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Abstract: The earth-to-air heat exchanger (EAHE) is a well-founded and verified solution used in
modern buildings both for heating and cooling purposes around the world. However, there is a
lack of studies on operation of such devices cooperating with ventilation systems of buildings in
hourly time step. In this study, the 5R1C thermal network model of a building from EN ISO 13790
was coupled with the EAHE model from EN 16798-5-1 to calculate hourly outlet air temperature.
To improve the effectiveness of the considered solution, an additional algorithm was developed
to choose between the EAHE outlet and ambient air as the source of ventilation air. Simulations
were conducted in a spreadsheet for a low-energy single-family building. Ground temperature was
compared with measurements taken in the considered location. The application of the EAHE with
the proposed bypass resulted in a decrease in annual energy use for space heating and cooling from
14.82 GJ and 1.67 GJ to 12.74 GJ and 0.93 GJ, i.e., by 14% and 44%, respectively. Peak hourly heating
and cooling thermal power decreased from 2.73 kW and 3.06 kW to 2.21 kW and 2.34 kW. Introduction
of a bypass and switching between the EAHE and ambient air as the source of ventilation for the
building resulted in annual energy savings of 123 kWh.

Keywords: earth-to-air heat exchanger; EAHE; EAHX; outlet air temperature; ground temperature;
EN 16798-5; EN ISO 13790; 5R1C model; bypass

1. Introduction

Due to significant energy consumption by buildings [1,2], numerous efficiency-related
initiatives have been launched recently in European countries [3–5]. Regardless of the
building’s energy standard, an important element in its thermal balance is heat for heating
(in the cold season) or cooling (in the warm season) of ventilation air [6–9]. It is so since
ventilation provides outside fresh air while removing polluted indoor air and, for hygienic
reasons, its operation is necessary during the presence of people.

To reduce ventilation heat loss various techniques of heat recovery are used [10,11],
usually with cross-flow, counter-current or rotary heat exchangers [12,13]. These solutions,
however efficient, are rather difficult to apply in existing buildings that are considered for
thermal modernisation. This is especially true in residential buildings, where the amount
of available space rarely allows for installation of an air handling unit with necessary
equipment. What is more, in such objects the heat transmission loss through external
partitions is usually the most significant [7,14,15] and it can be efficiently minimised at
relatively low cost by additional insulation. This approach to the required energy standards
of a building can be achieved in a simple way without too much interference with the
structure of the building and without costly installation work which is burdensome for
the residents [16]. Hence, in practice, in the case of residential buildings, reduction of a
ventilation loss is not taken into account and typical modernisations are limited to the
installation of new windows with diffusers [17,18].

However, in recent years new solutions have been developed and investors remarkably
likely have introduced various methods to improve energy efficiency of buildings [19].
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Among others, an earth-to-air heat exchanger (EAHE, EAHX, also called ground-to-air
heat exchanger GAHE, GAHX, or horizontal air–ground heat exchanger) is gaining more
and more popularity because of its simple construction, competitive cost and energy effects
that can be utilised in all climatic zones around the world [20,21].

According to [22–24], the most important factors affecting the performance of EAHE
are climatic conditions and geographical location, soil type, pipe properties, burial depth
and airflow rate. Therefore, many researchers investigated design and optimisation of
ground exchangers using sophisticated computer tools. In general, CFD computer tools are
used when considering the impact of design aspects on the thermal operation of EAHE,
heat transfer between internal air and ground [25], pressure loss [26], burial depth [27] or
materials used [23].

Installation of EAHE requires, among other things, laborious excavation works [28]. In
addition, heat exchanger position correction is troublesome and time consuming. Therefore,
a proper design and a detailed study of the chosen solution should be performed when
assessing energy effects of the planned system.

Analysis of EAHE under predominantly hot and humid climatic conditions of southern
Italy was shown in [29]. Simulations were performed in ANSYS Fluent for the coldest
winter and hottest winter weeks. Investigations covered parametric performance analysis,
including effect of the pipe burial depth and the thermal conductivity of the ground on the
exchanger’s performance. This tool was also used for an optimisation of the parameters
affecting the temperature drop and heat transfer rate from EAHE [30], and a parametric
study (including material, turbulent plate quantity and pipe type) of EAHE for an air-to-
water heat pump [23].

In [31], authors presented annual performance of a 10 m long polyethylene pipe of
20 cm diameter, buried at 2 m and located in Stockholm, Sweden. They studied influence
of duct depth, diameter and length and air velocity. Three-dimensional simulations were
performed in Comsol Multiphysics at 24 h time step.

In some cases, simulations were supported by experiments. Amanowicz and Wo-
jtkowiak, in a series of publications, presented the results of their research on the application
of multipipe earth-to-air heat exchangers for ventilation of buildings in Polish climatic
conditions on the example of Poznań (central-west Poland). In [26] they analysed theoret-
ically (ANSYS Fluent, Canonsburg, PA, USA) and experimentally the non-uniformity of
airflow distribution among the parallel pipes of the exchanger. That phenomenon may
decrease annual heat gains in EAHEs when comparing the solution with uniform airflow
distribution up to 20–28% [32,33]. Comparing equivalent single-pipe and multipipe EAHEs
systems [34], in terms of annual energy gains and electricity consumption by fans, they
found that the multipipe exchanger can be replaced by a single-pipe system with the same
thermal performance and similar pressure loss when an appropriate pipe diameter is used.

Numerous studies confirmed that considerable energy savings in buildings can be
obtained when using that solution. This relates to space cooling [35,36], heating [37,38]
and both these modes, especially in the moderate European climate [39,40]. Therefore, the
second important direction of research is the assessment of the effectiveness of the solutions
applied in buildings in terms of energy, economic and environmental effects.

