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Abstract: In order to manage electric vehicles (EVs) connected to charging grids, this paper presents
an orderly charging approach based on the EVs’ optimal time-of-use pricing (OTOUP) demand
response. Firstly, the Monte Carlo approach is employed to anticipate charging power by developing
a probability distribution model of the charging behavior of EVs. Secondly, a scientific classification
of the load period is performed using the fuzzy clustering approach. Then, a matrix of demand price
elasticity is developed to measure the link between EV charging demand and charging price. Finally,
the charging scheme is optimized by an adaptive genetic algorithm from the distribution network
and EV user viewpoints. This paper describes how to implement the method presented in this paper
in an IEEE-33-bus distribution network. The simulation results reveal that, when compared to fixed
price and common time-of-use pricing (CTOUP), the OTOUP charging strategy bears a stronger
impact on reducing peak–valley disparities, boosting operating voltage, and decreasing charging cost.
Additionally, this paper studies the effect of varied degrees of responsiveness on charging strategies
for EVs. The data imply that increased responsiveness enhances the likelihood of new load peak, and
that additional countermeasures are required.

Keywords: electric vehicle; demand response; fuzzy clustering; demand price elasticity; adaptive
genetic algorithm

1. Introduction
1.1. Background and Motivation

Climate change, environmental pollution, and energy depletion have increasingly
grown as global concerns in recent years. As a result, it is critical for us to discover feasible
solutions to these ongoing problems. Transportation accounts for a sizable portion of energy
consumption, and electrification of transportation will prove critical in reducing reliance
on fossil fuels and carbon emissions. Since EVs exhibit zero-emission and high-energy
efficiency characteristics that conventional gasoline vehicles do not, they are widely recog-
nized as an effective means of achieving green and sustainable transportation development.
Governments worldwide have enacted corresponding policies, such as economic subsidies
and tax exemptions, to encourage the promotion and development of EVs. For instance, the
Chinese government recently released China’s Energy-Saving and New Energy Automobile
Industry Development Plan (2012–2020) with the goal of increasing EV penetration [1].
In China, EV adoption is accelerating due to strong government support, evolving charging
technology, and improved charging infrastructure. By the end of 2019, China had surpassed
3 million EVs, rendering it the world’s largest EV market [2]. According to the Ministry of
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Industry and Information Technology’s Development Strategy research report, China will
have 60 million EVs on its roads by 2030 [3,4]. In order to promote sustainable development,
the Chinese government recently proposed the innovative 3060 dual carbon target. In 2050,
it is estimated that EVs will account for more than 85% of passenger vehicles in China.
Thus, EVs will become an unavoidable development trend in the automobile industry’s
future transformation and upgrading.

The popularity of EVs will also cause a surge in power consumption, placing additional
strain on grid operations. The occurrence of EV charging events is related to the driving
law of users, and the charging load is subject to random uncertainty [5]. If large numbers
of EVs are gathered for charging during peak electricity consumption, the stability of the
grid will be compromised, resulting in increased line losses, lower power quality and lower
transformer life. Models of EV charging load under various distribution network scenarios
are established and analyzed, and the results indicate that increasing EV permeability will
raise the peak load level [6]. The influence of EV charging stations on power quality is
simulated and analyzed by MATLAB Simulink, including harmonic, voltage curve, and
transformer power loss [7]. According to research on uncontrolled charging of EVs, this
strategy results in the coexistence of charging and conventional loads, increasing peak load
and network loss while decreasing distribution network voltage [8]. By examining the
effect of various EV charging curves on the power grid, it was discovered that when the
permeability of the EV exceeds a specific value, the voltage deviation increased, impairing
the power grid’s stable operation [9].

