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Abstract: This study presents the results of the biomass pyrolysis process focusing on biochar
production and its potential energetic (as solid fuel) and material (as adsorbent) applications.
Three kinds of biomass waste were investigated: wheat straw, spent coffee grounds, and brew-
ery grains. The pyrolysis process was carried out under nitrogen atmosphere at 400 and 500 ◦C
(residence time of 20 min). A significant increase in the carbon content was observed in the biochars,
e.g., from 45% to 73% (at 400 ◦C) and 77% (at 500 ◦C) for spent coffee grounds. In addition, the
structure and morphology were investigated using scanning electron microscopy. Thermal properties
were studied using a simultaneous thermal analysis under an oxidising atmosphere. The chemical
activation was completed using KOH. The sorption properties of the obtained biochars were tested
using chromium ion (Cr3+) adsorption from liquid solution. The specific surface area and average
pore diameter of each sample were determined using the BET method. Finally, it was found that
selected biochars can be applied as adsorbent or a fuel. In detail, brewery grains-activated carbon
had the highest surface area, wheat straw-activated carbon adsorbed the highest amount of Cr3+, and
wheat straw chars presented the best combustion properties.

Keywords: agriculture biomass waste; pyrolysis; biochar; active carbon

1. Introduction

During the 22 and 23 April 2021, leaders of 40 countries attended the Leaders Summit
on Climate held by President of United States of America. One of the key points of the
meeting was bringing the United States back into the Paris Agreement. A new climate
target was established to reduce greenhouse gas emissions by the United States in 2030
by 50–52% compared to the emission level in 2005. The European Union announced that
net greenhouse gas emissions will be reduced by at least 55% by 2030, leading to the
achievement of a net zero target by 2050. The USA is planning to achieve new climate goals
by reducing industry carbon pollution by promoting carbon capture and supporting the
use of renewable energy and waste conversion to power industrial facilities [1]. The world
environmental policy brings us to the point where the renewable energy source (RES)
requires further studies and support for the development of new technologies. This creates
a great opportunity to connect the reuse of waste, such as RES, into new energy forms, as
well as feedstock applications for other industrial sectors.

Biomass is one of the renewable energy sources with very high potential for energy
applications. Solid biomass—mainly forestry and wood and agricultural residues—covers
more than two-thirds of the biomass market in Europe. According to Article 3 of the EU
Directive “Binding overall Union target for 2030”, the EU member states have endorsed
the achievement of a binding minimum 32% share of renewable energy consumption.
Biomass can be classified taking into account its origin; therefore, the most important
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are woody biomass, agriculture biomass, sewage sludge, and organic waste from the
food industry [2]. Wood and agricultural biomass are often called lignocellulosic biomass
because they consist of structural components of hemicellulose, cellulose, and lignin [3].
Depending on the type of biomass, the content of these components is different and has a
strong impact on their further conversion.

Biomass wastes characterise a wide range of physical and chemical properties, which
is why it is difficult to indicate one thermal method for their conversion. Furthermore, the
heterogeneity and the predominantly high moisture content of biomass limit its direct
application to the energy sector as a fuel [4]. For the valorisation of lignocellulosic feed-
stocks, a variety of thermochemical methods are needed. Processes such as torrefaction [5],
hydrothermal carbonisation [6], pyrolysis [7,8], and gasification are applied depending on
the properties of the biomass and the application of the products obtained [9]. There are
many studies concerning the thermal process mentioned with respect to different experi-
mental conditions such as temperature, residence time, particle size of materials, type of
reactor, presence of catalyst, etc. One of the most interesting investigations is solar pyroly-
sis [10], catalyst applications [11,12], and subcritical and supercritical water gasification [13].
The management of biomass waste using the pyrolysis process has been widely studied by
Poskart et al. [14].

