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Abstract: This paper proposes a novel hybrid equalizer circuit (HEC) for a battery management
system (BMS) to implement the passive HEC (P-HEC), active HEC (A-HEC), or active/passive
(AP-HEC) with the same equalizer circuit architecture. The advantages of an HEC are that it is simple,
cost-effective, highly energy efficient, and fail safe. The P-HEC can further use a cooling fan or heater
instead of a conventional resistor as a power dissipation element to convert the energy of the waste
heat generated by the resistor to adjust the battery temperature. Even if the P-HEC uses the resistor to
consume energy as in conventional methods, the P-HEC still dramatically improves the component
lifetime and reliability of the BMS because the waste heat generated by the equalizer resistor is outside
of the BMS board. Three significant advantages of an A-HEC are its (1) low cost, (2) small volume,
and (3) higher energy efficiency than the conventional active equalizer circuits (AECs). In the HEC
design, the MOSFETs of the switch array do not need high-speed switching to transfer energy as
conventional AECs with DC/DC converter architecture because the A-HEC uses an isolated battery
charger to charge the string cell. Therefore, the switch array is equal to a cell selector with a simple
ON/OFF function. In summary, the HEC provides a small volume, cost-effective, high efficiency, and
fail-safe equalizer circuit design to satisfy cell balancing demands for all kinds of electric vehicles
(EVs) and energy storage systems (ESSs).

Keywords: battery management system (BMS); hybrid equalizer circuit (HEC); passive equalizer
circuit (PEC); active equalizer circuit (AEC)

1. Introduction

Due to growing concerns about the environmental impact of fossil fuels, policymakers
are increasingly turning their attention to clean energy and electric vehicles [1–5]. Therefore,
the energy storage system (ESS) plays a critical role, and the lithium-ion battery (LIB) shares
more than 90% of the ESS market. For these ESSs, they need to consist of many LIBs grouped
in series and in parallel to assemble a battery pack to provide sufficient power and the
desired energy. In practice, the difference in each cell’s characteristics (e.g., internal capacity,
impedance, self-discharge rate, etc.) will influence the voltage difference of all the series-
connected cells of the battery pack. Therefore, a battery management system (BMS) [6–21]
was designed to protect, monitor, and control the state of all cells of the battery pack.
A good BMS can ensure safe operation, maximize the available capacity, and provide a
real-time estimate of the remaining discharge capacity of the battery pack [19].

However, much effort and resources are required to test a BMS with a real ESS.
Furthermore, by pushing the ESS operation under extreme operating conditions, it is
almost impossible to verify that the BMS functions are safe and reliable. Therefore, some
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research uses a hardware-in-the-loop (HIL) simulation tool to test BMS. The HIL can be
used to simulate string cells of a battery pack [20] to test BMS functions for cells, e.g., test
passive equalizer function [21]. Briefly, HIL is a good auxiliary tool in the development
stage of a BMS, which can significantly reduce the development time and testing risk
of the BMS. In many practical experiences, most battery pack failures are caused by the
cell voltage imbalance issue, which means the voltage difference is enormous, drastically
reducing the battery pack’s available power, capacity, lifespan, and safety. Therefore, most
BMS designs have an equalization unit to solve the imbalance issue [22–35].

In general, the BMS is composed of measurement, communication, calculation, mem-
ory, equalization units, etc. The equalization unit is also called the cell balancing unit. The
equalization unit is composed of two parts: an equalization control strategy [23–29] and an
equalization circuit (EC) [28,29,31–34]. Its purpose is to reduce the maximum and minimum
cell voltage differences of the battery pack to avoid battery overcharge and overdischarge,
which can improve the safety and lifespan. Besides, the low cell voltage difference also
increases the available capacity of the battery pack. Therefore, the equalization unit is
the most crucial part of all BMS units. Retired vehicle lithium battery packs with good
cell balance can be reused in energy storage systems for secondary use to produce huge
economic and environmental benefits. Various ECs have been proposed in the past, which
can be divided into two types: (1) the passive equalizer circuit (PEC) [28], also called
dissipative balance, discharges the energy with a power resistor to the series-connected
cell with the highest voltage, and (2) the active equalizer circuit (AEC) [27–34,36–38], also
called non-dissipative balance, charges the energy to the cell with the lowest voltage.
Many review articles have provided a detailed summary or comparison for the equaliza-
tion design [17,26,28,30,32,33,36]. Therefore, the following summary is more focused on
commercialization.

