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Abstract: In order to reveal the distribution characteristics of functional groups and the difference
of microcrystalline structure parameters between outburst coal and primary coal, the coal samples
inside and outside the outburst holes of the Sanjia coal mine were examined. The functional groups
and microcrystalline structure parameters of outburst coal and primary coal in the Sanjia coal mine
were studied by infrared spectroscopy, X-ray diffraction (XRD) experiment and peak-splitting fitting
method. The results showed that the substitution mode of the benzene ring in an aromatic structure
was mainly benzene ring tri-substituted, with primary coal of 32.71% and outburst coal of 31.6%. The
primary coal contained more functional groups, from which hydrogen bonds can easily be formed,
meaning that gas is not easily adsorbed by coal. The aromatic hydrogen rate (fHa) of the outburst coal
was 0.271, the aromatic carbon rate (ƒC) was 0.986, the aromaticity I1 was 0.477, I2 was 0.373 and the
length of the aliphatic branched chain (ACH2/ACH3) was 0.850. Compared with the primary coal, the
aromatic hydrogen rate, aromatic carbon rate and the aromaticity of the outburst coal were higher,
indicating that the hydrogen and carbon elements in the aromatic functional groups of outburst coal
were higher and that the aliphatic functional group was higher than the aromatic structural functional
group. ACH2/ACH3 and maturity (Csd) were slightly lower than those of primary coal, indicating
that the coal has more straight chains than side chains, while aliphatic hydrocarbons are mostly short
chains and have high branched degree. There were obvious 002 and 100 peaks in the XRD pattern.
The d002 and d100 of outburst coal were 3.570 and 2.114, respectively, while the number of effective
stacking aromatics was 3.089, which was lower than that of primary coal, indicating that the structure
of the dense ring in the coal saw certain changes.

Keywords: outburst coal; primary coal; structural parameters; infrared spectrum; XRD

1. Introduction

Guizhou Province in south China has abundant coal resources, wide distribution
and complete coal types; however, the natural occurrence conditions of coal seams in
Guizhou are poor, the occurrence of gas is complex and its control is difficult at under-
ground mines [1–3]. In its natural state, gas exists in coal or surrounding rock in a free
state and suction state [4–8]. The functional group of coal determines the chemical adsorp-
tion characteristics of coal, which is mainly controlled by the maceral and mineralogical
compositions of coal seams and could indirectly affect the adsorption state of gas by coal
seams [9–18]. Therefore, it is of great significance to study the functional group distribution
and microcrystalline structure parameters of coal in order to understand gas occurrence
and predict gas disasters.

Due to the complex microstructure characteristics of coal, our understanding of coal
chemical composition is still limited and under discussion. For a long time, the research
on the chemical structure of coal and the characteristics of functional groups in coal has
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been the mainly focus of several studies [19–23]. Infrared spectroscopy is a non-destructive
structural characterization technique that is especially suitable for qualitative and semi-
quantitative study of functional groups in coal [24–28]. It is very suitable for characterizing
insoluble organic compounds in coal. It is the comprehensive absorbance estimation of
organic components based on the main functional groups (such as alkyl CH, CH2 and CH3,
aromatic C=C and C-H, carbonyl/carboxylic acid C=O, hydroxyl-OH) [29,30]. Based on
this, several studies have been conducted during the last two decades. Ibarra et al. [31]
assigned the absorption peak of the whole spectrum and divided the whole spectrum
into four parts, namely, aromatic structure, oxygen-containing functional group, fatty
functional group and hydroxyl functional group. Sobkowiak et al. [32] studied the dis-
tribution characteristics of aromatic and aliphatic functional groups in coal by infrared
spectroscopy. Rosa et al. [33] and Alemany et al. [34], who focused on the characterization
of Illinois No.6 coal samples, found that the aromaticity of the coal was 0.72, 0.7 and 0.68.
Painter et al. [35] summarized the assignment of hydroxyl absorption peaks in infrared
spectroscopy coal, finding that hydroxyl hydrogen bonds are mainly OH-π, OH-OH, OH-
ether oxygen. Orrego-Ruiz et al. [36] used FTIR spectroscopy to determine five Colombian
coals and obtained the contents of aliphatic hydrogen and aromatic hydrogen. Cao et al. [37]
found that the substitution degree of high maturity coal decreases rapidly in the early
stage of coalification. There are a large number of aromatic clusters in semi anthracite and
anthracite, and the average aromatic ring size is above 3–4.