1.2. Literature Review

EVs’ disorderly charging behavior jeopardizes the power grid’s safety, and additionally
jeopardizes the EVs’ healthy development. Therefore, it is necessary to develop appro-
priate measures to manage EV charging behavior. In order to ensure the reliability and
efficiency of the system, the concept of demand response is being advanced in the fiercely
competitive power market demand-side management. The purpose of demand response is
to incentivize users to adjust their energy consumption appropriately through a variety
of economic incentives. As a flexible resource, EV participation in demand side response
will prove a critical component of future smart grid management [10]. Presently, relevant
scholars are examining the charging and discharging strategies of EVs that participate in
demand response. A model is developed to reduce the distribution network’s voltage
deviation, and the optimal charging price is generated based on the EV user reaction. When
compared to the fixed charging electricity price, a more favorable voltage curve may be
obtained [11]. A system for optimizing charging coordination is developed that fulfills
both the energy requirement of EVs and the load profile. According to the framework,
which is based on mixed integer linear programming, demand response charging exhibits
a larger effect on boosting voltage, lowering peak load, and minimizing network loss when
compared to alternative charging schemes [12]. An incentive demand response mecha-
nism is designed that balances the interests of power grid providers, EV aggregators, and
EV customers on the distribution network. According to studies, by modifying the user
response ratio, the adjustable benchmark compensatory electricity price can prevent the
issue of insufficient response and lower economic expenses while lowering the peak [13].
By combining price and incentive-based demand responses, an EV scheduling technique is
developed that maximizes aggregator profits while minimizing load swings, effectively en-
hancing the scheduling potential of EVs [14]. To regulate EV charging behavior, a stochastic
two-level optimization model of EV participation in demand response was presented. The
upper layer was intended for maximizing EV aggregator profit, while the lower layer was
optimized for minimizing EV charging costs [15]. A real-time charging price method is
proposed for controlling the charging of plug-in hybrid electric vehicles. The authors eval-
uate the effects of energy price and charging willingness on charging load. Load transfer
and energy management can be performed by utilizing a distributed algorithm to calculate
the appropriate real-time charge price [16]. Demand response strategies also benefit the
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increasing development of renewable energy by enabling the coordinated operation of
renewable energy and EVs. In the instance of renewable energy and EV access, a sophisti-
cated dynamic simulation model was developed that incorporated two common demand
response mechanisms based on price and incentive in order to examine and analyze the
benefits associated with each subject engaging in the demand response [17]. Taking into
account the uncertainties associated with solar renewable energy, market electricity pricing,
and EVs, an energy management strategy is proposed for optimizing the profits of a smart
industrial power grid via demand response projects and EVs [18]. EVs are viewed as
demand-side response resources under dynamic electricity pricing, and charging methods
are created to minimize the unpredictability of renewable energy output. The genetic
algorithm-optimized charging approach can greatly reduce the variability of renewable
energy generation and the cost of EV charging [19]. Price-based demand response en-
tails scientifically segmenting load periods and establishing an electricity price for each
segment [20]. Existing studies have provided significant contributions to optimizing EV
charging load based on price incentives, but few have conducted a detailed study on load
period division, which is typically based on application experience, which may result in
an arbitrary load period division. Second, the majority of literature prioritize peak–valley
differences and charging cost as optimization objectives, while ignoring grid voltage.

1.3. Paper Contributions and Organizations

This paper proposes an orderly charging strategy for EVs based on optimal time of
use (TOU) demand in order to improve the above two aspects of work. To begin, power
demand is calculated by the Monte Carlo method based on an analysis of EV charging
behavior. The load period is then arbitrarily divided using fuzzy clustering. Then, using
the price elasticity theory of demand, the response relationship between charging load and
price change is established. Finally, the charging scheme is solved by an improved genetic
algorithm. The main contributions of this paper are as follows:

1. The fuzzy clustering algorithm introduces a novel method for dividing load
time scientifically;

2. We propose an orderly charging strategy for EVs based on OTOUP demand response,
which has been shown to be effective in improving power grid stability and lowering
charging costs for users;

3. We propose an adaptive genetic algorithm to solve the EV charging scheduling that
considers the benefits of power grids and consumers;

4. The sensitivity analysis of an EV’s response to the charging effect is extended, discov-
ering a high level of responsiveness results in an overresponse problem.

The rest of the paper is organized as follows. Section 2 proposes a framework for
EV charging that is orderly and based on optimal TOU demand. Section 3 establishes
a demand response-based EV charging model. Section 4 completes the formulation of
the strategy for optimizing EV charging. Section 5 continues the simulation and analysis
process. Section 6 provides concluding remarks of the entire paper.

2. Framework for Developing Orderly Charging Strategy for EVs Based on OTOUP
Demand Response

The orderly charging strategy for EVs based on OTOUP demand response begins
by determining the initial charging time and state of charge (SOC) of EVs using a proba-
bility distribution fitted to historical data and then calculating the charging duration by
combining the charging power. Finally, the EV charging power is predicted using Monte
Carlo simulation. In terms of the distribution network, three load indexes are calculated
using the load data, including peak membership degree, valley membership degree, and
load change rate (LCR), and the optimal load time division results are determined using
the fuzzy clustering method. The charging load of an EV after demand response is then
determined by establishing the demand price elasticity matrix reflecting the relationship
between load demand and electricity price and combining the EV power demand and
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load time division obtained previously. Finally, an adaptive genetic algorithm is employed
to solve the multi-objective problem of EV charging demand based on demand response
adjustment. After optimization, the updated electricity price is returned to the demand
response process, and the optimization result is output when the electricity price does not
change. Figure 1 illustrates the specific flow diagram.
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3. EV Charging Model Based on Demand Response