The commonly used PEC architecture [28] is shown in Figure 1. The advantages of
PEC are that it is very simple, easy to apply and low cost, and all switches (Si) and discharge
resistors (Ri) are placed on the BMS circuit board (where i = 1, 2, . . . , n). Therefore, the
temperature of BMS board will increase a great deal when performing the cell balancing.
In most commercial products, the typically balancing resistor is 33 Ω [39], and the current
of each channel is around 100~127 mA which maps to 3.3~4.2 V and the waste heat of the
PEC is around 0.3~0.5 W per channel in the BMS board. To avoid overheating the BMS
board, the BMS also limits the number of balanced channels.

Energies 2022, 15, x FOR PEER REVIEW 2 of 21 
 

 

However, much effort and resources are required to test a BMS with a real ESS. Fur-

thermore, by pushing the ESS operation under extreme operating conditions, it is almost 

impossible to verify that the BMS functions are safe and reliable. Therefore, some research 

uses a hardware-in-the-loop (HIL) simulation tool to test BMS. The HIL can be used to 

simulate string cells of a battery pack [20] to test BMS functions for cells, e.g., test passive 

equalizer function [21]. Briefly, HIL is a good auxiliary tool in the development stage of a 

BMS, which can significantly reduce the development time and testing risk of the BMS. In 

many practical experiences, most battery pack failures are caused by the cell voltage im-

balance issue, which means the voltage difference is enormous, drastically reducing the 

battery pack’s available power, capacity, lifespan, and safety. Therefore, most BMS de-

signs have an equalization unit to solve the imbalance issue [22–35].  

In general, the BMS is composed of measurement, communication, calculation, 

memory, equalization units, etc. The equalization unit is also called the cell balancing unit. 

The equalization unit is composed of two parts: an equalization control strategy [23–29] 

and an equalization circuit (EC) [28,29,31–34]. Its purpose is to reduce the maximum and 

minimum cell voltage differences of the battery pack to avoid battery overcharge and 

overdischarge, which can improve the safety and lifespan. Besides, the low cell voltage 

difference also increases the available capacity of the battery pack. Therefore, the equali-

zation unit is the most crucial part of all BMS units. Retired vehicle lithium battery packs 

with good cell balance can be reused in energy storage systems for secondary use to pro-

duce huge economic and environmental benefits. Various ECs have been proposed in the 

past, which can be divided into two types: (1) the passive equalizer circuit (PEC) [28], also 

called dissipative balance, discharges the energy with a power resistor to the series-con-

nected cell with the highest voltage, and (2) the active equalizer circuit (AEC) [27–34,36–

38], also called non-dissipative balance, charges the energy to the cell with the lowest volt-

age. Many review articles have provided a detailed summary or comparison for the equal-

ization design [17,26,28,30,32,33,36]. Therefore, the following summary is more focused 

on commercialization. 

The commonly used PEC architecture [28] is shown in Figure 1. The advantages of 

PEC are that it is very simple, easy to apply and low cost, and all switches (Si) and dis-

charge resistors (Ri) are placed on the BMS circuit board (where i = 1,2, …, n). Therefore, 

the temperature of BMS board will increase a great deal when performing the cell balanc-

ing. In most commercial products, the typically balancing resistor is 33 Ω [39], and the 

current of each channel is around 100~127 mA which maps to 3.3 V~4.2 V and the waste 

heat of the PEC is around 0.3~0.5 W per channel in the BMS board. To avoid overheating 

the BMS board, the BMS also limits the number of balanced channels. 