X-ray diffraction (XRD) is an important technique for determining the structural pa-
rameters of crystalline matter in coal, which is also widely used in studying the polynuclear
aromatic structure and the composition of microcrystal aromatic ring lamellae of amor-
phous materials [38–42]. Saikia et al.’s [43] XRD and FTIR analysis of the coal samples from
Makum and Assam states in India indicated that the intensities of carbonyl groups content
in coal was related to the metamorphic degree of coal. Wu et al. [44] found that there was
an exponential relationship between XRD structure parameters and C/H by analyzing
the XRD spectra of nine coals. Jiang et al. [45], according to the XRD pattern of medium
and high rank coal, concluded that there is a linear relationship between XRD structural
parameters and vitrinite reflectance (%Ro). Boral P et al. [46] studied five coal samples
selected from different coal pools in India using X-ray diffraction. It was found that d002
and fa values depend on coal rank, not only carbon content.

Even though the previous studies mainly focused on the functional groups and mi-
crostructure of primary coal and tectonic zone coal, the research on functional groups and
the microstructure of coal samples in outburst sites is limited, and the above research is less
related to the research and analysis of outburst coal in the Guizhou mining area. In order
to explore the distribution of functional groups in outburst coal and the characteristics of
microcrystalline structure parameters, this paper intends to use an infrared spectroscopy
test and peak fitting method to study the infrared spectrum of coal samples and determine
the structural parameters of its coal samples. Secondly, the microcrystalline structure
parameters of coal samples were calculated by XRD analysis. Finally, the functional groups
and microcrystalline structure parameters of outburst coal samples and primary structure
coal samples were compared, and the differences between the two were analyzed to better
explain the influence of outburst coal on gas occurrence.

2. Sample Preparation and Test Method
2.1. Sampling Cite

The Sanjia coal mine is located in the south-west section of the Guiyang complex
tectonic deformation zone of Tailong in the north of the Yangtze platform in the south-east
wing of Guanzhai syncline. In general, it is a monoclinic structure, with strata moving
towards the northeast, tending to the northwest, and with inclination of about 10◦. The
faults found in the mining area are located in the southern part of the mining area and its
edge. Affected by the faults, the strata have changed. On 25 November 2019, a prominent
accident occurred at the heading face of the 41,601 transport roadway in Sipan District. The
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sampling point selected in the 41,601 transport roadway heading face was located near the
northern boundary of the mining area. See Figure 1.
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2.2. Proximate and Ultimate Analyses of Coal Samples

Samples were gathered soon after the outburst accident. The surface oxide layer of the
sampling point was stripped and the outburst coal samples were taken in the outburst hole
by the groove method, while the primary coal samples were taken outside the outburst
hole. The collected coal samples were immediately sealed in the coal sample tank to reduce
exposure to the external environment, the oxidation of the samples were slowed down
during the period before the start of the experiment, and the sampling point information
was recorded. The tank was fixed in the transport process to prevent secondary damage to
coal. The samples were sent to the laboratory and ground into the specified particle size by
agate bowl. According to GB/T 214-2007 and SN/T 4764-2017, coal ash, moisture, volatile
content and C, H, N, O, S and other elements were determined by industrial analyzer and
elemental analyzer.

