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Abstract: Increasing the share of Renewable energy sources in District Heating (DH) systems is
of great importance to mitigate their CO2 emissions. The combined integration of Solar Thermal
Collectors (STC) and Thermal Energy Storage (TES) into existing Combined Heat and Power (CHP)
systems can be a very cost-effective way to do so. This paper aims at finding the optimal design of
STC and TES systems integrated in existing CHP’s considering two distinct objectives: economic
profitability and environmental impact. To do so, we developed a three-stage framework based on
Pareto-optimal solutions generated by multi-objective optimization, a Technique for Order Preference
by Similarity to Ideal Solution (TOPSIS)-entropy method to select the optimal solution, followed by
the definition of final Operation strategy. We proposed relevant improvement of the state-of-the-
art models used in similar analysis. We also applied the proposed methodology to the case of a
representative, 12 MWth CHP plant. Our results show that, while the addition of TES or STC alone
results in limited performances and/or higher costs, both the cost and the CO2 emissions can be
reduced by integrating the optimal combination of STC and TES. For the selected, optimal solution,
carbon emissions are reduced by 10%, while the Annual Total Cost (ATC) is reduced by 3%. It also
improves the operational flexibility and the efficiency by peak load shaving, load valley filling and
thus by decreasing the peak load boiler operation. Compared to the addition of STC alone, the use of
TES results in an increased efficiency, from 88% to 92%. The optimal share of STC is then increased
from 7% to 10%.

Keywords: combined heat and power; thermal storage; solar heating; multi-objective optimization;
decision making

1. Introduction

The share of Renewable Energy Sources (RES) in energy systems is growing rapidly
to accelerate the energy transition and tackle climate change. However, their penetration
in the heating and cooling sector, which accounts for more than 50% of the final energy
demand in EU [1], is only about 22% in Europe [2]. One of the key solutions to increase
this share on the short term and in a cost-effective way is to integrate renewable energy
in existing District Heating (DH) systems. Many initiatives are currently taken to do so.
According to IRENA [3], Denmark has the ambition to increase the share of RES in their
DH systems up to 73% in 2030 (vs. 42% in 2014). China targets a 24% share by 2030.

In terms of renewable resources, biomass, solar heating and geothermal energy are
the options with largest potential to reach higher shares of RES in DH’s [3], also at large
scale [4–6]. Among these options, solar collectors present the additional challenge of being
an intermittent source of energy, therefore potentially requiring additional heat storage,
which represents an interesting optimization problem.
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Hot water Thermal Energy Storage (TES) can provide load shifting and is 100 times
cheaper than electricity storage for the same energy capacity [7]. Thanks to TES, up to
25% RES would be integrated in energy systems without significantly affecting its effi-
ciency [8]. Hybrid systems composed of Combined Heat and Power (CHP) units integrated
with RES and TES is therefore considered as a first step towards the 4th generation district
heating systems [8].

TES alone can also be added to existing CHP’s. It contributes to peak load shaving,
it can store energy when the demand is low and deliver it when the demand is high. With
an optimal operation, it can also increase the energy efficiency, which in turn results in
lower CO2 emissions [9]. In many studies, the optimization of a combined CHP-TES system
often focuses on economic aspects, taking into account the cost of CO2 emissions. Benal-
cazar [10] proposed an optimization method based on the economic performance for the
optimal sizing of how water TES, integrated in an existing CHP plant considering specific
investment cost and different carbon prices. His analysis showed that the integration
of the TES units can save operational cost and decrease the use of the heat-only boiler,
which reduces fuel consumption and decreases CO2 emissions. Mugnini et al. [11] assessed
possible energy flexibility strategies to improve the performance of such system. Their
results revealed that a hot water tank can increase the CHP working hours and primary
energy savings. Lai et al. [12] developed an operation optimization model based on Particle
swarm optimization method, to investigate the flexibility and thermodynamic performance
of a CHP unit integrated with an integrated heat storage tank. Their results show that such
an integration led to an increased range of operational conditions of CHP units.

Although the addition of Solar Thermal Collectors (STC) can lead to larger CO2
emission savings than TES alone, they generally increase the production costs of existing
systems [3]. The question of the optimal combination of STC and TES in terms of both
economic and environmental impacts may therefore be raised. This corresponds to a multi-
objective optimization problem with two design variables, i.e., the sizes of the STC and the
TES systems.

Single economic objective optimization does not provide alternative solutions to deal
with conflicting objectives [13]. Therefore, recent research efforts focused on multi-objective
optimization of energy systems. Multi-objective optimization is used to find a trade-off
between two or more conflicting objectives to support decision making. Ren et al. [14]
proposed a multi-objective linear programming method for operational strategy of a Dis-
tributed Energy System (DES). Their model was based on trade-off analysis of economic and
environmental optimization. Fazlollahi et al. [15] developed a multi-objective, multi-period
optimization for sizing and operating a DH system with the objectives of maximizing the
system efficiency and minimizing the CO2 emissions and the Annual Total Cost (ATC),
the annualized value of the total cost over the lifetime of the project. Luo et al. [16] de-
veloped a framework for the optimization of DES integrated with Genetic Algorithm for
multi-objective optimization, and multi-criteria evaluated by Technique for Order Perfor-
mance by Similarity to an Ideal Solution (TOPSIS) method. Karmellos et al. [17] presented
a multi-objective Mixed-integer linear programming (MILP) model for the optimal design
and operation of DES by ε-constraint method, with minimizing the ATC, and the total
carbon emission as objective function. Franco and Versace [18] carried out a multi-objective
strategy considering energetic and economic objectives to investigate design and operation
strategy of a CHP-TES to DH network.