 

Figure 1. The circuit of PEC [28]. 

Briefly, the AEC uses the switch array, capacitors, inductors, or transformers to ab-

sorb the energy from the cell with the highest voltage and release the energy to the cell 

with the lowest voltage. Many kinds of AECs are shown in Figure 2, but most are based 

on the DC/DC converter principle.  

Figure 1. The circuit of PEC [28].

Briefly, the AEC uses the switch array, capacitors, inductors, or transformers to absorb
the energy from the cell with the highest voltage and release the energy to the cell with
the lowest voltage. Many kinds of AECs are shown in Figure 2, but most are based on the
DC/DC converter principle.
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Figure 2. Classification of AEC [33].

Figure 3 shows the fundamental topology of an AEC with the DC/DC converter
working principle, and all switches are the bidirectional switch (BS) which consists of a
back-to-back MOSFET string, called BS-MOSFET. Obviously, all switches in Figure 3 need
high-speed switching to transfer energy between the string cell and the transformer.
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Figure 3. Unidirectional flyback-based balancing topology for AEC [36].

Based on the topology of Figure 3, the chipmaker analog device had commercialized
the active balancing control IC LT8584 [40]. The AFE IC (LTC680x family) can drive the
active balancing IC LT8584 and the transformer NA5743-AL to generate 2.5 A balancing
current from the cell to the module. Moreover, the standalone balancing IC (LT3300 family)
enables a bidirectional balancing current between cell and module up to 10 A.

Figure 4 shows another implementation of the AEC with a single switched capacitor
(SSC) with DC/DC converter principle, and the switches in Figure 4 also need high-speed
switching to transfer energy between the auxiliary battery, capacitor, and string cells.
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In fact, the working principle of most AECs is based on a DC/DC converter archi-
tecture to transfer energy between string cells or the module, and the energy storage
components (e.g., capacitor or inductor) can be regarded as an energy transfer buffer.
Therefore, the switches of the switch array of the AECs are not only used to select the string
cell for sinking/draining energy but also needed high-speed switching for transferring
energy through the energy buffer (e.g., inductor or capacitor). Due to high-speed switching
requirements, most of the switching arrays composed of BS-MOSFETs in AEC circuits are
mostly driven by gate drivers. Based on the above descriptions, it is easy to find the cost
of AECs is related to the component’s specification and the number of power resistors,
inductors, capacitors, transformers, and BSs.

Thus, the low-cost or the low-series cell string pack prefers the PEC. The AEC is more
applicable to high-end or high-series cell string packs. Therefore, this paper proposes the
HEC architecture, which can be both PEC and AEC or either PEC or AEC. The advantages
of the proposed HEC are its (1) cost-effective, (2) high efficiency, and (3) fail-safe features.

2. Operation Principle of Hybrid Equalizer

In Figure 5, the HEC corresponds to a PEC by replacing the discharge unit with a
power resistor, which is called a P-HEC. All the switches in Figure 5 are replaced with
BS-MOSFET, as shown in Figure 6.

Figure 7 is an example to illustrate the principle of P-HEC. To discharge the B2 cell
through the EQ-Bus, the BMS controls the S2,n and S2,p switches to be conducting. A
discharge unit REQ can be a fan or a heater to regulate the battery temperature or be a
power resistor to dissipate the cell energy as conventional ones. The REQ is installed out of
the BMS board with proper cooling to prevent the BMS board temperature rising quickly
when executing the balance operation. The cell balancing current (Ib) is related to the
resistance of REQ, conducting resistance of S2,n and S2,p, and the resistance of all connected
parts from B2+ to B2−. For example, the REQ is 1 Ω and the resistance of the BSs and wires
is 0.5 Ω so that the total resistance is 1.5 Ω. The balancing current is 2.27 A (VB2 = 3.4 V) to
2.8 A (VB2 = 4.2 V) within cell operation voltage range. The fuse and switch specification
will be calculated after given REQ. When the HEC is only used as PEC, it allows the opposite
electrode of EQ-Bus. Therefore, the switches Si,n and Si,p can be replaced with a single
switch Si to save costs.
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Figure 8 shows how the proposed HEC design can satisfy the fail-safe function when
any switch of the switch array fails in short-circuit. Figure 8 assumes the S1,p incurs a
short-circuit failure, and a short current (Is) blows the fuse F2 or F3 when discharging
the B2 cell by conducting S2,n and S2,p. The current path of the short current (Is) goes
through F3 → S2,p → EQ− Bus+→ S1,p → F2 . Therefore, the HEC can avoid the cell
being continuously discharged when the failed switch keeps conducting. In addition, it
is easy to identify the failure switch path by detecting the balancing current or voltage
change.