2.2.1. Infrared Spectroscopy Experiments

The experiment was carried out by Nicolet 6700 Fourier transform infrared spectrome-
ter. Before the experiment, the coal samples were placed in a constant temperature oven at
80 ◦C for 5 h for drying treatment. After drying, the coal samples were fully mixed with
potassium bromide (KBr) at a ratio of 1:100, and then loaded into the grinding tool to make
transparent sheets of 0.1–1 mm thickness on the tablet press. The equipment test conditions



Energies 2022, 15, 1956 4 of 14

were: a wave number test range of 7800–375 cm−1, a scanning rate of 0.158–6.33 cm/s, an
infrared spectral resolution of 4 cm−1 and scanning times of 32.

2.2.2. X-ray Diffraction (XRD) Analysis

The X-ray diffractometer used the X-ray with a fixed wavelength to irradiate the coal.
When the wavelength of the X-ray was consistent with the magnitude of the lattice in
the coal, the diffraction phenomenon occured. Different diffraction light was formed at
different positions. A series of X-rays irradiated at different angles were recorded to form.
According to the map, the data provided about the crystalline structure of the coal was
analyzed [47]. In the experiment, the X-ray diffractometer Shimadzu XRD-6100 was used
for analysis and testing, and the coal samples that had been prepared in advance were
loaded onto the support. Setting working conditions, the light source was an X-ray tube
copper that targeted radiation (γ = 0.15405 nm) and that had a voltage of 40 kV, a current
of 40 mA, a scanning speed of 10/mm and a scanning range of 0–90◦.

3. Experimental Results and Analysis
3.1. Standard Coal Quality Parameters

It can be seen from the composition analysis of the coal samples that the outburst coal
has higher volatile matter and ash content than the primary coal and that the moisture
content of the primary coal is higher than that of the outburst coal. Except hydrogen, the
elements of outburst coal are higher than that of the primary coal. The test results are
shown in Table 1.

Table 1. Coal sample analysis table.

Coal Samples

Component Proximate Analysis Ultimate Analysis

Aad/% Vad/% Mad/% C H N S O

outburst coal 6.1 5.4 4.6 82.9 2.87 1.51 0.42 4.05
primary coal 9.3 4.7 4.3 81.7 2.69 1.65 0.38 3.92

Note: Mad = moisture content (wt%, dry basis), Aad = ash (wt%, dry basis), Vad = volatile (wt%, dry basis),
FCad = fixed carbon (wt%, dry basis).

3.2. FTIR Fitting Spectral Characteristics Analysis

The infrared spectra of raw coal and outburst coal samples were obtained by an
infrared spectrum test of coal samples, as shown in Figure 2 and Table 2. In the process of
the infrared spectrum test, due to the complex composition of coal, the absorption bands
of many functional groups in coal provided the infrared spectrum. In addition, the wave
number distribution range of the spectrum is wide, meaning that it is easy to cause spectral
superposition and difficult to determine the position and intensity of absorption peaks.
Through the peak fitting of the original spectrum of the coal samples, the parameters
and attribution of absorption peaks are determined, and the change characteristics of
infrared spectrum of coal samples are thus more truly reflected. The infrared spectrum
of coal samples can be divided into four absorption bands: aromatic structure absorption
band, oxygen-containing functional group absorption band, fat structure absorption band
and hydroxyl absorption band. The corresponding wave numbers are 700–900 cm−1,
1000–1800 cm−1, 2800–3000 cm−1, 3000–3600 cm−1, respectively, as shown in Figure 2.
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Figure 2. Fourier infrared spectra of coal samples.

Table 2. Ratios of various functional groups.

Coal Samples

Component Functional Groups Ratios

AS/% OC/% FS/% HY/%

outburst coal 2.19 16.10 7.38 43.34
primary coal 2.71 24.58 7.27 42.31

Note: AS = aromatic structure absorption band; OC = oxygen-containing functional group absorption band;
FS = fat structure absorption band; HY = hydroxyl absorption band.