As discussed above, various approaches have therefore been applied to determine
the economically and/or environmentally optimal design and operation of RES and TES
integrated into existing CHP systems. However, the proposed methodologies can be
further improved in the following respects. First, the modelling of the CHP systems
could be more accurate. An increased accuracy of the techno-economic models for the
following aspects could lead to more accurate results [19]: Piece-wise Linear Investment
functions allowing for a non-linear evolution of the investment costs, and account for
part-load efficiencies, start-up costs, CHP acceptable operation ranges and maximum
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ramp rates, which significantly affect technical and economic performances. Secondly,
few recent works [15,16] integrated multi-objective optimization models with decision
making methods to optimize the capacity and the operation strategy of TES and RES
integrated to existing CHP systems. Moreover, limited research was carried out on the
effect of fluctuating investment cost on the sizing and the operation of the system.

In this work, we therefore aim at integrating multi-objective optimization and decision-
making methods featuring advanced techno-economic models, and to apply them to 1the
STC and TES systems.

Our main objectives are the development a comprehensive methodology to allow
decision-makers to determine the optimal design of hybrid heat and power production
systems and to assess the economic and environmental impact of the optimal integration of
STC and TES systems into existing, conventional CHP systems.

The main innovative features of this work can be summarized as follows:

• The techno-economic models of the sub-systems features Piece-Wise Linear Invest-
ment function, part-load efficiencies, start-up costs, maximum ramp rates and CHP
acceptable operation ranges.

• The variation of the economic and technical parameters, such as ambient temperature,
electricity and fuel prices, is considered.

• Pareto-optimal solutions are generated using multi-objective optimization, from which
the optimal solution is picked using the TOPSIS-entropy method, an effective method
to make decisions processes more reliable and accurate.

The paper is organized as follows. Section 2 describes the proposed methodologies.
The case of a hybrid energy system is defined in Section 3, including the input data and the
investigated scenarios. Section 4 presents and discusses the results of the case study. Lastly,
conclusions are drawn in Section 5.

2. Materials and Methods

This Section describes the proposed methodology for the optimization of the studied
hybrid systems. Their general structure is defined in Section 2.1. The multi-objective
optimization model is then described in Section 2.2. Finally, the Decision-making method
is presented in Section 2.3.

Figure 1 illustrates the flow chart of the optimization framework used in this study.
The framework consists of three stages:

1. Pareto-optimal solutions, generated by multi objective optimization model. It involves
a trade-off analysis between economic and environmental aspects.

2. Optimal solution selected among the Pareto solutions using a decision-making tool.
The optimal solution with the maximum relative quality ranking is picked up as the
final optimal solution.

3. Final design and operation strategy. The hourly operation strategy of the optimal
solution is further described to assess performance of each unit with optimal capacity.
More detailed description will be introduced in the Section 2.2.

2.1. Hybrid Heat and Power Production System

The components of the existing CHP system considered in this study are a 12 MWth
coal-fired CHP with Extraction Condensing (EC) steam turbine, and two gas-fired Heat
Only Boilers (HOB) with a thermal power of 5 MWth, respectively, also connected to the
system. The sizes of the STC and of the TES that will be added to the existing system are the
design variables. A schematic of the system is given in Figure 2. Electricity is produced by
the CHP and sold to the local market. The generated heat can be sent to both the heat clients
and the TES system. HOBs are only in operation when the heat production is insufficient.
The constraints related to each unit described in Section 2.2.2, and the input data described
in Section 3.1.
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Figure 1. Optimization Framework of hybrid energy system.

Figure 2. Schematic of Hybrid energy system.

2.2. Optimization Model
2.2.1. Objective Function

In this study, the weighting method [20] will be used to solve the multi-objective
optimization problem through MILP method. The two objective functions to be minimized
are the ATC and the total carbon emissions. A general objective function is then defined as
shown in Equation (1):

min
{

Fobj = α· ATC
ATCmin

+ (1− α)· Carbon
Carbonmin

}
(1)

where α is a weighting factor and where the objectives functions are normalized using the
corresponding single optimization value ATCmin and Carbonmin.

The ATC of the studied hybrid systems is defined in Equation (2) as the sum of the
annualized investment cost Cinv, the maintenance cost CM and the operating cost CO, minus
the revenues RS from the electricity production [14]. The total CO2 emissions are calculated
for all heat and power generation systems by multiplying the fuel consumption with the
corresponding CO2 emission factor, as shown in Equation (3).