Figure 9 shows an HEC implement AEC architecture by replacing the charge unit of
Figure 5 to an isolated CC-CV battery charger, which is called an A-HEC. The isolated
CC-CV battery charger is composed of an isolated DC/DC converter and a CC-CV battery
charger circuit. The switch SB controls the input power, and the SA controls the charger
output power to the EQ-Bus.

Figure 10 shows the HEC architecture can be either PEC or AEC, but only one mode
can be used at one time. It can be P-HEC by conducting the switch SC and be A-HEC by
conducting the switch SA and SB. The switches SA−SC must be isolated switches because
of the different ground levels.
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In summary, the proposed HEC combines three essential parts: (1) a switch array,
(2) fuses, (3) the charging unit, or the discharging unit. The proposed HEC uses the switch
array architecture of conventional AECs to implement the PEC and AEC. The P-HEC can
solve the thermal issue of conventional PECs by placing the discharge unit out of the BMS
board. The discharge unit might not only be a power resistor for dissipating the energy
but also could be a fan or heater to reuse the energy to regulate the battery temperature.
Furthermore, the balancing current (>2 A) of the P-HEC is more than 20 times that of the
conventional PEC (10–127 mA) with a power resistor on the BMS board. The proposed
HEC also adopts the auxiliary lead–acid battery of the EV to provide energy to the isolated
DC/DC charger to charge the cell with the lowest voltage in the battery pack. The isolated
charger is composed of an isolated DC/DC converter and a CC-CV charger circuit. The
significant advantages are shown below: (1) simple and easy to implement with low-cost
components, (2) its volume is much smaller. Whether the proposed HEC is a P-HEC or
an A-HEC, the proposed HEC also satisfies the fail-safe requirement of functional safety
because the balancing current will be cut off by blowing a fuse when any switch of the
switch array fails in short-circuit state. The BMS also can detect the cell voltage or balancing
current to identify the failed switch.

3. Cost-Effective Bidirectional Switch Circuit Design for HEC

The switch array of the HEC is very similar to the traditional AEC, but the basic
control concept is entirely different even though the BSs of the switch array use the same
BS-MOSFET structure. In conventional AECs based on the DC/DC converter principle,
the BS-MOSFET in many AEC articles needs a gate driver [29] or an isolation optocoupler
(TLP250) [34] to high-speed switch the BS-MOSFET to transfer the energy between the
cell and the energy storage components. The disadvantage is the number of gate drivers
dramatically increases the cost of the switch array. However, the BS-MOSFETs of the HEC
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only use an ON/OFF switch, which is equal to a string cell selector for performing cell
balancing. Therefore, Section 3 proposes a low-cost control circuit to replace the gate driver
to control the BS-MOSFETs.

3.1. Low-Cost BS-MOSFET Drive Circuit

Based on the working principle of Figure 7, we further explain how to design the
low-cost BS-MOSFET switch circuit. Therefore, the BS-MOSFET control circuit and the
working principle are shown in Figure 11.
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Figure 11. The BS-MOSFET switch and control circuit design.