In Poland, annual solid biomass resources have been estimated at approximately
30 million tons, of which 26.7% is agricultural biomass [15], mainly straw (a crop residue).
The chemical energy of 1 kg of straw (15% of the moisture content) gives 14.3 MJ heat.
Straw characterises low sulphur content, low ash content compared to coal, and high
volatile matter [16,17]. Organic waste from the food industry also plays an essential role.
Spent coffee grounds (SCG) are being generated around the world because coffee is a very
popular beverage. It affects the high amount of spent coffee grounds production every
day. It was provided that the spent coffee grounds are rich in fatty acids, amino acids,
lignin, polysaccahrides, polyphenols, tannins, and flavonoids, thus making this feedstock
a potential substate for biofuel production, adsorbents, and chemical production [18–20].
There are some examples of investigations on the treatment and application of spent coffee
grounds: (i) valorisation of SCG in solid biomass fuel in the form of briquettes using xanthan
gum under low temperature and low pressure conditions [21]; (ii) gasification of SCG
which gave good results and demonstrated the high energy potential of this material [22];
(iii) polyhydroxyalkanoates (chemical industry) [23]. The brewery industry generates
spent grains, which are 85% of the total waste generated by brewery. Brewery grains
are lignocellulosic feedstock with high protein and nutritive values, and they consist of
cellulose (16–25%), protein (15–24%), and lignin (11–27%) [24], which means that they
contain components of high added value. Investigations have been carried out for the
application of brewery grains in the food industry, energy production, and biotechnological
processes [25], because they include bioactive compounds that can extract a wide range of
chemicals, for example: polyphenols, lactic, and succinic acids [26,27].

The proper thermal treatment of biomass waste enables the acquisition of a new
valuable material such as highly porous activated carbon. Activated carbons might be
obtained through several thermochemical and chemical processes. The first step is high-
temperature carbonisation, but after that process, the obtained product does not have
a developed porous structure. Therefore, its activation is carried out through physical
processes, such as high-temperature gasification or chemical treatment using hydroxides.
Activated carbon is a common adsorber used in many industries; it is used very frequently
in water treatment facilities [28]. One of the most difficult heavy metals to remove from
wastewater is chromium [29]. It is also one of the most dangerous contaminants in water,
released from various industries such as textiles, metallurgy, electroplating, and others [30].
In the EU, the maximum values of Cr (IV) and Cr (IV) + Cr (III) released into the aquatic
environment are 1 and 5 mg/L, respectively [31]. Although trivalent chromium is necessary
for living organisms in microamounts, at higher concentrations, it might be lethal [32].
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Therefore, the problem of chromium capture from aquatic solutions is a crucial problem
that needs to be solved.

Taking into account environmental protection and climate policy, the scientific focus
of the authors on the area of enhancing the energetic properties and production of new
value-added materials from various types of biomass is fully justified. The presented topic
concerns current issues of renewable fuels applications and is very important from the
cognitive and practical point of view. The objective of the presented work was to obtain
biochars from biomass wastes under pyrolysis and further investigate their properties
toward their further application as a solid fuel or adsorbent. It should be emphasised
that the utilisation of waste biomass as a fuel or in activated carbon production is a part
of a circular economy concept, leading to the minimisation of waste generation and the
preservation of natural resources. The concept of circular economy includes treatment,
energy production, and waste utilisation. It reflects the assumption of ‘zero waste for the
EU’. The bioeconomy is crucial for agriculture, food, pharmacy, and energy industries.

2. Materials and Methods

In this study, three types of biomass were selected for analysis of their energy and
material potential. The following feedstocks were obtained from agricultural and agro-
industrial wastes: wheat straw (WS), spent coffee grounds (SCG), and brewery grains (BG).
The potential and production of wheat straw in Poland is among the highest among agricul-
tural residues. The spent coffee grounds were collected from the restaurant, while the beer
grains came from a brewery located in Poland. The chosen residues are valuable materials
that require management, leading to the attainment of ecological and economic benefits.

The studied feedstocks were treated under a pyrolysis process to obtain biochars.
Pyrolysis was performed using a laboratory setup with an electrically heated furnace
with a horizontal quartz reactor. The laboratory setup scheme is presented in Figure 1.
The pyrolysis was carried out under nitrogen atmosphere with a flow rate of 100 mL/min at
a temperature of 400 and 500 ◦C. A c.a. 10 g sample was used. Nitrogen was passed through
the reactor system to remove oxygen and obtain a non-oxidised reaction atmosphere.
The heating rate of a furnace was 100 ◦C·min−1. The residence time of a sample in process
was 20 min. After this, the furnace was cooled, and the obtained biochar was removed.
The biochars were named approximately: WS_400, WS_500, SCG_400, SCG_500, BG_400,
and BG_500.

