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Abstract: Autonomous energy management is becoming a significant mechanism for attaining
sustainability in energy management. This resulted in this research paper, which aimed to apply deep
reinforcement learning algorithms for an autonomous energy management system of a microgrid.
This paper proposed a novel microgrid model that consisted of a combustion set of a household load,
renewable energy, an energy storage system, and a generator, which were connected to the main
grid. The proposed autonomous energy management system was designed to cooperate with the
various flexible sources and loads by defining the priority resources, loads, and electricity prices. The
system was implemented by using deep reinforcement learning algorithms that worked effectively in
order to control the power storage, solar panels, generator, and main grid. The system model could
achieve the optimal performance with near-optimal policies. As a result, this method could save
13.19% in the cost compared to conducting manual control of energy management. In this study,
there was a focus on applying Q-learning for the microgrid in the tourism industry in remote areas
which can produce and store energy. Therefore, we proposed an autonomous energy management
system for effective energy management. In future work, the system could be improved by applying
deep learning to use energy price data to predict the future energy price, when the system could
produce more energy than the demand and store it for selling at the most appropriate price; this
would make the autonomous energy management system smarter and provide better benefits for
the tourism industry. This proposed autonomous energy management could be applied to other
industries, for example businesses or factories which need effective energy management to maintain
microgrid stability and also save energy.

Keywords: autonomous energy; energy management; deep Q-learning; smart tourism; smart city;
sustainability

1. Introduction

With the advancement of information technology in the disruption era, which is
driving digital disruption, the way tourism businesses operate would be transformed
by adopting new technology to help support their business operations and elevate them
to sustainable development [1-4]. With the development model based on Sustainable
Development Goal 7 (SDG7) by the United Nations Environment Programme (UNEP) by
2030, the goal is to have “cheap, reliable, sustainable, and modern energy for all.” Its three
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main goals serve as the cornerstone for the researchers’ efforts: (1) ensure that everyone has
access to energy services that are affordable, reliable, and contemporary; (2) significantly
enhance the amount of renewable energy in the global energy mix; (3) double the global rate
of energy efficiency improvement [5]. In this regard, this would see the emergence of using
advanced technology for sustaining and managing the energy to go green and preserve
the environment, moving toward sustainability [6]. To reduce any potential differences,
an autonomous energy management system would combine various energy sources, both
renewable and non-renewable, and energy storage systems (ESS) to meet the demand
for the loads, that could be connected to the main grid at the point of common coupling
(PCC) or operated off-grid, where the microgrids’ operating systems could support green
energy. When a fault would develop in the linked power systems, autonomous energy
management would act in an isolated mode. Hence, microgrids provide a number of
advantages, including reducing greenhouse gas emissions, supporting reactive power to
raise the voltage profile, decentralizing the energy supply, and responding to the demand.
By 2024, the global deployment of microgrids is estimated to reach 8.8 GW. Moreover,
microgrids have been installed in rural places, towns, and a variety of industries, including
commercial, industrial, and military, based on their goals, load types, and geographical
and climatic conditions [7].

Autonomous energy management has also been applied in the tourism industry
because of the rapidly growing demand for energy at an accelerated pace due to the
internationalization and development of civilization [8]. Hotels and resorts are a very
important accommodation service business in the Thai tourism industry, which is an
industry that generated an income of 3.076 trillion Thai Baht in 2019 for the country
(reference). Additionally, the amount of energy demand depends on many factors, such as
the nature and style of the building, usage of the customers who stay, number of rooms,
outdoor temperature maintenance, etc. Therefore, if the hotel or resort applies energy
management to its business operations by using energy in each section effectively and
reduces unnecessary energy use, this would help the hotel or resort to save costs, electricity,
and reduce wastage or waste of natural resources. Today, many hotels and resorts are able
to generate electricity in several ways, including solar cells or gasoline generators that
create the complexity of the power system for the tourism business [9]. Therefore, smart
energy management is a necessary system for the tourism business.

With the advent of technology in the digital disruption era, the tourism industry’s
energy conservation system has been widely implemented, and it has become an important
aspect of driving an attraction toward becoming a smart tourism city [6]. A smart city
is a sustainable and efficient urban center that delivers a high quality of life for a large
number of people, while also requiring effective resource management. As such, energy
management is one of the most essential concerns in such urban centers where the energy
networks are complex. Therefore, smart energy management is an important key in order
to solve this problem. As a consequence, modeling and simulation would be applied to
find smart solutions, as well as to plan the most appropriate ways to change from existing
cities to smarter ones [10]. In general, energy planning and operation models of a smart city
consist of generation, storage, infrastructure, facilities, and transport, which can become a
complex power system that would provide an autonomous energy management system
for a smart city. Thus, the research topic about deep Q-learning is interesting for research
in the energy field [11].