In Figure 11, we use two back-to-back P-MOSFETs to be the BS-P-MOSFET drive
circuit if the minimum voltage of the node is ≥8 V. Otherwise, we use two back-to-back
N-MOSFETs to be the BS-N-MOSFET drive circuit for the maximum voltage of the node is
<8 V and the battery pack voltage B+ is ≥8 V.

3.2. BS-P-MOSFET Drive Circuit

Figure 11 can be simplified as Figure 12, where only two cells are series connected.
The B1 in Figure 12 corresponds to the battery consisting of B1 to Bn−1 of Figure 11. The
B2 in Figure 12 corresponds to the Bn of Figure 11. We use Figure 12 to demonstrate the
principle of a BS-P-MOSFET driving circuit with a B2+ path to the EQ-Bus+ because the
circuit of the B2− path to the EQ-Bus- is the same structure. Therefore, we only use B2+ to
demonstrate the operation principle.
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Figure 12. Simplified Figure 11 as a battery pack with 2S configuration for demonstrating BS-P-
MOSFET drive circuit.

3.2.1. Schematic and Calculation for BS-P-MOSFET Circuit

In Figure 12, the principle of step 1 to step 3 to switch on the BS-P-MOSFET path is
shown below.

Step 1: Switch on the transistor Q1 by giving control voltage VB2ctrl.

VR3 = VB2ctrl × (R3/(R3 + R4)), (1)

I1 =
(

VB2ctrl −VBE(Q1)

)
/R4, (2)

where VR3 > 1.2×VBE(ON) is recommended before switch on Q1 and the current of R3 can
be ignored after conducting Q1; 50 µA < I1 < 100 µA is recommended and C1 is parallel
with R3 to avoid malfunction.

Step 2: Switch on the P-MOSFETs Q2 and Q3 after Q1 is switched on and the current I1
drives I2 and VR1.

I2 =
(

VB2+ −VCE(Q1) −VDS(Q2)

)
/(R1 + R2), (3)

VR1 = I2 × R1, (4)

where VR1 > Vgs(th), 8 V < VR1 < 12 V is recommended for switch on, and VR1 < 0.2 V
for switch off.

Step 3: Finish to conduct BS-P-MOSFET path to EQ-BUS.



Energies 2022, 15, 2000 11 of 20

3.2.2. Implementation and Test Results for BS-P-MOSFET Circuit

The transistor Q1 uses the BC846, and the Q2 and Q3 use a dual P-MOSFET
(MTB60B06Q8) in SOP8 package for size reduction, whose basic specification is shown in
Figures 13 and 14 shows the implementation of the BS-P-MOSFET drive circuit.

Energies 2022, 15, x FOR PEER REVIEW 11 of 21 
 

 

 

Figure 13. Dual p-channel power MOSFET (MTB60B06Q8). 

 

Figure 14. The implementation of BS-P-MOSFET drive circuit. 

Based on the operation principle of Figure 12, the settings are defined as B1 = 42 V 

(corresponding to the B1~Bn-1 string of the battery pack) and B2 = 4 V (corresponding to the 

Bn). Other settings are R1 = 20 kΩ, C1 = 10 nF, R2 = 75 kΩ, R3 = 50 kΩ, and R4 = 50 kΩ. We use 

the constant resistor mode of electrical load to simulate REQ  for obtaining IEQ ≅ 1 A. 

Therefore, the calculated result is VR3 = 1.65 V (VB2ctrl = 3.3 V), I1 ≅ 52 uA, and the volt-

age range of VR1 and VR1′ is 9.2 V (B+ = 46 V) and 8.4 V (B+ = 42 V), respectively. Figures 

15 and 16 show the signal of VB2ctrl, VR1, and VEQ  to exhibit the transient state of the 

switch on and off. 

 

Figure 15. Transient state of turn on Q2 and Q3 with IEQ = 1 A. 

Figure 13. Dual p-channel power MOSFET (MTB60B06Q8).