ATC = Cinv + CM + CO − RS (2)

Carbon = ∑
u

∑
t

CFu ∗ FCu,t (3)

The total investment cost Cinv is calculated following Equation (4). The annualized
investment cost cinv

u,t , cinvTES
t and cinvSTC

t (Equations (5)–(7)) are calculated using the annuity
factor defined in Equation (8), which considers the discount rate i and the lifetime nu
for each unit, respectively. The maintenance costs are defined as a fixed proportion of
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the investment costs and are calculated following the same structures, see Equation (9).
Operational costs consist of fuel consumption and unit startup costs, see Equation (10).

Cinv = ∑
u

∑
t
(cinv

u,t ∗ Capu + cinvTES
t ∗V + cinvSTC

t ∗ A) (4)

cinv
u,t =

au ∗ Iinv
u

8760
(5)

cinvTES
t =

au ∗ IinvTES

8760
(6)

cinvSTC
t =

au ∗ IinvSTC

8760
(7)

au =
i ∗ (1 + i)nu

(1 + i)nu − 1
, ∀ u ∈ units, t ∈ periods (8)

CM = ∑
u

∑
t

(
cM

u,t ∗ Capu + cMTES
t ∗V + cMSTC

t ∗ A
)

(9)

CO = ∑
u

∑
t
(c f uel

u,t ∗ FCu,t + δu,t ∗ SCu) (10)

The revenues RS consist in selling electricity to the grid, see Equation (11).

RS = ∑
t

P ∗ Elt (11)

2.2.2. Constraints for System Design and Operation

All units are subject to some constraints. The following constraints are considered in
this study for the design and the operation of each sub-system.

Common Types of Constraints

Common types of constraints are applied to all units:

• Minimum and maximum loads

For all units, the production must be within the minimum and maximum loads,
see Equation (12):

PLRlb
u,t∗ Qnorm

u ≤ Qu,t ≤ PLRub
u,t∗ Qnorm

u ∀ u ∈ units, t ∈ periods (12)

• Ramping rate limits

Maximum ramping rates (up and down) of the thermal units should be defined for
stability, integrity and safety reasons, see Equation (13) and (14):

Qu,t+1 −Qu,t ≤ rampupu,t
∗ Qnorm

u ∀ u ∈ units, t ∈ periods (13)

Qu,t+1 −Qu,t ≤ rampdownu,t ∗Qnorm
u ∀ u ∈ units, t ∈ periods (14)

• State of units

In the framework of MILP optimization, the binary variable Iuse
u,t is used to illustrate

the state of the units. It is constrained by the variables TON
u,t and TOFF

u,t defining whether the
unit is on or off at time t, see Equations (15) and (16).

Iuse
u,t+1 − Iuse

u,t ≤ TON
u,t+1 ∀ u ∈ units, t ∈ periods (15)

Iuse
u,t − Iuse

u,t+1 + TON
u,t+1 ≤ TOFF

u,t+1 ∀ u ∈ units, t ∈ periods (16)

• Minimum uptime and downtime
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Minimum uptime and downtime constraints are considered for safety and reliability
reasons. If a unit is in service, the duration should be at least equal to the defined minimum
uptime, as indicated in Equation (17). Similarly, if a unit is not in running, the period
should be at least equal to the defined minimum downtime as expressed in Equation (18).

t

∑
t−min_uptime

TON
u,t ≤ Iuse

u,t ∀ u ∈ units, t ∈ (min_uptime, periods), (17)

t

∑
t−min_downtime

TOFF
u,t ≤ 1− Iuse

u,t ∀ u ∈ units, t ∈ (min_downtime, periods), (18)

Extraction Condensation CHP Unit

The CHP plant considered in this study is of the Extraction Condensation type (EC):
heat is provided to the heat clients through the condensation of steam extracted from
the turbine. EC-based CHP can be operated in a flexible way, since steam can usually
be extracted from more than one pressure stage, and power may vary with same heat
production. In this study, the total energy efficiency of the CHP plant is considered as
constant, as suggested in [17,19].

For EC-based CHP’s, the power loss coefficient β, defined as the power generation
reduction caused by heat extraction, is a key characteristic [21]. It can be calculated based
on the ambient and DH temperatures [22], see Equations (19) and (20):

β = 1− T0

TM
(19)

TM =
Tsupply − Treturn

ln
(

Tsupply

Treturn

) (20)

The acceptable operation zone of the CHP plant in terms of heat extraction and
electrical power for a given supply and return temperature is illustrated in Figure 3. It is
elaborated as suggested by [22]. The blue line BC is the backpressure line, exhibiting a
slope σ. It represents the operation points with the designed power to heat ratio [21].
The maximum load line CD is parallel to the minimum load line AB (both with a slope β).
Any line with the same slope corresponds to a constant fuel consumption.

Figure 3. Cogeneration of Power and heat extraction for EC based CHP plant.
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Equation (21) and (22) express the corresponding constraints on the operational loads.
The fuel consumption can be calculated using Equation (23).