Baglivo et al. [41] simulated an air-cooled heat pump coupled with a horizontal air–
ground heat exchanger in a residential building located in the south of Italy in the city
of Brindisi. The hourly behaviour of EAHE was simulated in TRNSYS 17 software by
varying the length and the installation depth of the probes, the air flow rate and the ground
thermal properties. Then, outlet air temperature from EAHE and relevant climatic data
were used to calculate COP, EER, SCOP and SEER coefficients of the considered air-cooled
heat pump. Estimated electricity consumption by the heat pump decreased by 1115 kWh
from 16,700 kWh to 15,585 kWh without and with EAHE, respectively.

TRNSYS was used in [42] to model different options of a ventilation system with
EAHE in a residential building. The impact of the pipe numbers, air flow rate and the soil
thermal conductivity on the building thermal behaviour was simulated.
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An experimental study on EAHE consisting of three parallel PVC pipes of 72 m length
each and 150 mm inside diameter, buried at 2.2–3.2 m depth, connected to a residential
building in Marrakech (Morocco) was described in [43]. Dynamic simulations in TRNSYS
were in good agreement with experimental data and revealed that during the hottest day,
when the ambient temperature reached 44.6 ◦C, the outlet air temperature from EAHE was
25.1 ◦C (one pipe) and 26.3 ◦C (three pipes).

Warwick et al. [44] presented the operation of EAHE used for ventilation purposes in
a multifunction building in Manchester. Measurements were compared with results from
the commercial thermal simulation program IES-Virtual Environment for selected weeks
showing good agreement.

D’Agostino et al. [45] studied the thermal performance of two office buildings located
in two cities, Milan and Palermo, in north and south Italy, respectively. The HVAC system
of the buildings consisted of fan coils and primary air, with or without earth-to-air and
air-to-air heat exchangers. DesignBuilder (Stroud, UK) was used to model the buildings and
EnergyPlus to simulate an HVAC system and to perform the detailed thermal simulations.
The same set of tools was used in [46] to investigate an EAHE performance in an office
building located in Naples (south Italy). They considered varying diameter (in the range
0.2–0.5 m) and length (between 20 and 140 m) of the pipes buried at the depth between
2 m and 2.5 m. Authors concluded that smaller tube diameters enhance the heat transfer
and recommended a tube length between 80 and 100 m. Application of the presented
solution resulted in reduction of the pre-heating coil power estimated from 33% to 43% for
a tube length of 100 m. Further considerations presented in [47] included an HVAC system
composed of an Air Handling Unit (AHU), EAHE, and fan coil units, for an office building
located in four different cities (Rio de Janeiro, Dubai, Naples, Ottawa). For EAHE built
from a 100 m pipe, authors obtained the reduction of the power of the coils in AHU from
23.9% in Rio de Janeiro to 61.5% in Ottawa.

In [48] authors measured and simulated in DesignBuilder the thermal performance
of an nZEB residential building located in south Italy. Application of EAHE (70 m long
polypropylene pipes with the 200 mm diameter) resulted in simulated primary energy
savings of 15.3% and 32% for heating and cooling, respectively.

Research on the use of EAHEs was also conducted in Poland, mainly in the form of
measurements of existing systems [49,50]. However, in several cases simulations were also
performed for comparison or to assess design assumptions.

Trząski and Zawada [51] analysed the annual operation of EAHE of two 25 m long and
160 mm diameter PVC pipes connected to a ventilation system (300 m3/h) of a single-family
building. Simulations, based on a quasi-3D finite elements method (simulation tool was
not given), revealed that the average air temperature increase/decrease was greater for
larger heat exchanger length and burial depth. Larger pipe diameter resulted in a small
decrease in temperature difference. In general, simulated and measured annual ground
temperature was similar with average differences up to 0.60 K.

Łuczak et al. [52] analysed various pipe layout systems of EAHE connected to an air
conditioning system using the Rehau company tool for selection of ground heat exchangers.
Authors provided input data for calculation, but they did not give the location of the
considered object. They also presented graphs with air and ground temperatures, but
additional information on the calculation model was not given. Heat gain in EAHE during
the heating period was from 267.2 kWh to 270.5 kWh for the Tichelmann’s and meander
system, respectively.

Skotnicka-Siepsiak et al. [53–55] discussed results of experiments and simulations of
EAHE for a residential building in Olsztyn (northern Poland). Analyses performed on the
basis of measurements taken in October, November and December of 2016 were presented
in [54]. Authors focused on comparison of measured energy gains with values calculated
from two different theoretical models of soil temperature distribution. Results obtained
from theoretical models overestimated the energy gains from EAHE by 23%.
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In the next paper [55], operation of that system for warm months (May, June, July and
August) of 2016, 2017, and 2018 was presented. It was then compared with results based
on calculations of ground temperature and the outlet air temperature of EAHE modelled
following the PN-EN 16798-5 standard [56]. The model provided comparable results during
July and August, when stable outdoor conditions were observed. However, theoretical
calculations differed more significantly from measurements in May and June.

The presented study shows that there exist positive examples of EAHE performance in
Poland. On the other hand, there are commonly used sophisticated commercial simulation
tools in such studies. There is a lack of papers focusing on hourly EAHE performance
during the whole year applying simpler methods.

The second problem is that several authors [48,49,51,57] proposed the use of an air
bypass to directly supply outdoor air to a building when the outdoor air temperature better
fits indoor requirements than that supplied by EAHE. However, no further analyses on
energy effects resulting from the application of this solution were carried out.