Moreover, the rapid development of EVs has resulted in a significant increase in
charging demand. Without reasonable measures to guide EVs’ random charging behav-
ior, widespread adoption of EVs will bear varying degrees of influence on all aspects of
distribution network operation. As a flexible resource, EVs sit idle for the majority of
the day, making them ideal for demand response. By developing a reasonable electricity
pricing strategy, we can influence how EVs charge, thereby shifting charging demand away
from peak load periods and toward off-peak load periods. Demand response, as a critical
mode of load management, can be broadly classified into two categories: price-based and
incentive-based [21], the former of which represents the subject of this paper. To begin,
a probability distribution model describing EV charging behavior is established. Then, the
daily charging power of EVs was predicted using the Monte Carlo method [22]. Second,
the price-based demand response strategy is primarily composed of two components: load
period division and charging electricity price formulation, both of which are modeled and
analyzed in this paper. The load period division is the starting point for developing the
optimal charging pricing strategy. In this paper, we use fuzzy clustering to divide the load
period into segments. As a critical tool for demand management, setting the electricity
price has a direct effect on the charging strategy’s effectiveness. If the peak-to-valley tariff
difference is too large, it may lead to peak-to-valley time switching and will not effectively
improve the peak-to-valley load difference. If the peak–valley tariff difference is too small,
it will be insufficient to convince EV owners to change their charging habits. As a result, this
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paper establishes a demand price matrix to quantify the relationship between EV power
demand and electricity price.

3.1. EV Charging Load Prediction

Modeling the charging load of EVs serves as the foundation for our research on
demand response strategies. The Monte Carlo approach can be used to forecast the charging
load of an EV [23–25]. We build and sample a probability distribution model for the
beginning charging time and initial charging state of EV. The charging time is then estimated
based on the battery’s projected state of charge, capacity, charging power, and efficiency,
and the charging load of EV is determined. When the convergence conditions for all EVs
are met [23], the simulation is terminated and the charging load curve for EVs is obtained.
The initial charging time of EVs can be represented as Equation (1) [14].

fs(t) =


1√

2πσs
exp

(
− (t−us)

2

2σs2

)
, (us − 12) < t ≤ 24

1√
2πσs

exp
(
− (t+24−us)

2

2σs2

)
, 0 < t ≤ (us − 12)

(1)

where us and σs denote the mean and standard deviation of the charging initiation time,
respectively. When the EV is connected to the power grid, the initial state of charge (SOCi)
of the battery follows a uniform distribution, as illustrated in Equation (2).

f (SOCi) =

{
1

b−a , a ≤ SOCi ≤ b
0 , else

(2)

where a and b represent the minimum and maximum values of the uniform
distribution, respectively.

Charging duration can then be calculated based on the current SOC and expected
value of the EV’s charging target, and the power requirements of a single EV can be
determined. Equation (3) illustrates the calculation expression for the charging duration of
an EV.

Tc =
(SOCe − SOCi)× Ec

Pchη
(3)

where Ec is battery capacity, SOCe is the SOC of the battery at the end of EV charging, Pch
is the charging power, and η is the charging efficiency. Thus, as shown in Equation (4), the
charging load of N EVs during the t-th period can be obtained.

Pc
t =

N

∑
i=1

(
Pch × xi

t

)
(4)

where xi
t = 1 represents the i-th EV is in charging state at t-th period, and xi

t = 0 represents
the i-th EV is not in charging state at t-th period.

Calculating the charging load of each EV during each period yields the total charging
load curve for N EVs in a day, as illustrated in Equation (5).

Ptotal =
1440

∑
t=1

Pc
t (5)

3.2. Load Time Division Based on Fuzzy Clustering

TOU pricing is based on a scientific division of load period. There are currently few
studies on load period division, and the division is largely based on accumulated experience.
Due to the relative nature of peak and valley periods, it is difficult to categorize them
precisely, which may result in subjectivity in the processing of time demarcation points.
Fuzzy clustering presents a powerful technique for resolving fuzzy uncertainty problems.



Energies 2022, 15, 1869 6 of 25

According to fuzzy mathematics theory, the peak and valley periods are considered to be
two fuzzy sets, and the peak valley membership degree at any point in time is determined
by the membership function. Additionally, as the load changes at the peak–valley boundary
point are relatively large, the load change rate, which represents the degree of load change,
is beneficial in resolving the problem of determining the peak–valley boundary point
period. To summarize, the peak membership degree, valley membership degree, and
load change rate are employed as indicators to represent each time period, and the fuzzy
clustering method is used to divide time periods more scientifically.

Assume that a load curve has T periods, and that the set of corresponding load values
is L = {l1, l2, · · · , lT}. The minimum load is specified as lmin, and the maximum load value
is lmax. The variables, Up and Uv denote the peak and valley period sets, respectively. The
peak and valley membership degrees are calculated by using the larger and smaller semi
trapezoidal membership functions, respectively. Figure 2 illustrates the semi-trapezoidal
membership function.
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Equations (6) and (7) demonstrate how to calculate the membership degree during the
peak and valley periods.