PEC
t = PLREC

t ∗ Iuse
EC,t∗

(
σEC + βt

)
∗ Qnorm

EC −QEC
t ∗ βt ∀ t ∈ periods (21)

PEC
t ≥ σEC∗ QEC

t ∀ t ∈ periods (22)

FCEC
t = (QEC

t + PEC
t )/ηEC ∀ t ∈ periods (23)

Heat Only Boiler

The part load efficiency of the gas-fired Heat Only Boiler (HOB) is considered ac-
cording to the model proposed by [19]. Equation (24) provides an expression for the
consumption of the HOB boiler, which leads to the non-linear evolution of its efficiency,
as shown in Figure 4.

Figure 4. Normalized efficiency for HOB, according to [19].

FCHOB
t = 0.4576∗ Qnorm

HOB∗ Iuse
HOB,t + 0.6599 ∗QHOB

t ∀ t ∈ periods (24)

Equations (25) and (26) state that the two HOB (HOB1 and HOB2) are only in operation
when the heat demand cannot be satisfied by the main steam boiler (peak load), during
maintenance or when the demand exceeds the CHP output.

QEC
t ≥ Iuse

HOB1,t ∗Qnorm
CHP (25)

QEC
t + QHOB

t ≥ Iuse
HOB2,t ∗ (Qnorm

CHP + Qnorm
HOB) (26)

Thermal Energy Storage Unit

The Thermal Energy Storage (TES) system is modeled based on the formulation
proposed by Wang et al. [23]. Upper and lower boundary conditions are defined for the
charging and discharging rates, see Equations (27) and (28). To ensure the availability
of the TES, the stored thermal energy at the end of the schedule period is assumed to be
equal to its initial value, see Equation (29). The energy balance of the system, taking into
account the storage efficiency and the charging and discharging efficiencies, is expressed in
Equation (30). The binary variable z(t) is used to illustrate the TES charging and discharging
operation status, see Equation (31). Equations (32) and (33) express the constraints that the
stored thermal energy must be lower than the maximum storage capacity of the system,
which depends on TES volume and DH supply and return temperatures.

0 ≤ HSchr
t ≤ αchr

t · CapTES
t ∀ t ∈ periods (27)
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0 ≤ HSdis
t ≤ αdis

t · CapTES
t ∀ t ∈ periods (28)

QTES
1 = QTES

end ∀ t ∈ periods (29)

QTES
t = ηTES

s QTES
t−1 + ηTES

chr HSchr
t − HSdis

t /ηTES
dis ∀t ∈ periods (30)

z(t) =

{
1, HSdis

t = 0
0, HSchr

t = 0
∀ t ∈ periods (31)

CapTES
t =

ρVc
3600

{min((Tsupply
t − 5), 98)−

(
Treturn

t + 5
)
} ∀ t ∈ periods (32)

QTES
t ≤ CapTES

t ∀ t ∈ periods (33)

The investment costs for the TES system, including the auxiliary equipment, can be
estimated following [10,24]. Due to limitation of linear programming method, the expo-
nential decay function of specific investment cost should be replaced with piecewise linear
approximation for further use [10]. The specific investment costs curve according to [24],
a piecewise linear function is used to make it compatible with MILP, see in Figure 5.

Figure 5. Investment costs for TES systems: (a) Specific investment cost according to [24]; (b) Cumu-
lative investment cost.

Solar Thermal Collectors Unit

Equations (34) shows how the heating performance of STC can be calculated based
on the collector area, solar irradiance and DHN temperature according to the formulation
from [25].

QSTC
t = A ∗ ((0.839∗ QSR

t − 2.46∗
(

Taver
t − Tambient

t

)
−0.0197 ∗

(
Taver

t − Tambient
t

)2
) ∀ t ∈ periods

(34)

The specific investment costs of ground mounted solar collector field (shown in
Figure 6a) are estimated based on [25]. PLI is also applied, cumulative investment cost see
Figure 6b.

Energy Balance

Equation (35) expresses that the heat demand from the local distribution network must
always be fulfilled for each time interval.

QCHP
t + QHOB

t + QSTC
t + ηTES

dis HSdis
t − HSchr

t ≥ Qdemand
t ∀ t ∈ periods (35)
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Figure 6. Investment costs for STC: (a) Specific investment cost according to [25]; (b) Cumulative
investment cost.

2.3. Decision-Making Method

Figure 7 illustrates the flow chart of the decision-making process used in this study.
The decision-making process is to provide a quantitative evaluation on the system with
several conflicting objectives, to support the Decision makers the most potential solutions
by considering the important criteria [13]. To evaluate performance of the multi-objective
optimization model, a decision-making method combining Technique for Order Preference
by Similarity to Ideal Solution (TOPSIS) with Entropy method (EM) is investigated. TOPSIS
is a classic method to find optimal solution within finite objectives [26], while EM aims
at determining the weights of each objective in an automatic way, in order to minimize
man-made error [27]. As illustrated in Figure 7, The TOPSIS-entropy method selects the
solution with the maximal relative quality as the optimal solution.