3.2.1. Absorption Band of Aromatic Structure

It can be seen from Figure 3 that the original spectra of aromatic structures in the
two coals are different. There are three peaks in the primary structure coal and four
peaks in the outburst coal. In order to make the fitted spectra closer to the experimental
results, 11–14 peaks were fitted, and the correlation coefficients were more than 99.9%.
The 700–900 cm−1 absorption band is the absorption vibration of the aromatic structure,
which is an important characteristic peak for identifying the substitution mode of the
aromatic rings in the coal. Among them, 730–750 cm−1 is the disubstituted absorption peak,
750–810 cm−1 is the trisubstituted absorption peak, 810–850 cm−1 is the tetrasubstituted
absorption peak and 850–900 cm−1 is the pentasubstituted absorption peak.
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According to the above four kinds of wave number classification statistics, the different
benzene ring substitution column diagram was obtained (see Figure 4). The substitution of
the benzene ring in the aromatic structure was mainly the trisubstituted benzene ring, and
the proportion of primary structure coal reached 32.71%. With the increase of heating im-
pact, the outburst coal decreased to 31.6%, and the difference was small. The disubstituted
benzene ring decreased from 19.56% to 12.98%, the tetrasubstituted benzene ring increased
from 8.93% to 16.89% and the pentasubstituted benzene ring increased from 10.91% to
22.10%. Among them, the values of the tetrasubstituted benzene ring and the pentasubsti-
tuted benzene ring are 1.89 times and 2.02 times of primary coal, respectively. The factors
that cause this phenomenon are diverse, but may include the substitution reaction of the
cyclization of the aliphatic chain and the positioning group on the aromatic ring.
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3.2.2. Absorption Band of Oxygen Functional Groups

It can be seen that the absorption band of 1000–1800 cm−1 is the stretching vibration
of oxygen-containing functional groups, and the absorption peaks of 1000–1300 cm−1 are
mainly attributable to the C-O stretching vibration of phenols, alcohols, ethers and esters
(Figure 5). The peak positions at 1375–1460 cm −1 were symmetric and antisymmetric
deformation vibrations of methyl, while the peak at 1800–1530 cm−1 had the stretching
vibration of -COOH- and CO.
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The percentage of C-O, C=O and C-C in these two coal samples were counted and the
histogram was obtained, as shown in Figure 6. It can be concluded that with the increase
of heating impact, the content of C-O increased from 14.97% of the primary structure
coal to 19.86% of outburst coal, and the content of C-C increased from 17.33% of primary
structure coal to 19.47% of outburst coal. Among them, the content of C=O changed most
obviously, from 3.82% of primary structure coal to 6.84% of outburst coal, which increased
by 44.15%, indicating that the content of carbon and oxygen elements in outburst coal was
accumulated due to increased temperature during outburst.
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The aliphatic bands in the studied coal samples were statistically analyzed to get the 
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3.2.3. CHal Structure Absorption Band

It can be seen from Figure 7 that the absorption band of 2800–3000 cm−1 was the
absorption vibration of CHal stretching structure. The spectrum was fitted with 6–7 peaks,
and the fitting degree reached more than 99.9%. The coal contains methyl, methylene and
methylene. The peak at 2853 cm−1 is the symmetric stretching vibration of methylene, the
peak at 2871 cm−1 is the symmetric stretching vibration of methyl, the peak at 2895 cm−1 is
the stretching vibration of methylene, the peak at 2923 cm−1 is the antisymmetric stretching
vibration of methylene and the peak at 2953 cm−1 is the antisymmetric stretching vibration
of methyl.
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The aliphatic bands in the studied coal samples were statistically analyzed to get the
histogram (see Figure 8). The content of methylene symmetric stretching vibration in raw
coal and outburst coal was 18.73% and 20.10%, respectively. The content of symmetric
stretching vibration of methyl was 7.14% and 2.31%, respectively. Compared with the
primary coal, the outburst coal had a significant downward trend, which was reduced by
67.65%. The content of methylene stretching vibration was 8.47% and 35.11%, respectively.
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The stretching vibration of outburst coal methylene increased rapidly, and the change
value increased 4.15 times. The content of antisymmetric stretching vibration of methylene
was 45.95% and 24.02%, respectively. The content of antisymmetric stretching vibration
of methyl was 18.87% and 13.33%, respectively. It may be that the thermal effect of the
outburst process leads to the volatilization of hydrogen or the fracture of the fat chain.
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3.2.4. Hydroxyl Absorption Band