Figure 1. Laboratory setup scheme.

The physical and chemical properties of raw materials and biochars were investigated.
Moisture (M), ash (A), and volatile matter (VM) contents were performed according to
standards (PN-EN ISO 18134-2:2017-03; PN-EN ISO 18122:2016-01; PN-EN ISO 18123:2016-
01, respectively). The elemental analyser Leco CHN628 was used to determine the carbon
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(C), hydrogen (H), and nitrogen (N) content in the studied samples according to PN-EN
ISO 16948:2015-07.

Simultaneous thermal analysis (STA) was carried out to investigate the thermal be-
haviour of feedstocks and biochars under combustion conditions. During thermogravimet-
ric analysis, TG and DSC curves were collected. The TG curve reflects the mass change of
studied material (m = f(T)), whereas DTC shows thermal effects (exothermic or endother-
mic). Additionally, the first derivative of the TG curves was calculated to obtain a DTG
curve (Differential Thermogravimetry—dm/dT = f(T)). The sample was placed in an alumina
crucible, and a sample (c.a. 5 mg mass) was heated from ambient temperature to 700 ◦C at
a heating rate of 10 ◦C/min under air atmosphere with 50 mL min−1.

The morphology and structure were studied using scanning electron microscopy with
energy-dispersive X-ray spectroscopy (SEM-EDS) (Inspect S50, FEI, Thermo Fischer Scien-
tific, Waltham, MA, USA apparatus). Samples of raw materials and biochars were mounted
on metal stubs by double-sided carbon adhesive discs. SEM images were acquired using
the secondary electron (SE) detector in the high-vacuum mode. The applied acceleration
voltage was 3 keV. Additionally, for the raw and after chromium adsorption samples, the
microanalysis of the chemical composition was performed using energy-dispersive X-ray
spectroscopy (EDS). The specific surface area of raw and biochar samples was determined
using the Brunauer–Emmett–Teller (BET) method using the Quantachrome Poremaster
60 analyzer (Anton Paar, Graz, Austria).

Biochar adsorption experiments were performed using chromium nitrate (Cr(NO3)3).
In each procedure, respectively, 0.2 g of each biochar was placed in chromium solution in an
Erlenmeyer flask (250 mL). The pH was constant and equalled 5.00. The chromium solution
with biochar was maintained for 24 h using a magnetic stirrer. After the experiments, the
solution was analysed, taking into account Cr3+ concentration using atomic absorption
spectrometry (spectrometer of AA Perkin Elmer, Polska, Cracow, Model 3110, λ = 357.9 nm).
The dried biochar was analysed to study changes in the biochar matrix using SEM-EDS.

The biochar activation was completed using a chemical process with KOH as the
activation agent. The reaction parameters were as follows: activation temperature 800 ◦C,
activation time 1 h, nitrogen atmosphere, and mass ratio of biochar to KOH 3:1. After the
activation, activated chars were cleaned in HCl to remove KOH, and the next obtained
activated carbons were dried and investigated toward its absorption properties.

3. Results and Discussion
3.1. Solid Fuel Properties

Table 1 presents the proximate and ultimate analysis of the feedstock and biochars
obtained at 400 and 500 ◦C pyrolysis process. All biomass wastes are characterised by
different physical properties and elemental composition. The moisture values reflected the
condition of the sample used for pyrolysis. It should be noticed that originally spent coffee
grounds and brewery grains had very high moisture content (up to 50%). The highest ash
content and consequently the lowest volatile matter had wheat straw. SCG and BG had
characterised higher volatile matter and lower ash content.

Analysing the elemental composition of samples, BG (brewery grains) had the highest
carbon and hydrogen contents among studied wastes. It should be emphasised that WS
(wheat straw) and SCG (spent coffee grounds) also had adequate properties for the pyrolysis
process to obtain valuable biochars, which can be applied as active carbon or adsorbent for
heavy metals. Table 1 presents the changes in elemental composition of raw and biochar
samples and reveals that pyrolysis at 400 and 500 ◦C had an evident effect on the carbon
content increase. The most significant increase in carbon content was observed for spent
coffee grounds. For BG and WS, the carbonisation effect was observed, too. It can be seen
that the increase in pyrolysis temperature did not affect the carbon content in a spectacular
way. Thus, it suggests that 400 ◦C is a sufficient process temperature to obtain biochar with
valuable energetic properties.
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Table 1. Proximate and ultimate analysis of studied feedstock and biochars, wt. % (M—moisture,
A—ash, VM—volatile matter, C—carbon, H—hydrogen, and N—nitrogen contents).