Energies 2022, 15, x FOR PEER REVIEW 11 of 21 
 

 

 

Figure 13. Dual p-channel power MOSFET (MTB60B06Q8). 

 

Figure 14. The implementation of BS-P-MOSFET drive circuit. 

Based on the operation principle of Figure 12, the settings are defined as B1 = 42 V 

(corresponding to the B1~Bn-1 string of the battery pack) and B2 = 4 V (corresponding to the 

Bn). Other settings are R1 = 20 kΩ, C1 = 10 nF, R2 = 75 kΩ, R3 = 50 kΩ, and R4 = 50 kΩ. We use 

the constant resistor mode of electrical load to simulate REQ  for obtaining IEQ ≅ 1 A. 

Therefore, the calculated result is VR3 = 1.65 V (VB2ctrl = 3.3 V), I1 ≅ 52 uA, and the volt-

age range of VR1 and VR1′ is 9.2 V (B+ = 46 V) and 8.4 V (B+ = 42 V), respectively. Figures 

15 and 16 show the signal of VB2ctrl, VR1, and VEQ  to exhibit the transient state of the 

switch on and off. 

 

Figure 15. Transient state of turn on Q2 and Q3 with IEQ = 1 A. 

Figure 14. The implementation of BS-P-MOSFET drive circuit.

Based on the operation principle of Figure 12, the settings are defined as B1 = 42 V
(corresponding to the B1~Bn-1 string of the battery pack) and B2 = 4 V (corresponding to the
Bn). Other settings are R1 = 20 kΩ, C1 = 10 nF, R2 = 75 kΩ, R3 = 50 kΩ, and R4 = 50 kΩ. We
use the constant resistor mode of electrical load to simulate REQ for obtaining IEQ ∼= 1 A.
Therefore, the calculated result is VR3 = 1.65 V (VB2ctrl = 3.3 V), I1

∼= 52 µA, and the
voltage range of VR1 and VR1’ is 9.2 V (B+ = 46 V) and 8.4 V (B+ = 42 V), respectively.
Figures 15 and 16 show the signal of VB2ctrl, VR1, and VEQ to exhibit the transient state of
the switch on and off.
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3.3. BS-N-MOSFET Drive Circuit

Figure 11 can be simplified as Figure 17, where only two cells are series connected.
The B1 in Figure 12 corresponds to the B1 cell of Figure 11. The B2 in Figure 17 corresponds
of B2 to Bn of Figure 11. We use Figure 17 to demonstrate the principle of BS-N-MOSFET
driving circuit with B1+ path to EQ-Bus+ because the circuit of B1− path to EQ-Bus- is the
same structure. Therefore, we only use B1+ to demonstrate the operation principle.
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3.3.1. Schematic and Calculation for BS-N-MOSFET Circuit

In Figure 17, the principle of step 1 to step 4 for conducting the BS-N-MOSFET path is
shown below:

Step 1: Conduct the transistor Qd by giving control voltage VB1ctrl.

VRe = VB1ctrl × (Re/(Re + Rf)), (5)

Ia =
(

VB1ctrl −VBE(Qd)

)
/Rf, (6)

where VRe > 1.2×VBE(ON) is recommended before conducting Qd and the current of Re
can be ignored after conducting Qd; 50 µA < Ia < 100 µA is recommended and Ca is
parallel with Re to avoid malfunction.

Step 2: Conduct the transistor Qc after Qd is conducted and the current Ia drives;

VRc =
(

VB+ −VEB(Qc)

)
× (Rc/(Rc + Rd)), (7)

Ib =
(

VB+ −VEB(Qc) −VCE(Qd)

)
/Rd, (8)

where VRc > 1.2 × VBE(ON) is recommended before conducting Qc and the current of
Rc can be ignored after conducting Qc; 50 µA < Ib < 100 µA is recommended to avoid
malfunction.