It can be seen from Figure 9 that the absorption band of 3000–3600 cm−1 was the
absorption vibration of the hydroxyl structure. The spectrum was fitted with 4~5 peaks,
and the fitting degree reached more than 99.9%, which was closer to the original spectrum.
There are several O-H stretching vibration absorption peaks in 3200–3516 cm−1, forming a
wide and scattered absorption band. There is a sharp absorption peak at 3611 cm−1, which
is the absorption peak of free-OH.
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The types of hydrogen bonds in the coal hydroxyl groups were analyzed, and the
histogram was obtained, as shown in Figure 10. Hydrogen bonds exist in coal, and the
content of cyclic associative hydrogen bonds in primary coal and outburst coal accounts
for 13.97% and 11.24%, respectively. The content of self-associated hydroxyl accounted
for 50.40% and 60.60%, respectively; the increase of self-association hydroxyl content is
due to the tighter internal structure of the molecule, which increases the probability of
self-association hydroxyl synthesis. When water molecules and methane compete on
the surface of coal, water molecules are more likely to seize the adsorption site. Water
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molecules’ adsorption replaces gas adsorption and indirectly reduces gas adsorption in
coal seams.
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3.3. Analysis of FTIR Structural Parameters

In order to analyze the macromolecular structure of coal, the chemical structure pa-
rameters and significance of coal are generally quantitatively analyzed through structural
parameters such as aromatic hydrogen rate, aromatic carbon rate, aromaticity, polycon-
densation degree of the aromatic ring, length of aliphatic chain, branching degree and the
maturity of the coal.

3.3.1. Hydrogen Aromaticity ƒHa

Aromatic hydrogen rate [44] is the percentage of hydrogen atoms in aromatic com-
pounds. It is assumed that only aromatic hydrogen and aliphatic hydrogen exist.

fHa =
Ha

H
A900∼700cm−1

A900∼700cm−1 + A3000∼2800cm−1
(1)

where Ha is the number of H atoms of aromatic compounds. H is the number of H atoms.

3.3.2. Aromatic Carbon Ratio ƒC

Aromatization rate indicates the proportion of carbon atoms in aromatic hydrocar-
bons. Calculation of aryl carbon ratio supposes only aryl carbon and lipocarbon exist in
carbon atom.

fC = 1 − Ca

C
(2)

Ca

C
=

(
Ha
H · H

C

)
Ha
Ca

(3)

Ha

H
=

A3000∼2800

(A900∼700 + A3000∼2800)
(4)

where Ca/C is the proportion of fat carbon in the carbon element, H/C is the ratio of
hydrogen to carbon and Ha/Ca is the proportion of hydrogen and carbon atoms in fat clusters
(generally about 1.8. Ha/H is the percentage of aliphatic hydrogen in hydrogen atoms).

3.3.3. Aromaticity I

Aromaticity is an important parameter used to determine the aromaticity of substances.
Aromaticity is defined by the ratio of aromaticity to aliphatic carbon.

I1 =
A3100∼3000

A3000∼2800
(5)
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I2 =
A900∼700

A3000∼2800
(6)

where 3100–3000 cm−1 is mainly aromatic C-H stretching vibration, 3000–2800 cm−1 is
aromatic CHx stretching vibration and 900–700 cm−1 absorption position of aromatic
structure.

3.3.4. Degree of Aromatic Ring Condensation DOC

The degree of aromatic ring condensation can also be used to judge the degree of coal
rank. The higher the coal metamorphism, the more the internal carbon content, and the
more condensed aromatic substances.