Only in one paper [58] a simple thermal model was used to develop the Passive
Cooling Load Ratio (PCLR) method to obtain monthly cooling energy needs. The exemplary
office room located in Lisbon (Portugal) was equipped with an EAHE and a solar chimney.
The proposed method was then used to compute monthly energy savings by using the
EAHE system for the considered room in July. For EAHE built from a 15 m long single pipe
with a 300 mm diameter buried at a depth of 5 m with a ventilation rate of 200 m3/h, the
estimated cooling ventilation potential amounted to 450 MJ. No further analyses on EAHE
operation were conducted.

This article aims to show the possibility of using a simple model of thermal dynamics
of a building connected to an EAHE model to perform an annual analysis of the operation
of such a system in an hourly step without the use of commercial tools. The linking between
EAHE and the building thermal model is also necessary. In addition, a bypass operation
should be included in the calculation procedure of the hourly EAHE outlet air temperature
and energy for space heating and cooling of a considered building.

Hence, for further consideration the 5R1C thermal-electrical network model of a
building zone consisting of a single capacitance and five thermal resistances was chosen.
This model has been introduced by the EN ISO 13790 standard [59] for calculation of energy
use for space heating and cooling of buildings on an hourly basis. The main advantages
of the 5R1C model are simplicity, possibility of application in a spreadsheet not requiring
specialised commercial simulation tools, low computational requirements [60–62] and ease
of modification for various applications [63–65]. Its main disadvantage is simplification of
the whole building to a single zone, in which all partitions are lumped into single thermal
capacitance. Nevertheless, despite its simplicity it provides reliable results and can be
modified for various purposes [66,67].

The next section briefly presents the simulation model to compute ground temperature,
the design of the earth-to-air heat exchanger, and the 5R1C model used to calculate hourly
heating and cooling demand of a residential building, including operation of the EAHE
and the control algorithm to switch between EAHE and outdoor air under favourable
conditions. Then simulation results are presented and discussed and concluding remarks
are given.

2. Materials and Methods
2.1. Case Building

Calculations presented in this study were performed for a single-family residential
building (Figure 1a). It is located in Gorlice in south Poland (marked with a letter “G” in
Figure 1b) in the third zone, according to PN-EN 12831 [68]. It has a total heated floor area
of 132 m2, a total volume of 311 m3 and is inhabited by five people.
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Figure 1. (a) Model of the test building; (b) location of the building (I–V—climatic zones).

The building was designed to fulfil Polish guidelines for passive and low-energy
buildings introduced by the National Fund for Environmental Protection and Water Man-
agement, defining low-energy and passive buildings as having calculated annual usable en-
ergy for heating and ventilation EU = 40 kWh/m2 (also called NF40) and EU = 15 kWh/m2

(NF15), respectively [69–73]. External walls are from ceramic blocks insulated with 10 cm of
Styrofoam. The attic is insulated with 15 cm of mineral wool. The ground floor is insulated
with 20 cm layer of Styrofoam. Ventilation airflow was set at 150 m3/h on the basis of
Polish requirements [74,75].

2.2. Ground Temperature

The basis for the EAHE design is the ground temperature at the burial depth. It can be
estimated in several ways presented in recent decades by various authors. Carslaw and
Jaeger [76] derived the equation of ground temperature at the given depth as a solution
of the solution of the heat conduction equation in a semi-infinite medium under several
assumptions [77–79]:

• The ground is treated as a semi-infinite medium with constant thermal diffusivity;
• The ground is a homogenous and anisotropic medium with respect to thermal con-

ductivity;
• The ground surface temperature varies periodically over time;
• The model does not take into account the periodical occurrence of snow cover on the

surface of the ground;
• The effect of EAHE operation on the ground temperature distribution was neglected.

That model was also applied in the EN 16798-5-1 standard [56] which describes a
detailed calculation method for energy requirements of ventilation and air conditioning
systems using an hourly calculation step. Among other areas, the method also covers
ground pre-heating and pre-cooling. The mathematical model of ground temperature and
EAHE given in EN 16798-5-1 was used in this study.

According to EN 16798-5-1 hourly ground temperature is given by the equation:

Tgnd = Te;mn;an + (Te;max;m − Te;mn;an)× e−ξ · cos
(

2π
tan

8760
− ξ− ft

)
, (1)

with:

ξ = z ·
√

π · $gnd · cgnd

λgnd · 8760 · 3600
, (2)

and:

ft = π

(
2 · tan;min

8760
+ 1
)

. (3)
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2.3. Earth-to-Air Heat Exchanger

The design aspects of EAHEs have been presented recently in numerous pa-
pers [31,37,39,44,80–82]. Based on them, as well as on the works showing cases from
Poland, there were assumed parameters of EAHE, given in Table 1. Assuming pipe wall
thickness of 8.8 mm the calculated area of the inner surface of the ground heat exchanger is
As = 28.65 m2.

Table 1. Parameters of the earth-to-air heat exchanger.

Parameter Symbol Value Unit

Duct length L 50 m
Air velocity in the duct v 1.60 m/s

Outer pipe diameter do 0.200 m
Inner pipe diameter di 0.182 m

Average burial depth z 2.0 m
Thermal conductivity of the duct λdu 0.27 W/m·K

Density of the ground ρgnd 1800 kg/m3

Specific heat of the ground cgnd 1300 J/kg·K
Thermal conductivity of the ground λgnd 1.50 W/m·K

Having known ground temperature and basic parameters of EAHE the difference
between the EAHE inlet and outlet air temperature can be obtained:

∆Tsup =
(

Tgnd − Te

)
·
[

1− e
−( Udu ·As

qv;sup ·$a ·ca )
]

. (4)

The overall heat transfer coefficient of EAHE is given by:

Udu =

(
1
hi

+
di

2λdu
· ln do

di

)−1
. (5)

The inside surface heat transfer coefficient is calculated from:

hi =

[
4.13 + 0.23

Tm

100
− 0.0077

(
Tmd
100

)2
]

v0.75

d0.25
i

. (6)

To avoid iterative computations when applying Equation (6) the standard indicates
the possibility to set Tmd = Te.