Many tourism locations are situated in remote areas that are quite far from the main
power grids. Consequently, these grids are unable to support these tourism attractions
effectively, with the result being that many do not have sufficient energy to operate their
business [12]. Each microgrid has a different objective and capacity that cooperates with
various power resources and a high quantity of loads. Microgrids are alternatively called
energy management systems that are operated in coordination to reliably supply electricity
to a cluster of loads and distribute generated units. Furthermore, they are energy storage
systems connected to the host power system at the distribution level at a single point of
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connection, or PCC [13] Microgrids can also be totally self-contained and independent of
the grid (off-grid).

The purpose of this study was to investigate a deep Q-learning artificial intelligence
(AI) model for automatically regulating an energy management system (EMS) that would
preserve the energy reserve, maximize the overall system’s efficiency, and optimize the
dispatch of local resources [2-6]. The EMS had significant hurdles as a result of the mi-
crogrid’s structure, including the small size, volatility, uncertainty, and intermittency of
the distributed energy resources (DER), as well as demand unpredictability and dynamic
power market prices. Further advancements in microgrid construction and control would
also be necessary to overcome these obstacles. To mitigate the significant volatility of the
DER, additional sources of flexibility would need to be used at the architectural level. In
addition, to improve the energy dispatch and overcome the uncertainties of the micro-
grid’s components, new control mechanisms and intelligent control approaches would
be required.

2. Literature Review
2.1. Autonomous Energy Management

The term “autonomous energy management” still has no specific definition to cover
this concept. However, the literature review found that the problem of high demand for
energy production is the main problem. Behind this concept, many scholars try to study
the new paradigm of looking for energy autonomy in several countries in response to this
problem; in [13,14] the authors studied the problem regarding the local energy organi-
zation management in the European Union and proposed autonomous energy regional
organizations. Furthermore, the study proposed the solution to the preparation and imple-
mentation of the grid services as a part of the local public autonomous energy system [15].
In [16,17], the authors purpose the other idea in terms the technology development to
support the renewable energy sources. They propose a multipurpose optimization method
of the autonomous energy system size which consists of diesel, wind, battery storage, and
photovoltaic systems, as well as a load switching system [17].

Currently, power systems are principally based on large-scale power plants like coal,
hydro, natural gas, and nuclear. However, those forms of energy are based on non-
renewable energy sources. In addition, every country around the world has been concerned
about the environment and energy resources. As a result, renewable resources like solar
and wind were investigated and integrated into the system [14,18]. At present, the power
system is controlled centrally, and the power is synchronously generated in the power
plants and flows from the central power station to the customers in a single direction [16].
With this centralized energy management, the customers would depend on the central
power station as the only source. However, in the event that the power station experienced
some problems, this would affect the customers.

With the worldwide growth in the digital era, the demand for energy is further
increasing. Nevertheless, there are many new technologies being integrated into future
power systems. First of all, there are more kinds of distributed energy source technologies,
such as solar, wind, combined heat, and power generators [18,19]. These technologies are
slightly different from the conventional models as they typically have a power inverter
interface to connect to the grid. There are also new distributed technologies, such as
distributed storage, flexible loads, and electric vehicles (EVs). Finally, all of these have led
to a highly complex situation in the control and operation of the energy system.

Nowadays, microgrid technology has provided a solution for autonomous energy
management from distributed energy sources [8]. A microgrid is a small low-voltage or
medium-voltage system, which has integrated the power generator, electric load, informa-
tion technology, and communication systems. The combined energy storage and automatic
control system are able to work together as a single system. Typically, microgrid systems
are connected to the main grid.
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Regarding from the literature review, we can summarize the definition of autonomous
energy management as the deconstruction of a centralized power grid’s control from a
large scale into a smaller grid. With decentralized control and autonomy by every load
from each energy resource and data communication, in order to contribute more savings
and stability to the energy system.

The advantage of the microgrid system is the reliability of the self-sufficient energy
system, which can detect any problems from the main grid and switch to its system
automatically. It is also able to serve some activities to continuously operate the system,
such as in hospitals, university laboratories, hotels, factories, electric vehicle charging
stations, etc. Moreover, the existing literature showed that some energy management
systems could decrease the energy costs for business owners. Kapiki [20] found that
efficient energy management systems could save energy costs up to 65% for hotel owners.
Furthermore, the smart grid and the latest technologies could provide a solid solution to
control complex distributed energy systems, such as an autonomous energy management
system for green buildings [8]. Additionally, Basit et al. [12] proposed an autonomous
energy management system for smart houses, which reduced the cost at peak load times
in the home environment. In the study from Raju et al. [21], a multi-agent system (MAS)
was implemented for the autonomous energy management of a solar microgrid consisting
of two solar photovoltaic (PV) systems. Each component of the microgrid was used as an
agent, and together on the optimal energy management [22].