Step 3: Conduct the N-MOSFETs Qa and Qb after Qc is conducted and the current Ib
drives;

Ic =
(

VB+ −VB1 −VEC(Qc) −VSD(Qa)

)
/(Ra + Rb), (9)

VRa = Ic × Ra, (10)

where VRa > Vgs(th), and 8 V < VRa < 12 V is recommended.
Step 4: Finish to conduct BS-N-MOSFET path to EQ-BUS.

3.3.2. Implementation and Test Results for BS-N-MOSFET Circuit

The transistor Qd uses the BC846 and Qc uses the MMBT5401, and the Qa and Qb
use a dual N-MOSFET (MTB20A06KQ8) in SOP8 package for size reduction, whose basic
specification is shown in Figures 18 and 19 shows the implementation of the BS-N-MOSFET
drive circuit.
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Figure 19. The implementation for BS-N-MOSFET drive circuit verification: (a) BS-N-MOSFET path
for B1+ in front of PCB; (b) BS-N-MOSFET path for B1—at the rear of PCB.

Based on the operation principle of Figure 17, the settings are defined as B1 = 4 V
(assumed the first string of the battery pack) and B2 = 42 V (assumed the B2~Bn string
of the battery pack). Other settings are Ra = 110 kΩ, Rb = 390 kΩ, Rc = 50 kΩ, Rd =
680 kΩ, Re = 50 kΩ, Rf = 50 kΩ, and Ca = 10 nF. We use the constant resistor mode of
electrical load to simulate REQ for obtaining IEQ ∼= 1 A. Therefore, the calculated result is
VRe = 1.65 V (VB1ctrl = 3.3 V), Ia ∼= 52 µA, and the voltage range of VRa and VRa′ are 9.38
V and 9.24 V, respectively. Figures 20 and 21 show the signal of VB1ctrl, VRa, and VEQ to
exhibit the transient state of the switch on and off.

The above experimental results have verified the transient characteristics of the BS-
MOSFET circuit design of the highest string cell and the lowest string cell in the battery
pack, respectively. Briefly, the time of the ON/OFF transient state is around 80–100 us.
Therefore, the following section will demonstrate the A-HEC design to the BMS board and
test the balancing current for the actual battery pack.

Table 1 shows the comparison results between the P-HEC and conventional PECs.
P-HEC is suitable for a battery pack with many cells connected in series (>8S configuration),
such as electric bicycles, electric scooters, or electric vehicles. The conventional PEC is
suitable for the battery pack (2S or 3S configuration) of the notebook, power tool, or tablet
computer.
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Table 1. Comparison of the proposed P-HEC with conventional PECs (series cells = N).

Item PEC (Conventional) P-HEC (Proposed)

Topology
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Table 2 shows the comparison results between the A-HEC and the commercial active
equalizer control IC (LT8584) evolved from Figure 3. The A-HEC is a more cost-effective
solution than the LT8584 for the high voltage battery pack (>3S configuration) when the
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total balancing current of the battery pack/module is less than 3 A. Not only is the channel
cost of the HEC low, but also the occupied circuit board area of the equalizer circuit is only
2~3 times of the passive equalizer.

Table 2. Comparison of the proposed A-HEC with the conventional AEC (series cells = N).

Item AEC (Commercial LT8584) A-HEC (Proposed)

Topology
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Architecture DC/DC converter Cell selector + isolated charger

Channel cost

N × 6 USD
LT8584 (~4)
+Transformer (~2)
Transformer: COILCRAFT
NA5743-AL

(N × 0.25 × 2) + 15 USD
Switch array(N × 0.25 × 2 paths)
+Charger (~3)
+Isolated DC/DC converter (~12)
Iso. DC/DC: MEANWELL
SCW12B-05

Max. ON
channel Multi-channel 1 channel

Fail-safe — Yes (fuse)

