z U β

m kg m rad

0.31 2.8229× 10−4 π

0.47 5.5135× 10−4 −π
2

0.71 2.5994× 10−3 0

3.4. Distributed Unbalance

In case B, the unbalance of the shaft was also taken into account. It was distributed
along the whole length of the shaft, and the function of the amount of the eccentricity was
arbitrarily chosen to be

ε(z) = −7× 10−6 × z + 10−5 × log(z + 1) + 8× 10−6 × sin(4πz). (29)

The direction of the unbalance also changed in a corkscrew manner

β(z) = 2π × z, (30)

which is considered to be the most difficult case to balance [39]. Figure 8 shows a visualiza-
tion of the eccentricity of the shaft.
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Figure 8. Distributed eccentricity, case B.

For a better balancing result, the system was now balanced at 2000, 5000, 10,000,
and 20,000 rpm, with a total computation time of 0.24256 s. At each speed, an influence
coefficient matrix and a set of balancing weights were calculated. The arithmetic mean of
these balancing weights was used as the final set of balancing weights, as shown in Table 6.

Table 6. Balancing weights of case B.

z U β

m kg m rad

0.31 3.0180× 10−4 −3.0885
0.47 5.2940× 10−4 −1.5469
0.71 2.6122× 10−3 0.0060

Mounting these balancing weights resulted in an average reduction in the amplitude
of vibration of 99.07%, measured across all balancing positions and at every spin speed
between 1 rpm and 20,000 rpm, as seen in Figure 9.
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Figure 9. (a) Balancing success in x-direction and (b) balancing success in y-direction.
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4. Discussion

The experimental procedure to determine influence coefficients requires several test
runs with stops, restarts, and cooldowns of the machine, which can be very time-consuming
and expensive [36]. Modal balancing methods, on the other hand, which require fewer
measurements, are not properly applicable on rotor systems supported on fluid film
bearings [4]. For this reason several approaches have been made in recent years to substitute
the measurements of influence coefficients with an accurate calculation.

In this paper, NAT was extended to calculate the influence coefficients of rotor systems
supported on fluid film bearings without test runs. Whereas the commonly used FEM
has a tradeoff between the numerical speed and accuracy of the simulation [29], NAT
led to quasianalytic solutions and was very computationally efficient. This makes NAT
especially suited for applications with high rotational speed, where FEM requires a fine
discretization to model higher modes accurately. However, a substantial advantage of FEM
is its versatility: It is also used to estimate the behavior of the foundation [36], which is not
yet feasible with NAT. In further research, this problem will be addressed, by supplementing
the proposed method with other state-of-the-art techniques. The method of the complex
dynamic matrix of compliances is well suited to calculate the foundation and support
behavior of rotating systems [40].

An alternative is the calculation of these parameters with the polynomial chaos ex-
pansion, which needs additional measurements, but has already been shown to work with
input data from NAT [41]. The investigation of the proposed balancing method in practice,
including the influence of the foundation, is the subject of ongoing research.

Artificial neural networks have been used in recent years, not only to monitor dynamic
systems and make maintenance decisions [42] but also to improve the balancing process
itself in combination with FEM [43]. The high efficiency of NAT makes it well suited
for the high computational demand of these techniques and might lead to even better
balancing results.

5. Conclusions

In this paper, NAT was extended to include speed-dependent stiffness and damping
coefficients of rotor-bearing systems supported on fluid film bearings. Furthermore, a new
modification of a recursive search algorithm to efficiently generate Campbell diagrams with
NAT was implemented. The results obtained by FEM converged with an increasing amount
of nodes to the results obtained by the presented quasi-analytical method and were in good
agreement. An FEM calculation of 100 elements showed only an average difference of
1.3352× 10−7 of the amplitude of vibration. An implementation of the proposed simulation
technique for the balancing of flexible rotors by means of calculated influence coefficients
was presented. This balancing method was successfully applied in two test cases. The
influence of multiple disks, stepped shafts, distributed unbalance, and the characteristics of
fluid film bearings, such as cross-coupling effects and speed-dependent parameters, were
taken into account. The unbalance was identified exactly in the first test as expected for
a quasi-analytical method. In the second test, the eccentricity of the shaft was included,
and the balancing procedure led to an average reduction in the amplitude of vibration of
99.07% measured across all balancing positions and relevant spin speeds. The simulation
via NAT was very computationally efficient, with computation times of 0.08752 s and
0.24256 s for the test cases. The results indicate that the proposed balancing method can be
applied effectively.
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