Finally, heating and cooling capacity of the heat exchanger can be obtained from the
relationship [83]:

φEAHE = qv;sup · $a · ca · ∆Tsup = v · πd2
i

4
· $a · ca · ∆Tsup. (7)

It can be also interpreted as additional heat flux added to air passing the exchanger.

2.4. The 5R1C Model

The thermal network model of a building zone, introduced by the EN ISO 13790 stan-
dard, consists of five resistors and one capacitor (Figure 2a).

The building shell is divided into two parts. Thermally “light” building elements,
such as doors, windows, curtain walls and glazed walls, are described by the Htr,w thermal
transmission coefficient. Thermally “heavy” opaque building elements, such as walls or
ceilings, are described by the Htr,op thermal transmission coefficient. It is split into the
external (Htr,em) and the internal (Htr,ms) parts. These parts are both connected to the
thermal capacity (Cm), representing the thermal mass of the building [84]. On the other
side, Htr,op and Htr,em coefficients are connected with the external temperature (Te). The
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heat transfer by ventilation (Hve) is connected with the supply air temperature (Tsup) and
the internal air temperature (Ti). The latter one and the central node (Ts) are linked through
the coupling conductance Htr,is.
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The heat flow rates due to internal heat sources (ϕint) and due to solar heat sources
(ϕsol) are split into three parts: ϕia, ϕst, and ϕm, connected to the indoor air, the central
node, and the thermal mass temperature nodes, respectively. The heating or cooling power
(ϕHC) is supplied to or extracted from the indoor air node.

Computations are performed in hourly time step. In each time step there is computed
sensible heating or cooling power (ϕHC) required to maintain a certain set-point indoor
air temperature: Tint,H,set or Tint,C,set for heating or cooling, respectively. There is also the
possibility to control the required operative indoor air temperature instead.

To maintain required indoor air (or operative) temperature within a set range there is
a need to supply proper heating or cooling power, ϕHC. EN ISO 13790 provides a suitable
calculation procedure to obtain hourly values of ϕHC depending on the current conditions.
Five situations, numbered from 1 to 5 in Figure 2b, may take place at the given time step
during calculations:

(1) The considered building (or zone) requires heating and the calculated hourly heating
power (ϕH) is greater than the maximum available heating power, ϕH,max. Hence, the
heating power ϕH = ϕH,max and the resulting internal air temperature is lower than
the heating set-point Ti,set,H.

(2) The building requires heating and the heating power is sufficient (ϕH < ϕH,max). The
calculated internal air temperature is equal to Ti = Ti,set,H.

(3) Neither heating nor cooling is required. The internal air temperature is calculated.
(4) The building requires cooling and the cooling power is sufficient (ϕC < ϕC,max). The

calculated internal air temperature is equal to Ti = Ti,set,C.
(5) The building requires cooling and the calculated cooling power (ϕC) is greater than

the maximum available heating power,ϕC,max. Hence, the cooling powerϕC =ϕC,max
and the resulting internal air temperature is lower than the heating set-point Ti,set,C.

That procedure also has been presented recently in detail in various applications by
several authors [85,86]. It can be easily implemented in a spreadsheet [87–92], which makes
it very flexible.

In the studied case the supply air temperature is the outlet air temperature from the
heat exchanger. Hence:

Tsup = Te + ∆Tsup. (8)
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Ventilation heat transfer coefficient was computed from the relationship:

Hve = $a · ca · qv;sup. (9)

Applying the above to the circuit diagram from Figure 2a the ventilation heat flux can
be obtained:

φve = Hve ·
(
Tsup − Ti

)
. (10)

Equation (10) shows that, depending on the mutual relationship between Tsup and
Ti and on the season of the year, there may occur favourable and unwanted phenomena
related to the heat exchange between the surroundings and the building zone through
ventilation. Such an analysis performed with regard to the model presented in Figure 2a is
based on the heat flux balance in the internal air node “i”. Hence, heat flux has a positive
sign when heat is supplied into that node and negative when heat is extracted.

When Tsup > Ti (and ϕve > 0) then ventilation air supplied to the building warms up
its interior. During the cooling season, when and ϕHC < 0, it is a negative phenomenon
resulting in increased cooling demand. However, when heating is needed, and ϕHC > 0,
it reduces heating demand. The opposite takes place when Tsup < Ti. Then, ventilation
air supplied to the building cools it down (ϕve < 0), reducing cooling needs during the
cooling period and increasing heating demand during the heating period. As one can
see, the sum of the heat fluxes ϕHC + ϕve provides information about their interaction
and may be used as an indicator of ventilation influence on hourly thermal demand of a
heating/cooling system.

In the considered example of EAHE supplying ventilation air to the building, varying
outdoor and indoor conditions may create situations when the direct supply of outdoor air
at Te temperature will be more beneficial than the air delivered from the heat exchanger
and vice versa. For these reasons it was recommended to use an additional bypass to switch
intake of ventilation air between EAHE and outdoor air [51]. Then, Tsup can be changed
into Te when needed:

Tsup = Te. (11)

To include this possibility into the calculation procedure presented above an additional
calculation algorithm was developed (Figure 3). However, some explanation is given first.
Thermal power, ϕHC, supplied to the indoor air node, Ti, at current n-th time step depends
on outdoor and indoor conditions. Among them, outdoor air and supply air temperatures
are used to obtain required ϕHC. On the other hand, to select an appropriate ventilation
air source (EAHE at Tsup or outdoor air at Te) at the same time step there should be
known indoor thermal conditions given by Ti determining if heating or cooling is needed
(Figure 2b). Hence, to avoid circular references in spreadsheet calculations there was
assumed that the need of heating or cooling is checked in the previous (n-1) time step and
then the selection procedure is to be continued (Figure 3). This simplification should not
introduce large errors, because the temperature inside the building varies within a limited,
fairly narrow range.