Max. current N × 2.5 A ~2.1 A@4.2 V

4. Implementation of the A-HEC to the Battery Monitoring Unit of a Battery Pack

Figure 22 shows the implementation of the proposed A-HEC circuit of Figure 9 to
the battery monitoring unit (BMU) board, and the maximum balancing charging current
can reach 2.2 A. The battery pack has a 22S1P configuration with 25 Ah LTO cells, the cell
operating voltage is 1.8~2.7 V and the pack operating voltage is 39.6~59.4 V. The battery
packs can be series connected to form a high-voltage battery system in which the system
voltage can be up to 600 V.
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The circuit placement of the A-HEC circuit of the BMU board of Figure 22 is shown in
Figure 23. The BS-MOSFET could be BS-N-MOSFET or BS-P-MOSFET, the BS-N-MOSFET
and BS-P-MOSFET circuit are used to B1–B3 and B4–B22, respectively. We used a commercial
product SCW12B-05 (12 W, η = 83%) as the isolated DC/DC converter of Figure 9 to transfer
auxiliary input 18–36 V to isolated output 5 V. In Figure 9, the CC/CV charger circuit is
implemented by the LIB charger IC (EUP3271) of which the maximum charge current is
4 A.
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An enlarged view of the BS-MOSFET switch array of Figure 23 is shown in Figure 24,
which includes BS-N-MOSFET drive circuit for the B1~B2 cells and BS-P-MOSFET for the
B3~B22 cells, respectively.
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The balance current experiment results for the proposed A-PEC circuit design of
Figure 23 are summarized in Table 3. The balancing current for each node of the battery
string is around 1.95–2.25 A.

Table 3. The balancing current result for each node of the battery string.

Voltage Node
Balancing

Charge
Current (mA)

Voltage Node
Balancing

Charge
Current (mA)

B1+ 2265 B12+ 2265

B2+ 2270 B13+ 2270

B3+ 2255 B14+ 2265

B4+ 2260 B15+ 2220

B5+ 2265 B16+ 2270

B6+ 2265 B17+ 2245

B7+ 2270 B18+ 2270

B8+ 2270 B19+ 1960

B9+ 2265 B20+ 1955

B10+ 2260 B21+ 1975

B11+ 2260 B22+ 2260

5. Conclusions

This paper proposed the cost-effective and simple passive/active HEC design for
a BMS. The key idea of the HEC is to let the switch array as a string cell selector for
selecting the string cell to charge (A-HEC) or discharge (P-HEC) for cell balancing purposes.
Therefore, the BS-MOSFETs of the switch array are equal to an ON/OFF switch and do
not need high-speed switching to move energy. Furthermore, we proposed a low-cost and
simple control circuit to drive these BS-MOSFET paths of HEC, which had been verified
with a 48 V LTO battery pack. The comparison of the proposed HEC with conventional
PEC and AEC are shown in Tables 1 and 2, respectively. The power cost per channel,
low-temperature rise on the BMS by placing the discharge unit outside the BMS circuit
board, and fail-safe function are the competitive advantages of P-HEC. Similarly, the low
cost of the BS-MOSFET driving circuit, fail-safe and small size on BMS are the significant
features of the A-HEC. The limitation of the HEC is the minimum pack voltage should be
higher than 8 V (>3S~4S configuration) for driving the MOSFET and control circuit. Based
on the above features, the equalizer circuit design with the HEC topology is a cost-effective
solution for various EVs and ESSs with high voltage battery packs.
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Abbreviations

BMS Battery management system
AFE Analog front end
BMU Battery monitoring unit
EV Electric vehicle
ESS Energy storage system
LIB Lithium-ion battery
EC Equalizer circuit
M-AEC Modularized equalizer circuit
PEC Passive equalizer circuit
AEC Active equalizer circuit
HEC Hybrid equalizer circuit
P-HEC Passive hybrid equalizer circuit
A-HEC Active hybrid equalizer circuit
AP-HEC Active/passive hybrid equalizer circuit
BS bidirectional switch
BS-MOSFET bidirectional switch with back-to-back MOSFET
BS-P-MOSFET bidirectional switch with back-to-back P-MOSFET
BS-N-MOSFET bidirectional switch with back-to-back N-MOSFET
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