2.2. Smart City

The term “smart tourism cities” is gaining renown [2], but there is still no specific
definition that can particularly cover this concept. Chung et al. [23] stated “smart tourism
cities are indistinct boundaries between tourists and residents in geospatial locations (e.g.,
urban or destination).” However, behind this concept, most researchers have referred to the
terms “smart city” and “smart tourism”. Being “a smart city is using all available resources
and technologies to grow to be integrated, habitable, and sustainable in an intelligent and
corresponding manner” [24]. Harrison et al. [25] also defined that “a smart city means a
city that connects with social substructure, physical substructure, business substructure
and IT substructure to take advantage of the city’s collective intelligence.” For the concept
of smart tourism, Li et al. [26] defined this as “it is a tourist information service that
tourists receive throughout the travel process.” Gretzel et al. [27] indicated that “smart
tourism is tourism maintained by a combined endeavor to collect data from the social
connection, physical infrastructure, and government with the use of innovative technology
to transform that data to on-site experiences and business value schemes with emphasis
on efficiency, sustainability, and experience enhancement.” Moreover, Chung et al. [23]
introduced the integration of a “smart city” and “smart tourism,” so “smart tourist city”
was born. Furthermore, “smart tourism towns are sophisticated tourist destinations that
provide sustainable growth that simplifies and increases visitor contact with the destination
experience and, as a result, improves the quality of life for the locals” [28].

2.3. Deep Q-Learning

In reinforcement learning, deep Q-learning is a familiar algorithm that produces a
Q-table that an agent is able to use to find the most appropriate solution to process [29]. In
deep Q-learning, neural networks (NN) are used to approximate the Q-valued function.
The state is defined as the input, and the Q-values of all possible actions are generated
as the output [30]. Additionally, the deep Q-learning algorithm has many benefits for the
control system.

The following literature demonstrates the existing research. James and Johns [31]
presented an approach that used deep Q-learning to train seven robotic arms in a controlled
task without any prior knowledge. Rahman et al. [32] also applied the deep Q-network
(DQN) for a self-balancing robot to make the robot model learn the best actions for staying
balanced in an environment. Additionally, Qiao et al. [33] proposed handwritten digit
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recognition using an adaptive deep Q-learning strategy. Furthermore, Zhu et al. [34]
studied a deep-Q-learning-based transmission scheduling mechanism for the cognitive
Internet of Things (IoT). Moreover, Bui et al. [35] controlled a battery energy storage system
by using a double deep-Q-learning-based approach.

3. Materials and Methods

In this paper, the researchers developed a prototype of smart microgrids for tourism
cities, which developed a microgrid virtual environment by using an open-source Python
tool. Reinforcement learning (RL) also allowed the machine to learn how to perform
the actions. In order to optimize a reward signal, the machine conducted actions in the
surroundings. That reward signal in the context of a microgrid could comprise the energy
cost, peak load, or safety, depending on which behavior would need to be incentivized.
A Markov decision process (MDP) was used to teach the agent how to respond in an RL
scenario. However, because the state space in modern power grids is so huge, a normal RL
algorithm would be unable to solve it. Therefore, to solve this problem, a deep NN could
be used to model the desired policies and value functions, which would therefore be called
deep RL.

To apply solutions for sequential decision making based on deep RL, the optimal
operation of an MG could be described as a partially observable MDP, in which the MG
would be viewed as an agent interacting with its surroundings. The state of the system
st = s was made up of a history of features of observations in order to approach the Markov
property. Oti; i € {1,...,Nf}, where Nf € N would be the total number of features. Each Oti
would be represented by a series of punctual observations over a predetermined period of
time hi: Oti = [ot — hi + 1i; ...; oti] (the history length may depend on the feature). The agent
would observe a state variable st at each time step, perform an action at A, and advance into
a state st, take an action at € A, and move into a state st + 1~P (|st; at). The transition (st; at;
st + 1) would be coupled with a reward signal rt =p (st; at; st + 1), where: SASR would be
the reward function. Then, the y-discounted optimal Q-value function would be defined.

Qx(s,a) = maxrt E [Z vk — Took =t rklst=s,at =a,rn] 1

Value-Based Deep Reinforce Learning Methods

The Q-function would be represented as an approximator using an NN with param-
eters based on the MDP formulation notations. Deep Q-learning (DQN) is one of the
parameter-tuning techniques that is most often used with the goal of directly approxi-
mating the ideal Q-function. The parameters are learned in one-step DQN by iteratively
minimizing a succession of loss functions with the loss function defined. The Q-function is
then changed to return in one step. The researchers also implemented an experience replay
mechanism to improve the efficient use of a previously gained experience. The learning
phase was conceptually separated from the experience gain phase in an experience replay.
Randomly sampled batches of transitions from an experience dataset were used in the
experience replay. Moreover, the NN could overcome the limitations of non-stationary data
distributions through this technique, thus resulting in improved algorithm convergence. It
is also worth mentioning that this algorithm did not employ the greedy strategy because
the search space was always explored at random during the training.