Sample M A VM C H N

WS 5.8 6.8 76.0 43.23 5.97 0.97
WS_400 18.2 30.6 62.58 3.95 1.64
WS_500 67.66 2.99 1.74

SCG 14.8 4.0 81.7 44.97 7.47 2.18
SCG_400 8.6 38.4 73.32 5.17 4.17
SCG_500 76.78 3.38 4.25

BG 1.5 2.1 80.3 48.80 6.87 4.39
BG_400 6.2 37.1 69.88 4.87 6.82
BG_500 70.86 3.26 6.80

To study the thermal behaviour under combustion conditions of biochars compared
to the raw material, the thermal analysis was carried out. Figures 2–4 present the TG
(thermogravimetry—weight loss of sample to initial mass) and DTG (differential thermo-
gravimetry) curves allowing to determine the characteristic temperature of combustion.
When the TGA results were compared among the feedstock studied, differences in thermal
behaviour were observed. They were probably indicated with the structural composition
(hemicellulose, cellulose, and lignin contents) of the raw biomasses. It is confirmed in
the intensity and temperature of the DTG peaks. It should be emphasised that besides
the mentioned components, biomass wastes contain mineral matter, lipids, and proteins.
The wheat straw and brewery grains are lignocellulosic materials but with different content
of structural components. Wheat straw was composed of 24% cellulose, 32% hemicellulose
and 13% lingnin, and brewery waste was composed of 17%, 34%, and 3%, respectively.
For WS, two evident peaks were detected at 300 and 397 ◦C, and one small peak was de-
tected at 451 ◦C (Figure 2). In the case of SCG and BG, two main DTG peaks were observed
at c.a. 300 and c.a. 500 ◦C. Based on TG and DTG, it can be stated that SCG and BG have
a similar fibre composition. Analysing the combustion process of raw WS and biochars,
the first stage connected with hemicellulose decomposition was not observed for WS_400
and WS_500. For WS_500 biochar, only one peak of DTG was detected. The TG curves
for biochars were shifted toward higher temperature such as for coal, confirming that the
carbonisation of this feedstock had an effect and changed the structural properties (ratio
of structural constituents). The solid residue at the end of the process had increased from
raw WS to WS_500. A similar trend was observed for brewery grains, but the decompo-
sition temperatures were higher than for WS samples, and the solid residues were lower
(Figure 4). In biochars BG_400 and BG_500, the peak reflected to hemicellulose was not
observed, either. It the case for SCG samples that different thermal effects were observed.

Figure 2. Thermal behaviour (TG and DTG curves) of wheat straw (WS) and biochars (WS_400 and
WS_500) in an air atmosphere (combustion conditions).
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Figure 3. Thermal behaviour (TG and DTG curves) of spent coffee grounds (SCG) and biochars
(SCG_400 and SCG_500) in air atmosphere (combustion conditions).

Figure 4. Thermal behaviour (TG and DTG curves) of brewery grains (BG) and biochars (BG_400
and BG_500) under air atmosphere (combustion conditions).