DOC =
A700∼900

A1490∼1600
(7)

where the ratio of 900–700 cm−1 to 1490–1600 cm−1 indicates the degree of aromatic ring
condensation.

3.3.5. ACH2/ACH3

ACH2/ACH3 is the fat structure parameter [48]. CH2 mainly has a chain, ring and
aromatic side hydrocarbon straight chain, while CH3 mainly has a chain, ring side chain
and aromatic side hydrocarbon branched chain.

ACH2

ACH3

=
A2920

A2950
(8)

3.3.6. Maturity Csd

The maturity of coal is indicated by the large change in the carbon–oxygen double
bond relative to the carbon-carbon double bond.

Csd =
A1800∼1650

A1800∼1650 + A1600
(9)

3.4. Summary of Structural Parameters of Infrared Spectroscopy

The outburst coal and primary coal ƒHa, ƒC, I1, I2, DOC, ACH2/ACH3 and Csd are
calculated by Equations (1)–(9). The calculation results are shown in Table 3.

Table 3. Structure parameters summary table.

Coal Samples
Component

ƒHa ƒC I1 I2 DOC ACH2/ACH3 Csd

outburst coal 0.271 0.986 0.477 0.373 1.560 0.850 0.969
primary coal 0.229 0.984 0.454 0.298 1.010 0.916 0.976

The analysis shows that the aromatic hydrogen rate (ƒHa) and aromatic carbon rate
(ƒC) of outburst coal are higher than those of primary coal, indicating that the hydrogen
and carbon elements in aromatic functional groups are higher. The aromaticity I1 and I2 of
outburst coal were higher than those of raw coal, indicating that the aliphatic functional
group of outburst coal was higher than that of the aromatic structural functional group. The
aromatic ring polycondensation degree (DOC) of the outburst coal is higher than that of the
primary coal and the hydrogen content is also higher than that of the primary coal, while
ACH2/ACH3 and maturity (Csd) are slightly less than native coal, indicating that native coal
has more straight chains than side chains, while aliphatic hydrocarbons are mostly short
chains and have high branched degree. The results are consistent with previous studies,
i.e., coal degree is inversely proportional to ACH2/ACH3.
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3.5. X-ray Diffraction (XRD) Analysis of Coal Samples
3.5.1. XRD Peak Fitting

In order to analyze the microstructure of outburst coal, the XRD patterns of coal
samples were fitted by peak separation, as shown in Figure 11. The original spectrum
was divided into 002 peaks, γ peaks and 100 peaks by Guassian [41] formula. The fitting
formula is:

y = y0 +
A

w ·
√

π
2

· e−2( x−xc
w )

2
(10)

where y0 is the baseline position, w is the diffraction peak width, A is the diffraction pattern
area and xc is the 2θ angle of the diffraction center.
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It can be found from Figure 11 and Table 4 that the 2θ angle range of 002 diffraction
peak is 24.92◦–25.08◦, with high intensity and good symmetry. Moreover, the 2θ angle
range of 100 diffraction peaks is 42.73◦–42.85◦ and the diffraction peaks are wide and low,
indicating that the degree of aromatic ring condensation in coal is not high. For the γ band,
it can be clearly seen from the graph that its area is large, reflecting the rich branched chain
structure of aliphatic hydrocarbons and aliphatic hydrocarbons in coal.

Table 4. Diffraction peak fitting of the main 2θ parameters.

Coal Samples
Diffraction Peak

002 Peak 100 Peak γ Peak

outburst coal 24.92 42.73 15.87
primary coal 25.08 42.85 16.15

3.5.2. Structure Analysis of Aromatic Microcrystals

The layer spacing of d002 and d100, the average stacking height of Lc and the ductility
of La of the aromatic layer can be calculated from the diffraction angle and the half-peak
width [49].

d002/100 =
λ

2 sin θ002/100
(11)

Lc =
K1λ

β002 cos θ002
(12)

La =
K2λ

β100 cos θ100
(13)

Mc =
Lc

d002
(14)

where λ is the wavelength of X-ray, and 0.15405 nm is used for the experiment with copper
target irradiation; θ002/100 is the Bragg angle of 002 diffraction peak and 100 diffraction
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peak, respectively; β002 and β100 are the half-peak widths of 002 diffraction peak and
100 diffraction peak, respectively; K1 and K2 are Debye-Scherrer constants, with K1 as 0.89,
K2 as 1.84 and Mc as the number of effective stacked aromatic slices.