The stMG € SMG storage operating state of the microgrid was used by the researchers.
This was a term used to define the quantity of energy stored in the storage devices. The
quantity of energy stored in the battery was measured in stB [Wh] € SB [Wh], and the energy
density of a diesel generator was represented by stDG [Wh] € SDG [Wh/kg]. Then, xB
[Wh] (resp.xH2 [Wp]) was introduced as well as the battery storage capacity and generator
output xDG [W]. The variable #B (resp. {B) denoted the discharge efficiency of the battery.
Likewise, the efficiency of the electrolysis and fuel cells were given by #H2 (when storing
energy) and {H2 (when delivering energy). The variable {DG was the efficiency of a diesel
generator, and an action was undertaken at each time step. at = [atH2; atDG; atB] € At
was applied on the system, where atH2 was the amount of energy moved into (if positive)
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or out of (if negative) the hydrogen storage device; similarly, this was the amount of
energy transported into (if positive) or out of (if negative) the hydrogen storage device.
atB was the quantity of energy transferred into or out of the battery that was measured
by atDG, which was the quantity of energy emitted by the diesel generator (all negative).
The dynamics of the battery were determined by st + 1B = stB + ntBatB if atB > 0 and
st + 1B = stB — atB (tB/ otherwise. Similarly, the dynamics of hydrogen were described
by st + 1H2 =stH2 + (tH2atH2 if atH2 > 0 and st + 1H2 = stH2 — atH2 (tH. Figure 1 show
the deep reinforcement learning design of the study.

Reward

Agent

State Take Environment

action

parameter 6

Observe state

Figure 1. Deep reinforcement learning design.

The instantaneous reward signal rf was calculated by adding the earnings from the
generation of hydrogen. rH2 with the penalties r— was due to the value of the loss load:
rt =r (at; dt) =rH2 + v — (at; dt). The penalty r— was equivalent to the total quantity of the
energy not delivered to meet the demand: r — (at; dt) = k6t when 6t < 0 and null otherwise
(k was the cost endured per Wh not supplied within the microgrid), while rH2 was given
by rH2 (at; dt) = kH2atH2 (kH2 was the revenue/cost per Wh of hydrogen produced/used).
According to the description of the problem, there was no means to supply energy from
outside the system (for the public grid), and the system was not rewarded for it. The
operational revenue for year y was calculated by using the series of incentives rt as follows:
My = Y rtt € Ty where Ty was the set of time steps belonging to year y. The optimal
operation of the MG necessitated the development of a sequential decision-making method
that led to the maximization of the output of My (Algorithm 1).

Algorithm 1

Initialize building parameters.
Initialize Q(s,a) arbitrarily.
Repeat (for each episode).
Initialize s.
repeat
Choose a from s using the policy from Q(e-greedy).
Take action (a).
Update building states (s”).
Calculate reward (r).
Q(s,a) 1 +vQ(s"a)
s+ ¢
until s is terminal.
end

The researchers’ experiment replicated the operation of an actual microgrid with PV
panels, batteries, and a generator that was not linked to the main utility grid (off-grid).
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The researchers developed a DQN architecture in which the state vector provided the
inputs, and each discretized action’s Q-values were represented by a separate output. The
DON time series processes used a set of 16-filter convolutions with stride 1 followed by a
convolution with 16-filter convolutions with stride 2. The output of the convolutions, as
well as the other inputs, was followed by two fully connected layers of 50 and 20 neurons,
respectively, as well as the output layer. Except for the output layer, where no activation
function was employed, the rectified linear activation unit (ReLU) was utilized as the
activation function. The researchers conducted the updated Q at each time step by starting
with a random DQN. Simultaneously, the researchers used an agent to supplement a replay
memory with all the observations, actions, and rewards. This was followed by an e-greedy
policy s.t. where the policy 71(s) = maxa € A Q (s; a; k) was selected with the probability
1 — ¢, and a random action was chosen with the probability (with uniform probability over
the acts) €. The researchers also employed a decreasing value of € over time. During the
validation and test phases, the policy 7t(s) = maxa € A Q (s; a; Ok) was applied (with € = 0).
Figure 2 show the microgrid diagram of this study.

Grid

Grid > DQN > Battery

PV Panels

Figure 2. Microgrid diagram.