The results of the thermogravimetric analysis provided data to calculate the key
combustion parameters. The following parameters were defined based on the TG and
DTG curves: ignition temperature, burnout temperature, temperature of the highest peak
DTG, maximum and average mass loss rate, as well as times of maximum peak, ignition,
burnout, and DTG/DTGmax range = 0.5 (∆t1/2). These parameters were used to calcu-
late the following indexes: ignition (Di), burnout (Df), and combustion (S and Hf) [33].
The methodology of calculating indexes and establishing parameters is described in pa-
pers [34–36]. The results of the calculations are presented in Table 2. The fuel properties of
ignition, combustion, and burnout are reflected in the combustibility index S. The highest
values were obtained for Straw 500 ◦C at level 5.80× 10−7. The general tendency for studied
materials as well as the literature review shows that a higher value of the S index is obtained
for raw materials than for biochars. This is caused by the high amount of VM in the sample.
In case of WS_500, the high value of the S index is affected by the highest maximum mass
loss rate. The maximum mass loss rate parameter for WS_500 was 21.7 wt.%/min; in com-
parison, the same parameter for SCG_500 was equal to 11.5 wt.%/min. The combustion
process of WS_500 was very dynamic, which can also be noted on the DTG curve (Figure 1).
Additionally, the result of the S index is confirmed by the Di index tendency. The high value
of Di proves to release a high amount of volatile matter during the combustion process,
which confirms that combustion starts at an early stage for this fuel. The rate and intensity



Energies 2022, 15, 1941 7 of 12

of the combustion process is reflected in the Hf index. The lowest value was calculated
for the BSG sample and obtained a level of 816. The lower the value of Hf, the better the
combustion properties of the fuel. For comparison, in the case of coal, this index is around
2000 [37].

Table 2. Combustion parameters of studied feedstock and biochars.

Sample Di, wt. %/min3 Df, wt. %/min4 S, min−2 ◦C−3 Hf, ◦C

WS 0.0149 3.52 × 10−4 4.70 × 10−7 834
WS_400 0.0105 2.15 × 10−4 2.66 × 10−7 1111
WS_500 0.0246 5.80 × 10−4 5.82 × 10−7 1055
SCG 0.0078 1.47 × 10−4 3.60 × 10−7 1438
SCG_400 0.0072 1.06 × 10−4 2.59 × 10−7 1687
SCG_500 0.0077 1.61 × 10−4 2.12 × 10−7 1447
BG 0.0115 1.67 × 10−4 2.54 × 10−7 816
BG_400 0.0027 0.482 × 10−4 0.72 × 10−7 1661
BG_500 0.0033 0.554 × 10−4 0.77 × 10−7 1756

To study the morphological and structural changes, scanning electron microscopy
analysis was performed. Figures 5–7 present SEM images of spent coffee grounds, brewery
grains, and wheat straw. The shape and size of the raw spent coffee grounds and raw
brewery grains are similar and different from the raw wheat straw particles. The raw
wheat straw particles are much finer. However, all raw samples were characterised by a
dense structure. After pyrolysis processes, the pores were created, especially in the spent
coffee grounds and brewery grains. Independently from process temperature, the entire
surface of biochars from spent coffee and brewery grains was covered with pores. The pore
diameter was up to 50 µm. In the case of biochars from wheat straw, a small amount of
pores was observed on the surface. Their amount was increased with increasing the process
temperature, but the pores were very small. The SEM images of the all obtained activated
carbons show more porous structures. For all samples, the structure was crashed, but the
micropores are visible. The structure of spent coffee grounds partially consists of pores
with inside micropores. The micropores in the activated carbons surface were also observed
by other researchers [38,39].

Figure 5. SEM images of the wheat straw (WS) (a) raw, (b) WS_400, (c) WS_500, (d) after activation.
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Figure 6. SEM images of the spent coffee grounds (SCG) (a) raw, (b) SCG_400, (c) SCG_500, (d) after activation.

Figure 7. SEM images of the brewery grains (BG) (a) raw, (b) BG_400, (c) BG_500, (d) after activation.

3.2. Adsorbent Properties

Table 3 presents the results for the specific surface area (BET) of raw biomass and
biochars. All samples had characterised a very low specific area. A significant increase
in surface after the pyrolysis process in biochars was not observed, even the decrease for
WS_500 and BG_500. The high amount of ash in biochars and the condensed volatile matter
from the hemicellulose decomposition could influence the limitation in the development of
a specific surface area. In the case of SCG, it was not possible to measure the BET surface
area. It was assumed that the samples were not porous, only that they had a geometric
surface reflected in the external surface of the particle.

Table 3. Specific surface area (BET) of studied feedstock and biochars (obtained after the pyrolysis).