Figure 7. Flowchart of Decision-making process.

The different steps followed to the TOPSIS-entropy method are as follows [28]:

• Weights calculation:

The first step is matrix normalization, see Equation (36). This ensures that all indicators
are positive and present comparable ranges. Then, standardized value pij and entropy
value of objective ej are calculated using Equations (37) and (38). Finally, weighting values
of the objectives ωj are defined, see Equation (39).

yij =
max

(
xij
)
− xij

max(xij)−min
(
xij
) ∀ i ∈ [1 . . . m], i ∈ (1 . . . n) (36)
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pij =
yij√

∑m
i=1 yij

∀ i ∈ [1 . . . m], i ∈ (1 . . . n) (37)

ej = −
1

ln(m)

m

∑
i=1

pij ln
(

pij
)
∀ j ∈ (1 . . . n) (38)

ωj =
1− ej

∑n
j=1
(
1− ej

) (39)

• TOPSIS method

The weighted matrix used as a basis for the TOPSIS method is described in. Equation
(40) The positive ideal solution V+ and negative ideal solution V− are then determined
using Equations (41) and (42). The distances D+ and D− between any evaluated result and
the two positive and negative solution V+ and V− are calculated using Equations (43) and
(44). Finally, the relative quality Ci is defined to compare the distance between any result
and the two ideal solutions, see Equation (45). The optimal solution corresponds to the
highest value of Ci.

vij = ωij ∗ yij ∀ i ∈ [1 . . . m], i ∈ (1 . . . n) (40)

V+ =
{(

max Vij |j ∈ J1
)
,
(
min Vij |j ∈ J2

)}
∀ i ∈ (1 . . . n) (41)

V− =
{(

min Vij |j ∈ J1
)
,
(
max Vij |j ∈ J2

)}
∀ i ∈ (1 . . . n) (42)

D+ =

√
∑n

j=1 (Vij −Vj
+ )2 ∀ i ∈ (1 . . . n) (43)

D− =

√
∑n

j=1 (Vij −Vj
−)2 ∀ i ∈ (1 . . . m) (44)

Ci =
D−

D+ − D−
∀ i ∈ (1 . . . m) (45)

3. Case Study

In this Section, the proposed optimization framework is applied to a specific case of
hybrid system described in Section 2.1. The considered input data is described in Section 3.1.
Four different scenarios are defined in Section 3.2.

3.1. Input Data

The considered heat demand, ambient temperature, supply and return temperatures
are field data retrieved in 2017 from an existing DH plant located in France. The hourly
market electricity price was imported from EPEX SPOT for the year 2017 [29] and local
climate data of solar radiation were retrieved from PVGIS for the same year [30]. The impact
of the uncertainty on the main parameters will be investigated in Section 4.4.

However, the annual profile with 8760 time steps makes is difficult to solve due
to complexity of optimization model [31–33]. To limit the computational time without
significantly impacting the simulation results [32], the approach of typical periods is used
in this work [33], a full year period was discretized into 12 typical days, each of them being
representative for a month.

Figure 8 shows that the heat demand varies from 1.44 MWth to 16.9 MWth. The average
heat load and heat load variations are larger in the winter. The corresponding supply and
return temperatures range from 75 to 90 °C and from 55 to 75 °C, respectively. The average
electricity price is also slightly higher in the winter, as illustrated in Figure 9. For each
typical day, the heating load peak is observed between 8 and 10 AM and between 8 and
10 PM, while the peak of electricity price is observed between 8 and 9 AM and between 6 and
7 PM. The hourly variations of ambient temperature and solar irradiance are also presented
in Figure 10. The heat collected by the STC was calculated following the methodology of
Schmidt (Ref. [10]). The considered tilt angle of the collector was 40◦.
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Figure 8. Heat Load in: (a) one year; (b) monthly typical days.

Figure 9. Electricity price in: (a) one year; (b) monthly typical days [29].

Figure 10. Hourly variation of ambient temperature and solar irradiance over the year [30].

The considered technical parameters of the heating and the thermal storage systems
are provided in Tables 1 and 2. The related economic parameters, including investment and
maintenance costs, lifetime and startup costs are presented in Table 3. The startup costs
actually vary with the size of the units, but the constant values from [34] were considered
here as they match the considered range of unit size.

CO2 emissions are calculated based on the specific emission factors to the primary
consumption [1]: 350 kg CO2/MWh for coal and 200 kg CO2/MWh for natural gas [35].
The CO2 price in France in 2017 is collected from World Bank Carbon Pricing dashboard
30.5 € per tonne [36]. The fuel costs are assumed constant: 28 €/MWh for Coal and
32 €/MWh for natural gas [34].
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The following assumption were also made on the efficiency of the systems: the effect
of incidence angle was neglected in the design of the STC system and the CHP operation
efficiency was considered constant.

Table 1. Technical parameters of each unit.