In general, the interlayer spacing of the coal aromatic layer is between cellulose
(d002 = 3.975 × 10−1 nm) and graphite (d002 = 3.354 × 10−1 nm). Therefore, the coalification
degree P is used to determine the percentage of condensed aromatic ring, and the relative
content of aromatic layer and aliphatic layer structure is obtained. The calculation formula
is as follows:

P =
3.975 − d002

3.975 − 3.354
× 100% (15)

The calculation results are shown in Table 5. It can be found from the table that d002 of
primary coal is 3.548, indicating that its coalification degree is high. The number of effective
stacking aromatic slices of primary coal is about 4, and the coalification degree is 68.83%,
indicating that the coal sample has a high degree of coalification, with fewer side chains
and functional groups, and the internal arrangement of molecules is orderly and stable,
and the condensation degree of aromatic nucleus is high. Combined with the data of d002
and d100, the number of aromatic flakes in outburst coal is lower than primary coal, which
suggests that the prominent heating effect increases the degree of aromatization, increases
the d100 and d002 values and, finally, changes the dense ring structure in coal. Through the
coal degree index P, it can be seen that the primary coal is slightly higher than the outburst
coal. Combined with the analysis of d002 and d100 as basically unchanged, this shows that
the content of side chain in the primary coal is lower than that of the outburst coal, resulting
in the increase of the relative number of aromatic rings, which is finally reflected in the
increase of P.

Table 5. XRD microstructure parameters of coal samples.

Coal Samples
Structural Parameters

d002 d100 Lc La Mc P

outburst coal 3.570 2.114 13.016 3.089 3.646 65.22%
primary coal 3.548 2.109 12.951 3.240 3.651 68.83%

4. Conclusions

(1) The proximate analysis results show that the volatile matter and moisture content of
outburst coal are higher than those of primary coal, but that the ash content is lower
than that of primary coal. The ultimate analysis shows that the proportions of N and
S in outburst coal and primary coal are small.

(2) The aromatic structure absorption band analysis showed that the trisubstituted ben-
zene ring and the disubstituted benzene ring in the primary coal were higher than that
in outburst coal, and that the tetrasubstituted benzene ring and the pentasubstituted
benzene ring in outburst coal were higher than that in primary coal. This may be due
to the substitution reaction of fat chain cyclization and the orientation group of the
aromatic ring. The absorption band of fat structure indicates that hydrogen volatiliza-
tion or fat chain rupture is caused by thermal effect in the outburst process. Moreover,
the hydroxyl absorption band shows that the internal structure of the molecule is
tighter, which increases the probability of self-association hydroxyl synthesis.

(3) By analyzing and calculating the structural parameters of infrared spectroscopy, it
is concluded that the aromatic hydrogen rate, aromatic carbon rate and I1 and I2
of outburst coal are higher than those of primary coal. The ACH2/ACH3 raw coal
is relatively low, and the maturity is slightly higher than that of the outburst coal,
indicating that the raw coal has more straight chains than side chains and that the
aliphatic hydrocarbons are mostly short chains and have high branched degree.

(4) Through the analysis and calculation of XRD microcrystalline structure parameters,
the number of aromatic flakes in outburst coal is lower than in primary coal, which
suggests that the prominent heating effect increases the degree of aromatization,
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increases the d100 and d002 values and, finally, changes the dense ring structure in coal.
Moreover, from the coal degree index P, it can be seen that the primary coal has a
smaller increase than the outburst coal.
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