When neither heating nor cooling is needed and external air temperature is within the
range between Ti,set,H and Ti,set,C then outdoor temperature is chosen. That choice is based
on the fact that EAHE requires fan operation, which generates additional costs. Of course,
that algorithm can be modified following various assumptions.

This model is intended in calculations of sensible energy use for space heating and
cooling. Therefore, it can be assumed that an all-air system provides both heating and
cooling in the considered building. Humidification and dehumidification of air is not
considered here. Hence, condensation in the buried pipe was not analysed.
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3. Results and Discussion
3.1. Simulation Assumptions
3.1.1. Selection of a Reference Weather Station

To perform hourly simulations for the considered location the relevant meteorological
hourly data are needed. As there are no such data for Gorlice city, the two closest meteoro-
logical stations were taken into account: Nowy Sącz (49◦37′ N and 20◦42′ E) and Krosno
(49◦43′ N and 21◦46′ E). They are shown in Figure 1b. The first one is located 40 km west of
Gorlice and the second one is located 50 km east of the considered city.

To choose one of them, and analysis was conducted at first. For comparison, mea-
surements taken in the year 2020 in Gorlice were used. They were performed using three
DS18B20 temperature sensors located about 1 m from an external wall of a residential
building. The first one, used for external air temperature measurement, was placed in a
radiation shield to reduce the impact of solar radiation. The second sensor was placed on a
ground surface. The third one was buried in the ground at a depth of 1 m. The data were
saved in 10 min intervals during the whole 2020 year.

First, outdoor air temperature for both meteorological stations from TMYs (TMY Nowy
Sącz and TMY Krosno) and mean monthly air temperature measured in meteorological
stations in 2020 (Nowy Sącz 2020 and Krosno 2020) and finally in the test location in Gorlice
(Figure 4) were compared. External air temperature was taken from typical meteorological
years freely available for 61 weather stations in Poland in hourly and monthly format [93,94].

Good agreement was noticed when comparing data from the same year, 2020. In the
case of TMYs, better fitting determined by the mean squared error (MSE) was observed
for Nowy Sącz (2.77 K2) against 4.13 K2 for Krosno. Root mean square error (RMSE) was
1.66 K and 2.03 K in the same order. The same tendency followed for temperature in 2020:
0.46 K2 and 0.77 K2 for MSE and 0.68 K and 0.87 K for RMSE in Nowy Sącz and Krosno,
respectively. Hence, for further simulations TMY for the Nowy Sącz station was chosen.
Annual variation of air temperature and global solar irradiance in this station in hourly
time step is presented in Figure 5.
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3.1.2. Ground Temperature

In the next step the model of ground temperature of EN 16798-5-1 given by Equation (1)
was evaluated. Theoretical results provided by that model for the depth of 1 m were
compared with measurements performed in Gorlice. Moist clay was assumed in the
considerations. For this type of soil, according to EN 16798-5-1, λgnd = 1.45 W/(m·K),

ρgnd = 1800 kg/m3, and cgnd = 1340 J/(kg·K). Results, in the form of monthly averaged
values, are presented in Figure 6a. Tgnd,measured is the ground temperature from measure-
ments described in the previous section. Tgnd is the ground temperature calculated from
Equation (1) on the basis of monthly air temperature measured in 2020. Significant differ-
ences in winter months can be noticed. Hence, in the next step instead of outdoor air tem-
perature, measured ground surface temperature was used. It was higher because of snow
cover presence during that period. The resulting ground temperature, Tgnd,corr, was little
higher than in the previous case, but still visible discrepancies occurred. Finally, for com-
parative purposes, measured outdoor air temperature and moist soil (λgnd = 1.50 W/(m·K),
ρgnd = 1400 kg/m3, cgnd = 1400 J/(kg·K)) was used.

As results are comparable to those from the first case it was assumed that resulting
differences between the model and measurements may arise from simplifications in the
model [24,77,79,95–97]. In addition, the influence of the building’s neighbourhood may be
taken into account [98]. As this problem is not the issue of the paper and good agreement
was obtained for warm months, the model of EN 16798-5 was used in further calculations.

As usually burial depths presented in the literature varied between 1.1 m to 2.5 m, its
impact on ground temperature (Figure 6b) was also simulated using monthly air tempera-
ture from TMY. Taking into account previous Polish studies the depth of 2.0 m was chosen
for further considerations. It offers better thermal conditions for the analysed application
than the two other depths: higher ground temperatures during cold months and lower
during warm periods.
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3.1.3. Thermal Model of the Building

For simulation purposes, the values of thermal conductance and single capacitance
of the test building model from Figure 2 and given in Table 2 were calculated using the
data of the materials obtained from manufacturers and from EN ISO 10456 [99]. Thermal
resistances were calculated following ISO 6946 [100]. Thermal bridges were neglected.
Thermal capacities were calculated according to the detailed method of ISO 13786 [101] for
a calculation period of 24 h. Solar absorptance of the roof and wall surfaces was α = 0.8
and α = 0.6, respectively.

Table 2. Thermal network model elements of the building.

Element Value Unit

Htr,w 8.80 W/K
Htr,is 1061.98 W/K
Htr,ms 3344.25 W/K
Htr,em 76.90 W/K
Hve 50.00 W/K
Cm 23.56 MJ/K

According to EN ISO 13790 indications the volumetric heat capacity of air was assumed
to be constant at ρaca = 1200 J/m3K, as in other building simulations [84,102,103]. From
this (see Equation (9)) Hve = 50.0 W/K.