Units Capacity Minimum Part
Load Ratio Min Uptime Min

Downtime
Ramp-Up
Rate %/h

Ramp-Down
Rate %/h

Norm
Efficiency

CHP 12 MW 0.3 10 7 30 30 0.883
HOB1 5 MW 0.3 2 2 100 100 0.9
HOB2 5 MW 0.3 2 2 100 100 0.9
TES 0–6000 m3 0 4 4 100 100 -
STC 0–40,000 m2 0 1 1 100 100 -

Table 2. Technical parameters of TES [23].

Unit Charging
Ratio

Discharging
Ratio

Storage Efficiency
per Hour

Charging
Efficiency

Discharging
Efficiency

TES 0.4 0.4 0.998 0.95 0.95

Table 3. Economic data of each unit [34].

Units Investment Cost Maintenance Cost Startup Cost per Time Lifetime

CHP 1154 €/kW 43.2 €/(kW·year) 5000 € 25
HOB 62.9 €/kW 1.26 €/(kW·year) 1290 € 17
TES See Figure 5 - - 25
STC See Figure 6 - - 30

3.2. Scenarios

Different scenarios are investigated in this study to analyze the impact of the inte-
gration of TES and STC systems into the existing CHP system. Scenario 1 covers the
operation of the existing system without the addition of TES nor STC. Both systems are
then considered and optimized in Scenario 2. In Scenarios 3 and 4, the addition of TES or
STC alone is studied. The scenarios are summarized in Table 4.

Table 4. Overview of each Scenario.

Scenario Name CHP HOB1 HOB2 TES STC

1 • • •
2 • • • • •
3 • • • •
4 • • • •

4. Results and Discussion

In this Section, the results of the optimization performed for the 4 Scenarios of the case
study are presented and discussed. In this study, the MILP model implemented in Python
and solved with IBM DOcplex toolbox. Section 4.1 gives the results of the Pareto Frontiers
for all Scenarios. In Section 4.2, the optimal solutions chosen using the TOPSIS-entropy
method are presented. Section 4.3 gives more detailed information on the hourly operation
strategy, and Section 4.4 presents a sensitivity analysis on the main parameters.

4.1. Pareto Frontiers

Figure 11 shows the Pareto frontiers computed for Scenarios 2 to 4 in terms of ATC
and CO2 emissions, expressed relatively to the reference Scenario 1. In Scenario 1, the ATC
is 4380 k€/year and the CO2 emissions are 43,435 ton/year.
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Figure 11. Relative Pareto frontiers for Scenarios relative to Scenario 1.

Considering the addition of TES only (Scenario 3) quickly allows for a reduction of the
system cost (5%) and a moderate reduction of the CO2 emissions (up to 1% less). This is
due to the larger consumption of the produced heat hen heat storage is available (see
Section 4.3). When even lower CO2 emissions must be reached with TES only, the price of
the system however increases very sharp: it becomes higher than the reference cost for CO2
emissions reductions around 7% and increases exponentially afterwards: +30% compared
to the reference scenario for a 10% CO2 emissions reduction.

On the other hand, considering STC only (Scenario 4) immediately leads to a higher
cost, because of the higher price of STC. This system however becomes cheaper than TES
only to reach CO2 emissions reductions larger than 8%, although the cost also increases
very rapidly for larger emission savings.

Figure 11 also shows that, combining TES and STC (Scenario 2) allows decreasing
the ATC while reaching much larger CO2 emissions reduction. The combination of these
systems indeed leads to the valorization of a higher amount of heat collected by the STC
system by storing it and making it available when the demand is high. Parity with the
reference scenario in terms of costs is reached for 12% less CO2 emissions. For even lower
emissions, the cost increase is also significantly reduced compared to TES or STC only:
17% less CO2 is emitted for cost increase of 7%. The installation of the additional equipment
is made more cost-effective by their complementarity.

4.2. TOPSIS-Entropy Method Analysis

The TOPSIS-entropy method was used to choose the optimal solution on the Pareto
frontiers obtained from the MILP optimizations. The weights calculated by the entropy
method for each Scenario are very similar: around 0.54 and 0.46 for ATC and CO2 emissions
respectively. The solutions presenting the maximum relative quality for each Scenario are
given in Table 5 and illustrated on the Pareto frontiers of Figure 11. The results generated
for 12 representative days, see Section 3.1, have been extrapolated to a full year. Compared
to the reference Scenario 1, the identified, optimal solution for Scenario 2 corresponds to a
decrease of both the CO2 emissions (10%) and the ATC (3%), which is an excellent trade-off.
The total efficiency of the system increases from 87% to 92%, while the share of renewable
energy in the system reaches 10%. The optimal solution for TES only (Scenario 3) is selected
before the strong increase of the system cost on the Pareto frontier. The CO2 emissions are
reduced by 5% while the cost is reduced by 4%. When only the STC system is installed
(Scenario 4), the optimal solution is again selected before the strong increase of the cost.
In that case, the cost increases with 2%, for a CO2 emissions reduction of 7%. The ATC is
higher than for Scenario 2 because of the lower proportion of renewable heat that can be
consumed. The addition of TES indeed allows for the displacement of the consumption of
the heat collected by the STC to the periods when the demand is higher.
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Table 5. Optimal solutions by TOPSIS-entropy method for each scenarios.