Specific surface area
(BET), m2/g

WS WS_400 WS_500 SCG BG BG_400 BG_500

2.25 2.68 1.82 0.06 0.36 0.67 0.27



Energies 2022, 15, 1941 9 of 12

For materials application examination, products received at 400 ◦C were selected for
active carbon production and further adsorption of chromium testing. The porosity of the
obtained active carbons by KOH chemical activation of biochars was noticeably increased.
This effect was confirmed according to the data from the literature, indicating that KOH
activation leads to microporous carbon-rich material production with a highly developed
specific area and higher pore volume (see Table 4 and Figures 5, 6 and 7d) [40].

Table 4. Specific surface area (BET) biochars obtained at 400 ◦C pyrolysis after activation process.

Specific surface area
(BET), m2/g

WS_400 SCG_400 BG_400

1939.54 2510.06 2618.60

The highest specific surface area was noted for active carbon obtained from brewery
grains char (400 ◦C). The development of the porous structure and surface area of all
biochars using KOH chemical activation is the effect of the following reactions [36]:

6KOH(s) + 2C(s) → 2K(s) + 3H2(g) + 2K2CO3(s) (1)

K2CO3(s) → K2O(s) + CO2(g) (2)

K2CO3(s) + 2C(s) → 2K(s) + 3CO(g) (3)

K2O(s) + C(s) → 2K(s) + CO(g) (4)

As it was confirmed, biochars obtained with lower ash content are good material
for the production of active carbon. The high ash content in biochar can have a positive
influence on fertiliser application and sorption properties, especially for heavy metal
removal. The adsorption properties of biochars were studied on the basis of chromium
ion adsorption. It is very important to control the concentration of Cr (III) in potable
water. For this study, the solution of 22 mg/L Cr (III) content was analysed as a reference.
After the process, biochars and chromium solutions were analysed. The EDS analysis
(Figure 8) shows that chromium was absorbed by biochars: 2.5 wt. % in the spent coffee
grounds, 1.1 wt. % in the brewery grains, and 2.6 wt. % in the wheat straw were found.
Additionally, chemical analysis of the chromium solution had confirmed the decease of the
chromium content in the studied solutions from 22 to 0.10 mg/L for WS, 14 mg/L for SCG,
and 15.01 mg/L for BG.

Figure 8. EDS spectra for biochars obtained at 400 ◦C and after the chromium adsorption.
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4. Conclusions

Biochars obtained by the low-temperature pyrolysis of lignocellulosic biomass wastes
can have a very wide range of applications. Depending on their physical and chemical
properties, they can be utilised in the energy sector, as a substrate for active carbon pro-
duction, and finally as a sorbent for pollutants. The obtained biochars had a significant
increase in carbon content (up to c.a. 70% of C) and lower O/C ratio. Thermal analysis
confirmed the decomposition of hemicellulose in studied biomass wastes during pyrolysis.
The combustion of all obtained biochars proceeded at temperatures higher than those of
the raw materials. Obtained biochars were carbon-enriched material; however, the fuel
properties were enhanced mostly in the case of spent coffee grounds, which are charac-
terised by the highest initial volatile matter content. Therefore, materials characterised by
high volatile matter content are the most suitable feedstock for thermal pretreatment and
the production of carbon-rich fuel.

The chemical activation process went successfully, giving materials with specific
surface area c.a. 2500 m2/g for biochars of brewery grains and spent coffee grounds
even with low ash content in raw materials. The activation properties were confirmed
during the adsorption of the Cr (III) ion. Therefore, only WS activated biochar fulfils
the EU limits determined for chromium capture in water. It might be associated with a
presence of functional groups in the biochar, which effectively participate in the adsorption
of heavy metals from water solutions. The presented results present possibilities and
give the knowledge for further investigations of biomass utilisation with added value
to the environment.

In conclusion, it can be verified that the application of the obtained biochars depends
on its physicochemical properties such as surface area, pore size and volume, catalytic activ-
ity, adsorption efficiency, and chemical composition (carbon and ash contents). Moreover, it
can be stated that biochar is one of the most desirable products of biomass wastes ob-
tained under thermal conversion. It has numerous applications and benefits in many fields:
the energy sector (carbon replacement, carbon sequestration), environmental protection
(adsorbent for pollutants), the agriculture sector (fertiliser), and others. Finally, these ac-
tions influence climate change mitigation and environmental management (reduction in
waste disposal).
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