Internal gains were assumed to be constant (300 W) during the presence of occupants
in the building, i.e., on working days except the period from 8:00 to 16:00, during weekends
except the period from 8:00 to 16:00 from May to September, and 24 h/day during remaining
weekends from October to April. Ventilation was switched on with constant airflow
qv;sup = 150 m3/h only during the presence of occupants in the building. Three cases were
simulated, as follows:

1. No EAHE, Tsup = Te (only natural ventilation);
2. EAHE working without a bypass;
3. EAHE working with an additional bypass.

3.2. Simulation Results

Annual effectiveness of the analysed heat exchanger during its continuous operation
during a year can be characterised by various indicators. The first of them is the air
temperature rise, ∆Tsup, presented in Figure 7.

This quantity characterises the operation mode of the EAHE. If ∆Tsup < 0 then inlet
outdoor air passing the exchanger is cooled, which takes place in summer months. Other-
wise, air is warmed up, and it can be observed during the first half of January when low air
temperature is noticed (Figure 5a).
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∆Tsup varied from −18.7 ◦C on 27 April at 12:00 to 17.6 ◦C on 19 October at 6:00.
Monthly averaged ∆Tsup was from 0.27 ◦C in February to 4.98 ◦C in November and from
−0.72 ◦C in August to −3.96 ◦C in May.

Congedo et al. [29] simulated (ANSYS Fluent) an air–ground heat exchanger built
from a 5 m long single polyethylene (PEX) and polypropylene (PP) pipe with an air flow
rate of 150 m3/h, located in the predominantly hot and humid climate of southern Italy.
For the coldest winter week, the pre-heating effect was almost unnoticeable. In summer
the average temperature gain was between 2 ◦C and 3 ◦C.

In the analysed case the total monthly heat gain was from 9.18 kWh in February to
179.18 kWh in November and from −26.93 kWh in August to −171.97 kWh in July. These
values, however, do not provide full information as they were obtained summing heating
and cooling heat fluxes because of bidirectional hourly heat flows occurring during longer
periods, such as weeks or months. More reliable is hourly heating and cooling capacity of
the exchanger, ϕEAHE, which varied from −933.7 W to 880.8 W on the same days as ∆Tsup.
According to Equation (7) it followed changes of ∆Tsup.

Skotnicka et al. [53] presented data from a laboratory experiment on an air-to-soil
heat exchanger performance conducted from 1 July to 30 September 2016 in Olsztyn (north
Poland). The exchanger consisted of 41 m long PP (polypropylene) pipes with 0.2 m
diameter buried at depths from 2.1 m to 2.28 m. Empirical data were compared with the
results of analytical calculations based on TMY for Olsztyn.

The maximum hourly heat gain was 0.29 kWh and 0.73 kWh in the experiment
and in theoretical calculations, respectively. The maximum measured and calculated
hourly cooling load was −0.16 kWh and −0.65 kWh, respectively. Monthly heat gain
from measurements amounted to 37.24 kWh, 62.42 kWh and 82.41 kWh in July, August
and September, respectively. The same from calculations was 44.00 kWh, 58.27 kWh and
95.22 kWh. More significant discrepancies were noticed in the case of cooling. Measured
monthly cooling energy was −6.42 kWh, −4.45 kWh and −1.35 kWh in the consecutive
months. Calculations resulted in −57.58 kWh, −79.92 kWh and −88.32 kWh. Due to the
authors’ low measured values, cooling energy could result from the permanent (24 h/day)
operation of fans in spring, which rose the ground temperature.

Recently [103] there have been presented results of a three-year monitoring campaign
of the EAHE performance in the same location. Various ventilation strategies in a modern
single-storey residential building, with a usable floor area of 115 m2, were analysed. The
building was equipped with a gravity ventilation system. Design ventilation airflow was
established at 150 m3/h, i.e., 0.5 air changes per hour. Calculations performed on the basis
of measurements showed that the exchanger provided hourly 257.6 W and 124.7 W of
heating and cooling power, respectively. Because of climatic conditions the system operated
mainly in the heating mode. Annual ventilation heat loss was reduced by about 45%.

Correlation of the working mode of EAHE with regard to outdoor conditions is
presented in Figure 8. Inlet air was cooled for outdoor temperatures higher than about
1 ◦C. For better clarity, hourly results are presented for warm (IV–IX) and cold (X–III)
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months with green and brown colours, respectively. As expected, pre-heating (∆Tsup > 0)
dominated in colder and pre-cooling with ∆Tsup < 0 in warmer months. However, one
should remember that this is only an illustration of a possible situation. Utilisation of outlet
air depends only on the user’s requirements and the HVAC system’s setup, as described in
Section 2.
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Figure 8. The air temperature difference in EAHE in relation to ambient air temperature.

Calculated hourly ground temperature was from 0.96 ◦C (10–13 February) to 15.94 ◦C
(12–15 August). Its variation was followed by the next important parameter describing
EAHE operation, which is outlet air temperature (Tsup), given in Figure 9. It was calculated
using weather data from TMY in the considered location and the calculation procedure
described in Section 2. Monthly averaged Tsup was from 0.77 ◦C in February to 19.65 ◦C in
July. Hourly Tsup varied from 0.94 ◦C on 10 February at 6:00 to 15.86 ◦C on 15 August at
14:00 and it differed from Tgnd up to ±0.2 ◦C.
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Figure 9. Outlet air temperature from the earth-to-air heat exchanger.

Annual sensible heating and cooling demand of the building in the first case, without
the EAHE, was 14.82 GJ and 1.67 GJ, respectively. Hence, the total unit energy use for space
heating and cooling was EA = 34.7 kWh/m2.