Scenario
Name TES/m3 STC/m2 CO2

(ton/year)
ATC

(k€/year)
HOB Operation

Hour (h/year)
Total

Efficiency, %
Share of
RES, %

1 - - 43,435 4380 1520 87 0
2 1382 22,399 39,268 4258 730 92 10
3 742 - 41,184 4198 730 88 0
4 - 17,649 40,363 4471 1460 90 7

4.3. Hourly Operation Strategy

In this Section, the hourly operation of the optimal systems selected for the 4 scenarios
during the typical days are presented and discussed. Figure 12 shows the hourly heat
production per system and the hourly operation modes of the CHP on its operational map,
over the 12 typical days in a row. It is obvious that integration of TES and STC significantly
improve system operation flexibility and efficiency.

Figure 12. Cont.



Energies 2022, 15, 1942 15 of 21

Figure 12. Hourly heat production for all Scenarios over the 12 typical days in a row: (a) Hourly
Heat production of Scenario 1; (b) CHP operation field of Scenario 1; (c) Hourly Heat production of
Scenario 2; (d) CHP operation field of Scenario 2; (e) Hourly Heat production of Scenario 3; (f) CHP
operation field of Scenario 3; (g) Hourly Heat production of Scenario 4; (h) CHP operation field of
Scenario 4.

First, it can be observed that the TES and the STC systems play an important role in
increasing the system flexibility. The system with TES is more flexible as it can achieve peak
load shaving and load valley filling, which results in a decrease of the HOB operation [10].
The HOB’s are operated up to 52% less when TES is implemented (Scenarios 2 and 3),
as shown in Table 5. In the winter period, the thermal energy supplied by HOB during
peak load time in Scenarios 1 is replaced by TES in Scenarios 2 and 3. During the summer
period, the daytime heat demand is covered by STC in Scenarios 2 and 4. As expected,
the excess heat produced by STC in Scenario 2 is stored in TES and discharged later on
when STC cannot meet the demand.

Secondly, the operational flexibility of the CHP unit is also increased by the integration
of TES and STC. Figure 12 shows that the CHP operates more on the left-hand part of
the A-B line (minimum fuel consumption) in Scenario 2 than in Scenario 1, which helps
increasing the electrical power generation for the same fuel consumption and, hence,
the same CO2 emissions.

The detailed performances of the TES system are also shown in Figure 13. TES enables
the operation of the system associated with electricity prices, to maximize the profits from
selling electricity without affect heat supply safety. Furthermore, TES is more active in the
summer period when used in combination with STC. The optimal TES size in Scenario 2 is
therefore twice larger than for Scenario 3, see Table 5.

4.4. Sensitive Analysis

The input parameters used in the case study above are prone to uncertainty. To assess
the impact of these uncertainties, a sensitivity analysis is carried out for the optimal solution
of Scenario 2, for the following key input parameters [37]: heat demand, carbon price,
electricity price, fuel price and interest rate.

Figure 14 shows the performance of the optimal solutions in terms of ATC, CO2
emissions and size of TES and STC, with the variation of the inputs (±20%). It must be
noted that each of these results corresponds to an optimal solution computed for the new
set of input parameters, and not to the results obtained for the reference optimal solution
for other input parameters.
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Figure 13. Charging or discharging load and heat storage levels of TES over the 12 typical days in a
row: (a) TES charging and discharging load of Scenario 2; (b) TES heat storage levels of Scenario 2;
(c) TES charging and discharging load of Scenario 3; (d) TES heat storage levels of Scenario 3.

Although they affect the optimal sizes of the TES and STC systems, the influence
of economic parameters on the amount of CO2 emitted in the optimal cases is negligible
compared to the influence of the heat demand, see Figure 14a. As far as ATC is concerned
(Figure 14b), heat demand and fuel price have a similar impact: ATC increased by 15% when
the input parameter increases by 20%. The price of electricity exhibits the opposite trend:
the ATC is 12.5% higher when it decreases with 20%, due to the lower revenues from the
CHP unit. The price of CO2 and the interest rate should not be neglected, although they
have a lower impact on ATC.

In terms of impact on the systems design in Figure 14c,d, the TES volume is less
sensitive to the uncertainties on the inputs than the STC area, which significantly varies
with heat demand, fuel price and interest rate. Although this study showed that their
combination with TES can result in a profitable reduction of CO2 emissions, this shows that
economic aspects can be a limiting factor in the implementation of STC.
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Figure 14. Sensitivity of the main results to the variation of key input parameters: (a) CO2 generation;
(b) ATC; (c) TES volume; (d) STC area.

5. Conclusions and Future Work

A framework for the multi-objective optimization of the integration of Solar Thermal
Collectors (STC) and Thermal Energy Storage (TES) systems in existing fossil-fuel based
heat and power production systems was presented. The proposed method was applied
to the representative case of a medium-scale CHP system coupled to a District Heating
network. As a comparison, the integration of TES or STC alone was also considered.