The researchers assumed a household power consumer in a holiday village with an
off-grid MG (average of 48 kWh/day). As a starting point, historical data on total sun
radiation were employed. At a meteorological station in this town, solar radiation was
measured. The electrical load was calculated using real-time data from typical days in each
month. The battery had a capacity of xB = 384 kWh, the diesel generator had power of
xDG =100 kW, and the peak PV power generation was xPV =75 kWp, consumed outside
of the MG that was fixed at 2.16 Thai Baht/kWh. The main goal was to minimize the
electrical costs, and the reward function was created to maximize the economic profit from
the activities. The incentive was based on the gross margin from the operations, which was
the money generated by selling electricity to the microgrid and to the external grid minus
the costs of the power generation, purchases, and transmission from the external grid.

4. Results

The result of operating deep RL algorithms in a simulated environment for 50 h and
recording both the training performances and daily rewards is shown in Figures 3-8 and
Table 1, which depicts the learning processes for each of the RL algorithms. In the simple
one-step DQN, the learning curves showed a large amount of instability, and the remaining
algorithms displayed a positive learning process that resulted in reasonable convergence.
Figure 3 shows the relation of load (kilowatt) on the y-axis, in 9000 h on the x-axis.
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Table 1. Time-State-Action-Cost.

Time State Action Cost

0 (304, 0.2) discharge 743 B

1 (200, 0.2) discharge 1237 B
2 (200, 0.2) discharge 173.1 8B
3 (200, 0.2) discharge 2224 B
4 (202, 0.2) discharge 2722 B
5 (306, 0.2) import 3474 B
6 (524,0.2) discharge 476.6 B
7 (611, 0.2) discharge 6279 B
8 (568, 0.2) discharge 807.8 B
9 (394, 0.2) discharge 9324 B
10 (450, 0.2) discharge 10749 B
11 (483, 0.2) import 1228.0 B
12 (470, 0.2) discharge 1518.1 B
13 (389,0.2) import 1758.3 B
14 (365, 0.2) discharge 1983.5 B
15 (409, 0.2) import 2235.8 B
16 (593, 0.2) import 2599.5 B
17 (625, 0.2) discharge 2979.6 B
18 (625, 0.2) discharge 3170.7 B
19 (525, 0.2) import 3330.7 B
20 (525, 0.2) import 3490.6 B
21 (524, 0.2) discharge 3613.8 B
22 (522,0.2) import 3736.8 B
23 (533, 0.2) discharge 3864.0 B
24 (305, 0.2) discharge 3938.7 B
25 (200, 0.2) discharge 3988.4 B
26 (200, 0.2) discharge 40382 BB
27 (200, 0.2) discharge 4088.0 B
28 (202, 0.2) discharge 41384 B
29 (306, 0.2) import 42148 B
30 (524, 0.2) discharge 4345.5 B
31 (611, 0.2) discharge 4498.7 B
32 (568, 0.2) discharge 4680.7 B
33 (296, 0.2) import 47754 B
34 (334,0.2) discharge 4882.1 B
35 (393, 0.2) import 5007.6 B
36 (303, 0.2) discharge 5195.1 B
37 (390, 0.2) import 5436.2 B
38 (351,0.2) discharge 5653.3 B
39 (432,0.2) import 59199 B
40 (590, 0.2) discharge 6282.6 B

Figure 4 shows the relation between the photovoltaics in 9000 h.

Figure 5 shows the relation between load (orange) and photovoltaics (blue) in 24 h.

Figure 6 shows the relation between load (orange) and photovoltaics (blue) in 168 h.

Figure 7 shows the relation between load, photovoltaics, battery (charge and dis-
charge) and grid (in and out) in 9000 h.

Figure 8 shows the relation between episodes and reward.

5. Discussion and Conclusions

In this study we applied Q-learning for autonomous energy management. After
running the simulation, the results showed this proposed method could save 13.19% in the
cost, compared to conducting manual control for energy management. The results showed
the average cost of manual control was 1637.32 baht in 24 h; the average cost of control by
applying Q-learning was 1431.36 baht in 24 h.
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An autonomous energy management system for a residential microgrid for a hotel
or resort with multiple sources of flexibility was investigated in this study. The suggested
microgrid model took into account the demand flexibility that price-responsive loads
could provide. To achieve the effective management of the local resources, the suggested
autonomous energy management systems were coordinated between the ESS, the main
grid, the loads, and the price-responsive loads. The high dimensionality of the variables
in the microgrid components encouraged the employment of intelligent learning-based
methods in autonomous energy management systems, such as deep reinforcement learning
(RL) algorithms. The numerical findings revealed that varied levels of convergence were
attained by the deep RL methods. The findings were compared to a theoretical optimal
controller with perfect knowledge of the system’s variables and dynamics for the entire
day, as well as an electricity retailer who purchased electricity on the day-ahead market
and met the same demand without using a microgrid. The results suggested that the
proposed microgrid paradigm had a substantial advantage in terms of financial prosperity
and resilience in the face of adversity. Because of the high complexity and uncertainty of
the microgrid components, designing and implementing an effective autonomous energy
management system for future microgrids would be a difficult undertaking. Although deep
RL approaches have shown to be successful in simulations, they are far from ideal, and due
to data inefficiency, instability, and sluggish convergence, they confront implementation
challenges in real-world energy management systems [36-38]. As a consequence, the
researchers are now working on improving the performance of the deep RL algorithms and
expanding their applicability to real-world energy management problems [15,38,39].