Monthly demand varied from 0.11 GJ in September to 3.18 GJ in December and from
0.07 GJ in April to 0.70 GJ in July, for heating and cooling, respectively. Maximum hourly
thermal power was 2.73 kW on 8 January at 7:00 and 3.06 kW on 21 July at 15:00 in the
same order (Figure 10).

The heating system was working for 4010 h during the year (Figure 11a). The domi-
nating power requirement was up to 1000 W (1841 h). For 432 h heating power was greater
than 2000 W. Cooling worked for 1404 h (Figure 11b), from which for 1030 h was with a
load lower than 500 W.

As can be seen in Figure 12, in the analysed case natural ventilation resulted in
increased heating demand during the cold season when the outdoor air temperature was
low (Figure 5a).
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Figure 12. Impact of ventilation heat flux on the heating and cooling power in case 1.

Negative peak values in that period appeared because of assumed intermittent opera-
tion of the ventilation system. When it was turned off, the building structure was at such a
temperature that it was not necessary to heat the building up for several hours until the
ventilation was turned on again. In the first hour after turning on the ventilation again, a
negative ventilation heat flux appeared. In the next hour it was necessary to supply heat
for heating and the sum ϕHC + ϕve changed its sign. During the rest of the year, in spring
and summer, the high outdoor air temperature resulted in overheating of the building and
increased cooling demand.

In the second analysed case, when EAHX was used instead of natural ventilation,
monthly demand varied from 0.06 GJ in September to 2.75 GJ in December and from 0.01 GJ
in April to 0.44 GJ in July, for heating and cooling, respectively. Compared to the previous
case, annual heating and cooling energy decreased by 1.66 GJ to 13.16 GJ and by 0.72 GJ to
0.95 GJ, i.e., by 11.2% and 43.2%, respectively. Consequently, the EA indicator was lower
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by 5.0 kWh/m2 and amounted to 29.7 kWh/m2 (by 21.2%). In addition, the hourly peak
power decreased by 0.52 kW to 2.21 kW on 2 February at 7:00 and by 0.75 kW to 2.31 kW
on 21 June at 15:00 in the same order (Figure 13).
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Figure 13. Hourly heating and cooling power in case 2.

Heating power was supplied to the building for 4092 h during the year (Figure 14a).
The dominating power requirement was up to 1000 W (2085 h). For 62 h heating power
was greater than 2000 W. Cooling worked for 1250 h (Figure 14b), from which for 1043 h
was with a load lower than 500 W.
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In the study [31] for Stockholm in Sweden authors simulated EAHE built from 10 m
long polyethylene pipe of 20 cm diameter, buried at 2 m. The estimated annual energy
saving for the base case, with a ventilation air flow rate of 60 dm3/s, amounted to 525 kWh
and 300 kWh for the heating and cooling season, respectively. It was 5% for heating and
50% for cooling compared to if no EAHE was used.

The last examined was the third case with EAHE and additional bypass controlled
following the developed control algorithm presented in Figure 3. As noticed, to avoid
circular references, supply air temperature at the n-th time step was chosen from thermal
conditions (ϕHC) at the previous n-1 time step.

This time, the differences in relation to the previous case were not significant. However,
several positive effects can be seen. Operation of the bypass resulted in switching between
two sources of ventilation air entering the building of different values (Te and Tsup),
presented in Figure 15. It was especially visible during the heating period.

Monthly demand varied from 0.06 GJ in September to 2.69 GJ in December and from
0.01 GJ in April to 0.45 GJ in July, for heating and cooling, respectively. Compared to the
previous case, annual heating decreased by 0.44 GJ to 12.76 GJ. Annual cooling increased
slightly by 0.01 GJ to 0.91 GJ. Consequently, the EA indicator was lower by 0.8 kWh/m2

and amounted to 28.9 kWh/m2. The hourly peak power remained the same.
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The heating system worked for 4053 h which is 34 h less (Figure 16a) than in the second
case. The dominating power requirement was up to 1000 W (2137 h). For 62 h heating
power was greater than 2000 W. Cooling worked for 1270 h, i.e., 14 h more (Figure 16b),
from which for 1053 h (15 h more) was with a load below 500 W.
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In the same case, but using iterative calculations, the annual heating and cooling
demand decreased by 0.06 GJ and 0.06 GJ to 12.74 GJ and 0.93 GJ, respectively. The EA
indicator was 25.8 kWh/m2. Hourly peak power, both for heating and cooling, remained
the same, but the dynamics of the bypass control was improved, and several switching
cycles were avoided. Especially in hot months under free float conditions, when at a
certain hour (say, n-th) cooling was not required on the basis of the thermal condition
at the previous hour (n-1), but simultaneously the system supplied ventilation air at Te
higher than the outlet from EAHE, creating the need for cooling at the n-th hour. Hence,
the number of peaks observed in Figure 17 decreased in reference to Figure 15.

The thermal effect was not very significant (in Table 3 assigned as “Case 3 i”), but it
indicated that the problem mentioned by other authors [46,48] is of practical importance
and worthy of further consideration. It also should be noted here that 123 kWh of savings
between case two and case three i (iterative calculations) are 3.3% of the total heating and
cooling consumption in case two.

Table 3. Calculated annual energy use for space heating and cooling in the studied cases.

Parameter Unit Case 1 Case 2 Case 3 Case 3 i

QH kWh 4116 3656 3545 3538
QC kWh 463 263 270 259

QHC kWh 4578 3919 3815 3796
∆QHC % - 14.4 16.7 17.1
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Total percentage annual heating and cooling energy savings, ∆QHC, given in Table 3,
were calculated in relation to case one.

The obtained savings (up to 17%) are not significant when compared to other European
studies. This may be due to various reasons. The first one is the type of the considered
object. As a low-energy building was the base case, further improvements resulted in a
lower level of savings than for traditional, non-modernised buildings.