The proposed TOPSIS-entropy method has been proved to be efficient to select the
optimal design in terms of trade-off between cost and CO2 reduction. Our results show
that, while the addition of TES or STC alone results in limited economic and environmental
performances and exhibits a rapid increase of the cost with the targeted CO2 emission
reduction, the optimal combination of TES and STC can lead to a reduction of both the
cost and the CO2 emissions: respectively 3% and 10% in the studied case. For larger
CO2 emissions savings, beyond the optimal trade-off, the additional cost remains limited
compared to the other solutions. The integration of TES and STC also significantly improves
the system flexibility and efficiency. TES allows for peak load shaving and load valley
filling, resulting in up to 52% less operation of peak units. For the optimal design, the total
efficiency of the system increases from 87% to 92%. The share of renewable energy reaches
10% when both TES and STC are integrated, compared to 7% with STC alone.

The operational flexibility of the CHP unit itself is also increased by the integration of
TES and STC, which helps increasing the electrical power generation.
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A sensitivity analysis shows that only the heat demand has a significant impact on
the environmental performance, while both the heat demand and the fuel price have a
significant influence on the economic performances. Furthermore, the optimal TES volume
is less sensitive to the uncertainties on the inputs than the STC surface, that is more impacted
by the economic parameters.

In future works, the same methodology could be applied to the integration of more
renewable energy sources such as heat pumps and power-to-X based on renewable electric-
ity production. The case of a new CHP unit will also be investigated instead of a retrofit,
taking into account the optimal sizing of this unit and the related investment costs. More-
over, the impact of the uncertainties on the input data could be studied using advanced
Uncertainty Quantification and Robust Design techniques.
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Nomenclature

Abbreviations
ATC Annual total cost
CHP Combined heat and power
DES Distributed energy system
DH District heating
EC Extraction condensation steam turbine
HOB Heat-only boiler
MILP Mixed-integer linear programming
RES Renewable energy source
STC Solar thermal collector
TES Thermal energy storage
TOPSIS Technique for Order Preference by Similarity to Ideal Solution
Indices and sets
u Unit index, u ∈ units
t Time index, t ∈ periods
Parameters
Capu Maximum capacity of each unit, MW.
cinv

u Specific investment cost per hour, €/MW.
cinvTES

t Specific investment cost per hour for TES, €/m3.
cinvSTC

t Specific investment cost per hour for STC, €/m2.
au Annuity factor.
Iinv
u Specific Investment cost per unit, €/MW.

IinvTES Specific Investment cost per volume for TES €/m3.
IinvSTC Specific Investment cost per area for STC €/m2.
cM

u,t Specific maintenance cost, €/(MW·h).
cMTES

t Specific maintenance cost for TES, €/(m3·h).
cMSTC

t Specific maintenance cost for STC, €/(m2·h).
c f uel

u,t Fuel cost, €/MWh
SCu Start-up cost per time, €.
CFu Carbon emission factor for each fuel, kg CO2/MWh
Elt Electricity price, €/MWh.
ramp_upu,t Maximum ramp up rate.
ramp_downu,t Maximum ramp down rate.
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PLRlb
u,t Minimum Part load ratio.

PLRub
u,t Maximum Part load ratio.

Qnorm
u Norm Heat capacity, MW.

Qinitial
u Initial generation for each units, MW.

ηEC Total efficiency of EC CHP
ηTES

s Storage efficiency of TES.
ηTES

chr Charging efficiency of TES.
ηTES

dis Discharging efficiency of TES.
Tsupply

t Supply temperature of DH network, K.
Treturn

t Return temperature of DH network, K.
Taver

t Mean panel temperature, K.
Tambient

t Ambient temperature, K.
T0 Reference temperature, K.
TM Average temperature, K.
QSR

t Solar irradiance, MW.
αchr

t Maximum charging ratio of TES.
αdis

t Maximum discharging ratio of TES.
σEC Power to heat ratio of EC CHP.
β Power loss coefficient
yij Value of positive matrix Y.
ej Entropy value of objective
pij Standardized value in normalized matrix P.
J1, J2 Benefit and cost indicators.
ωj Weighting value of the objective
V+ Positive ideal solution
V− Negative ideal solution
Ci Relative quality
Positive Variables
A STC area, m2.
V Thermal storage tank volume, m3.
Cinv Annualization of investment, k€.
CM Maintenance cost, k€.
CO Operation cost, k€.
CapTES

t Maximum storage capacity of TES, MW.
FCu,t Fuel consumption, MW
HSchr

t Thermal energy charging amount at time t, MW.
HSdis

t Thermal energy discharging amount at time t, MW.
PEC

t Power production of EC CHP, MW.
PLREC

t Part load ratio of EC CHP.
Qu,t Heat production, MW.
RS Revenue from selling electricity back into grid, k€.
Binary Variables
δu,t Binary variables, δu,t = 1 when units turn on.
TON

u,t Binary variables of ON status
TOFF

u,t Binary variables of OFF status
Iuse
u,t Binary variables of In_Use status.

zt TES charging/discharging operation status
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