From the study, we found that the result from proposed system of applying Q-learning
for autonomous energy management could reduce energy costs by 13.19% and applying re-
inforcement learning could reduce energy costs by 9.74%, compared to manual controlling.

In future work, the experimental results could show improvements in autonomous
energy management in several ways. Firstly, when the microgrid produces energy higher
than the demand, the system could control the energy storage system to charge or discharge
electricity to be sold to the main grid or neighboring microgrids. Secondly, deep RL could
be applied to energy planning for selling or buying at the real-time price in energy markets.
Finally, a study could be undertaken of the performance of deep Q-learning in order
to convert the knowledge of simulations to a real application for the microgrid in the
tourism industry.

Additionally, our proposed autonomous energy management could be applied to other
industries, for example businesses or factories which need an effective energy management.
Although these industries can produce energy, these still need to connect to the main grid.
Therefore, our proposed autonomous energy management can help to maintain microgrid
stability and also save energy.

Author Contributions: The research conceptualization was by P.S. and P.J.; research methodology
by PS. and PJ.; software and system implementation by P.S. and PJ.; validation by PJ.; formal
analysis by P.S. and PJ.; investigation, P.S. and PJ.; resources by P.S. and PJ.; data curation by PJ.;
writing—original draft preparation by P.S., PJ. and K.J.; writing—review and editing, P.S., PJ., PK.
and K.J. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Suan Dusit University under the Ministry of Higher Education,
Science, Research and Innovation, Thailand. The research project grant number 65-FF-003, Innovation
of Smart Tourism to Promote Tourism in Suphan Buri Province.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Energies 2022, 15, 1906 12 of 13

References

1. Jermsittiparsert, K.; Chankoson, T. Behavior of Tourism Industry under the Situation of Environmental Threats and Carbon
Emission: Time Series Analysis from Thailand. Int. ]. Energy Econ. Policy 2019, 6, 366-372. [CrossRef]

2. Suanpang, P; Sopha, C.; Jakjarus, C.; Leethong-in, P.; Tahanklae, P.; Panyavacharawongse, C.; Phopun, N.; Prasertsut, N.
Innovation for Human Capital Development in the Tourism and Hospitality Industry (Frist S-Curve) on the Eastern Economic Corridor
(EEE) (Chon Buri-Rayong-Chanthaburi-Trat) to Enrich International Standards and Prominence to High Value Services for Stimulate
Thailand to Be Word Class Destination and Support New Normal Paradigm; Suan Dusit University: Bangkok, Thailand, 2021.

3. Suanpang, P; Jamjuntr, P. A Chatbot Prototype by Deep Learning Supporting Tourism. Psychol. Educ. 2021, 4, 1902-1911.

4. Suanpang, P; Jamjuntr, P. A comparative study of deep learning methods for time-Series forecasting tourism business recovery
from the COVID 19 pandemic crisis. J. Manag. Inf. Decis. Sci. 2021, 24, 1-10.

5. United Nation Environment Programme. SDG 7. Available online: https://www.unep.org/explore-topics/sustainable-
development-goals/why-do-sustainable-development-goals-matter /goal-7 (accessed on 10 January 2022).

6. Suanpang, P; Pothipassa, P.; Netwong, T.; Kaewyong, P.; Niamsorn, C.; Chunhaparagu, T.; Donggitt, J.; Webb, P.; Rotprasoet,
P; Songma, S.; et al. Innovation of Smart Tourism to Promote Tourism in Suphan Buri Province; Suan Dusit University: Bangkok,
Thailand, 2022.