The second factor is linked with climatic conditions in the analysed locations. For
predominantly hot and humid climatic conditions of southern Italy [29], authors concluded
that in the case of a 100 m2 building, with average insulation, from about 1.000 kWh/year
for space heating and cooling 50% can be covered by the system of EAHE with three
20 m long pipes. Similar outcomes were given in [45], where authors stated that EAHE is
preferable in hot or mild climates. The combination of EAHE and air-to-air heat exchanger
(AAHE) resulted in savings of 75% and 60% in Milan and Palermo, respectively. For Spanish
conditions [104], authors estimated, using the TRNSYS tool, annual energy savings at 10.5%
and 25.1% for heating and cooling, respectively. On the other hand, based on measurements
of an EAHE located in north Poland it was reported in [55] that for a low-energy residential
building, there were given annual savings of around 20% and 3%.

As stated in Section 2, the effect of EAHE operation on the ground temperature
distribution was neglected, but periodical operation of EAHE assumed in the paper reduced
this impact to a certain limit.

The presented control algorithm is an attempt to introduce an EAHE bypass control in
hourly dynamic modelling of buildings using the very well-known and well-funded 5R1C
thermal network model of a building zone.

4. Conclusions

In this study, annual operation of the earth-to-air heat exchanger (EAHE) supplying
ventilation air to the low-energy residential building, according to Polish regulations, was
studied. To include hourly variation of the building use and climatic conditions the 5R1C
thermal network model of a building zone from the EN ISO 13790 standard was used. Cal-
culations of the EAHE performance were performed following the EN 16798-5-1 standard.
The developed algorithm to choose the source of ventilation air supplied to the building
between the EAHE output and outdoor air showed its applicability. All simulations were
performed in a spreadsheet not requiring the use of commercial, sophisticated tools.

Application of EAHE in Polish conditions was confirmed. In the first case, where
only natural ventilation was assumed, annual energy use for space heating and cooling
was 16.48 GJ. Application of EAHE decreased it by 14.4% to 14.11 GJ. In the third case,
where the developed control algorithm to switch between EAHE and natural ventilation
was applied, total consumption decreased to 13.73 GJ, i.e., by 16.7% when compared to the
first case. Application of circular references to the third case in the calculation procedure
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revealed that several switching cycles between EAHE and natural ventilation were avoided
and further lowering of heating and cooling needs to 13.67 GJ were reached. In this value,
the proposed bypass allowed to save 443 MJ, which was 3.3% of the total consumption
when only EAHE operation was considered.

Another important fact is that peak hourly heating and cooling thermal power de-
creased from 2.73 kW and 3.06 kW to 2.21 kW and 2.34 kW. On the other hand, annual
operation time of heating and cooling changed from 4010 h and 1404 h to 4063 h and 1228 h,
respectively, which mean the method offered more stability in operation.

Of course, it should be remembered that several modelling assumptions were made.
The effect of EAHE operation on the ground temperature distribution was neglected and
energy consumption by fans was not taken into account. Therefore, these and other factors
may be taken into consideration in further investigations.
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Abbreviations

As inner surface of the ground heat exchanger, m2

Cm thermal capacity of the building, J/K
EA unit heating and cooling energy use per unit area of a building, kWh/m2

EU annual usable energy for heating and ventilation, kWh/m2

Htr,em external part of the Htr,op thermal transmission coefficient, W/K
Htr,is coupling conductance, W/K
Htr,ms internal part of the Htr,op thermal transmission coefficient, W/K
Htr,op thermal transmission coefficient for thermally heavy envelope elements, W/K
Htr,w thermal transmission coefficient for thermally light envelope elements, W/K
Hve thermal transmission coefficient by ventilation air, W/K
L length of the duct, m
QC annual energy use for space cooling, kWh
QH annual energy use for space heating, kWh
QHC annual energy use for space heating and cooling, kWh
∆QHC percentage savings in annual energy use for space heating and cooling, %
Te external (outdoor) air temperature, ◦C
Te;mn;an mean annual temperature of outdoor air, ◦C
Te;max;m maximum mean monthly temperature of outdoor air, ◦C
Tgnd hourly ground temperature, ◦C
Ti internal (indoor) air temperature, ◦C
Ti,C,set set-point indoor air temperature for cooling, ◦C
Ti,H,set set-point indoor air temperature for heating, ◦C
Tm thermal mass node temperature, ◦C
Tmd average air temperature in the duct, ◦C
Ts central node temperature, ◦C
Tsup supply air temperature, ◦C
ca specific heat of air at constant pressure, J/(kg·K)
cgnd specific heat of the ground, J/(kg·K)
di inner diameter of the duct, m
do outer diameter of the duct, m
ft time shift factor, —
hi inside surface heat transfer coefficient, W/m2K
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qv;sup volumetric airflow rate, m3/s
tan annual hour, with tan = 0 h at the beginning of the year, h
tan;min the time of the year when the monthly mean outdoor temperature is minimal, h
v air velocity in the duct, m/s
z burial depth of the duct, m
λgnd thermal conductivity of the ground, W/(m·K)
λdu thermal conductivity of the duct, W/(m·K)
ξ damping factor, —
ρa air density, kg/m3

ρgnd ground density, kg/m3

ϕint heat flow rate due to internal heat sources, W
ϕsol heat flow rate due to solar heat sources, W
ϕia heat flow rate to internal air node, W
ϕst heat flow rate to central node, W
ϕm heat flow rate to mass node, W
ϕve heat flow rate by ventilation, W
ϕEAHE heat flow rate from EAHE, W
ϕC cooling power supplied to or extracted from the indoor air node, W
ϕH heating power supplied to or extracted from the indoor air node, W
ϕHC heating or cooling power supplied to or extracted from the indoor air node, W
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