7.  Hirsch, A,; Parag, Y.; Guerrero, ]. Microgrids: A review of technologies, key drivers, and outstanding issues. Renew. Sustain.
Energy Rev. 2018, 9, 402-411. [CrossRef]

8.  Jonban, M.S. Autonomous energy management system with self-healing capabilities for green buildings (microgrids). J. Build.
Eng. 2020, 34, 01604. [CrossRef]

9.  Parpairia, K. Sustainability and Energy Use in Small Scale Greek Hotels: Energy Saving Strategies and Environmental Policies.
Procedia Environ. Sci. 2017, 38, 169-177. [CrossRef]

10. Calvillo, C.F; Sanchez-Miralles, A.; Villar, J. Energy management and planning in smart citie. Renew. Sustain. Energy Rev. 2016, 55,
273-287. [CrossRef]

11.  Arent, D.J.; Barrows, C.; Davis, S.; Grim, G.; Schaidle, J.; Kroposki, B.; Ruth, M.; Van Zandt, B. Integration of energy system. MRS
Bulletin 2022, 46, 1-14. [CrossRef]

12. Basit, A.; Sidhu, G.A.S.; Mahmood, A.; Gao, F. Efficient and Autonomous Energy Management Techniques for the Future Smart
Homes. IEEE Trans. Smart Grid 2017, 2, 917-926. [CrossRef]

13.  Ramamoorty, M.; Venkata, S.N.L.L. Microgrid Protection Systems. In Micro-Grids-Applications, Solutions, Case Studies, and
Demonstrations; IntechOpen: London, UK, 2019. [CrossRef]

14. Kumar, M. Social, Economic, and Environmental Impacts of Renewable Energy Resources. In Wind Solar Hybrid Renewable Energy
System; Qubeissi, M., El-kharouf, A., Soyhan, H., Eds.; IntechOpen: London, UK, 2020. [CrossRef]

15. Lavrik, A.; Zhukovskiy, Y.; Tevetkov, P. Optimizing the Size of Autonomous Hybrid Microgrids with Regard to Load Shifting.
Energies 2021, 14, 5059. [CrossRef]

16. Rakhshani, E.; Rouzbehi, K.; JSanchez, A.; Tobar, A.C.; Pouresmaeil, E. Integration of Large Scale PV-Based Generation into Power
Systems: A Survey. Energies 2019, 8, 1425. [CrossRef]

17.  Masloch, P; Masloch, G.; Kuzmirski, L.; Wojtaszek, H.; Miciuta, I. Autonomous Energy Regions as a Proposed Choice of Selecting
Selected EU Regions—Aspects of Their Creation and Management. Energies 2020, 13, 6444. [CrossRef]

18. Salvarli, M.; Salvarli, H. For Sustainable Development: Future Trends in Renewable Energy and Enabling Technologies. In
Renewable Energy: Resources, Challenges and Applications; Okedu, K., Tahour, A., Aissaou, A., Eds.; IntechOpen: London, UK, 2020.
[CrossRef]

19. Siemens. Microgrid. Available online: https://new.siemens.com/ (accessed on 29 January 2022).

20. Kapiki, S. Energy Management in Hospitality: A Study of the Thessaloniki Hotels. Econ. Organ. Future Enterp. 2010, 1, 78-97.

21. Raju, L.; Milton, R.S.; Morais, A.A. Autonomous Energy Management of a Micro-Grid using Multi Agent System. Indian J. Sci.
Technol. 2016, 9, 1-6. [CrossRef]

22. Boudoudoubh, S.; Maaroufi, M. Multi agent system solution to microgrid implementation. Sustain. Cities Soc. 2018, 39, 252-261.
[CrossRef]

23. Chung, N; Lee, H.; Ham, J.; Koo, C. Smart Tourism Cities” Competitiveness Index: A Conceptual Model. In Information and
Communication Technologies in Tourism 2021; Worndl, W., Koo, C., Stienmetz, J.L., Eds.; Springer: Cham, Switzerland, 2021.
[CrossRef]

24. Barrionuevo, ].M.; Berrone, P; Ricart, J.E. Smart Cities, Sustainable Progress. IESE Insight 2012, 14, 50-57. [CrossRef]

25. Harrison, C.; Eckman, B.; Hamilton, R.; Hartswick, P.; Kalagnanam, J.; Paraszczak, J.; Williams, P. Foundations for Smarter Cities.
IBM ]. Res. Dev. 2010, 54, 1-16. [CrossRef]

26. Li, Y,;Hu, C; Huang, C.; Duan, L. The concept of smart tourism in the context of tourism information services. Tour. Manag. 2017,
58, 293-300. [CrossRef]

27. Gretzel, U.; Sigala, M.; Xiang, Z.; Koo, C. Smart tourism: Foundations and developments. Electron. Mark. 2015, 25, 179-188.
[CrossRef]

28. Ma, H. The Construction Path and Mode of Public Tourism Information Service System Based on the Perspective of Smart City.
Complexity 2020, 2020, 1-11. [CrossRef]

29. Fan,].; Wang, Z.; Xie, Y.; Yang, Z. A Theoretical Analysis of Deep Q-Learning. PMLR 2020, 120, 486—489.


http://doi.org/10.32479/ijeep.8365
https://www.unep.org/explore-topics/sustainable-development-goals/why-do-sustainable-development-goals-matter/goal-7
https://www.unep.org/explore-topics/sustainable-development-goals/why-do-sustainable-development-goals-matter/goal-7
http://doi.org/10.1016/j.rser.2018.03.040
http://doi.org/10.1016/j.jobe.2020.101604
http://doi.org/10.1016/j.proenv.2017.03.099
http://doi.org/10.1016/j.rser.2015.10.133
http://doi.org/10.1557/s43577-021-00244-8
http://doi.org/10.1109/TSG.2015.2504560
http://doi.org/10.5772/intechopen.86431
http://doi.org/10.5772/intechopen.89494
http://doi.org/10.3390/en14165059
http://doi.org/10.3390/en12081425
http://doi.org/10.3390/en13236444
http://doi.org/10.5772/intechopen.91842
https://new.siemens.com/
http://doi.org/10.17485/ijst/2016/v9i13/89294
http://doi.org/10.1016/j.scs.2018.02.020
http://doi.org/10.1007/978-3-030-65785-7
http://doi.org/10.15581/002.ART-2152
http://doi.org/10.1147/JRD.2010.2048257
http://doi.org/10.1016/j.tourman.2016.03.014
http://doi.org/10.1007/s12525-015-0196-8
http://doi.org/10.1155/2020/8842061

Energies 2022, 15, 1906 13 of 13

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Ong, H.Y,; Chavez, K.; Hong, A. Distributed Deep Q-Learning. Available online: https:/ /arxiv.org/abs/1508.04186 (accessed on
28 January 2022).

James, S.; Johns, E. 3D Simulation for Robot Arm Control with Deep Q-Learning. Available online: https://arxiv.org/abs/1609.0
3759 (accessed on 25 January 2022).

Rahman, M.; Rashid, S.M.H.; Hossain, M.M. Implementation of Q learning and deep Q network for controlling a self balancing
robot model. Robot. Biomim. 2018, 5, 1-6. [CrossRef] [PubMed]

Qiao, J.; Wang, G.; Li, W.; Chen, M. An adaptive deep Q-learning strategy for handwritten digit recognition. Neural Netw. 2018,
107, 61-71. [CrossRef] [PubMed]

Zhu, J.; Song, Y.; Jiang, D.; Song, H. A New Deep-Q-Learning-Based Transmission Scheduling Mechanism for the Cognitive
Internet of Things. IEEE Internet Things . 2017, 5, 2375-2385. [CrossRef]

Bui, Y.-H.; Hussain, A.; Kim, H.-M. Double Deep $Q$ -Learning-Based Distributed Operation of Battery Energy Storage System
Considering Uncertainties. IEEE Trans. Smart Grid 2019, 11, 457-469. [CrossRef]

Bokolo, A.J. Smart City Data Architecture for Energy Prosumption in Municipalities: Concepts, Requirements, and Future
Directions. Int. ]. Green Energy 2020, 13, 827-845.

Nakabi, T.A.; Toivanen, P. Deep reinforcement learning for energy management in a microgrid with flexible demand. Sustain.
Energy Grids Netw. 2020, 25, 100413. [CrossRef]

Perera, A.; Kamalaruban, P. Applications of reinforcement learning in energy systems. Renew. Sustain. Energy Rev. 2020, 137,
110618. [CrossRef]

Malmedal, K.; Kroposki, B.; Sen, PK. Distributed Energy Resources and Renewable Energy in Distribution Systems: Protection
Considerations and Penetration Levels. In Proceedings of the 2008 IEEE Industry Applications Society Annual Meeting,
Edmonton, AB, Canada, 5-9 October 2008; pp. 1-8. [CrossRef]


https://arxiv.org/abs/1508.04186
https://arxiv.org/abs/1609.03759
https://arxiv.org/abs/1609.03759
http://doi.org/10.1186/s40638-018-0091-9
http://www.ncbi.nlm.nih.gov/pubmed/30613463
http://doi.org/10.1016/j.neunet.2018.02.010
http://www.ncbi.nlm.nih.gov/pubmed/29735249
http://doi.org/10.1109/JIOT.2017.2759728
http://doi.org/10.1109/TSG.2019.2924025
http://doi.org/10.1016/j.segan.2020.100413
http://doi.org/10.1016/j.rser.2020.110618
http://doi.org/10.1109/08ias.2008.148

	Introduction 
	Literature Review 
	Autonomous Energy Management 
	Smart City 
	Deep Q-Learning 

	Materials and Methods 
	Results 
	Discussion and Conclusions 
	References