Up(lt) =
(lt − lmin)

(lmax − lmin)
(t = 1, 2, · · · , T) (6)

Uv(lt) =
(lmax − lt)

(lmax − lmin)
(7)

According to Equations (6) and (7), lmin membership degree in the set Up is 0, whereas
it is 1 in the set Uv. lmax has a membership of 1 in Up, and a membership of 0 in Uv. Because
the LCR’s function is to reflect the magnitude of load change, its absolute value is used as
the load indicator, as illustrated in Equation (8).

LCR(t) =
∣∣∣∣ lt − lt−1

lt

∣∣∣∣× 100% (8)

Each characteristic index may contain a different dimension and order of magnitude
in practical problems. It is possible that during operation, the importance of some charac-
teristics with a very large order of magnitude will be emphasized, while the importance
of some characteristics with a very small order of magnitude will be reduced or even
eliminated, which explains why normalizing the data is necessary. The classification object
can be represented as L = {l1, l2, · · · , lT}, and each object is described by m feature index
lt =

{
Up(lt), Uv(lt), LCR(t)

}
(t = 1, 2, · · · , T). For the convenience of description, it is
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represented as lt = {lt1, lt2, lt3} (t = 1, 2, · · · , T), then the initial sample matrix is obtained
as shown in Equation (9).

L =


l11
l21
...

lT1

l12
l22
...

lT2

l13
l23
...

lT3

 (9)

Data normalization usually includes translation—standard deviation transformation
and translation—range transformation, as shown in Equations (10)–(13), respectively.

l′tk =
ltk − lk

Sk
(t = 1, 2, · · · , T ; k = 1, 2, 3) (10)

lk =
1
T

T

∑
t=1

ltk (11)

Sk =

√√√√ 1
T

T

∑
t=1

(
ltk − lk

)2
(12)

l′′tk =
l′tk − min

1≤t≤T

(
l′tk
)

max
1≤t≤T

(
l′tk
)
− min

1≤t≤T

(
l′tk
) (13)

Following data normalization, the fuzzy similarity matrix is constructed using the
included angle cosine method, as shown in Equation (14).

rts =

3
∑

k=1

(
l′′tk × l′′sk

)
√

3
∑

k=1
l′′tk

2 ×
√

3
∑

k=1
x′′sk

2

(14)

where rts represents the degree of similarity between lt and ls in L, and the value is between
0 and 1.

The fuzzy transitive closure method is used to obtain a fuzzy equivalent matrix to aid
in cluster analysis. When R2 ◦ R2 = R2 appears for the first time, R2 is the transitive closure
t(R). It is worth noting that ◦ represents the synthesis operation of matrix rather than matrix
operation. Following the computation of the transitive closure matrix t(R) = (rts)T×T ,
different confidence levels λ ∈ [0, 1] are selected to obtain corresponding intercept matrix
t(R)λ, as shown in Equation (15).

t(R)λ = (r̃ts)T×T (15)

where the calculation method of elements in matrix t(R)λ is shown in Equation (16).

r̃ts =

{
1 , rts ≥ λ

0 , rts < λ
(16)
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The value of λ directly affects the result of classification. The F test method from
statistics is used in this paper to assist in determining the optimal λ. and its calculation
method is shown in Equations (17)–(22).

F =

r
∑

j=1
Tj‖L(j) − L‖

2
/(r− 1)

r
∑

j=1

Tj

∑
g=1
‖l(j)

g − L(j)‖
2
/(T − r)

(17)

L =
(

L1, L2, L3
)

(18)

Lk =
1
T

T

∑
t=1

ltk (k = 1, 2, 3) (19)

L(j) =

(
L(j)

1 , L(j)
2 , L(j)

3

)
(20)

L(j)
k =

1
Tj

Tj

∑
g=1

l(j)
gk (21)

‖L(j) − L‖ =

√√√√ 3

∑
k=1

(
L(j)

k − Lk

)2
(22)

where r represents the number of classifications and Tj represents the number of individuals

in class j, L is the clustering center of the total sample, L(j) is the clustering center of class j,
and l(j)

g is the g-th sample in class j. Equation (17) has a numerator representing the average
distance between classes and a denominator representing the average distance between
samples within classes. Given that F in Equation (17) is subject to the F distribution of
degrees of freedom (r− 1, T − r), this paper uses the clustering effectiveness(CE) shown
in Equation (23) to determine the optimal λ, and the corresponding classification is the
optimal classification r.

CEr =
F− Fa(r− 1, T − r)

Fa(r− 1, T − r)
(23)

where a is the significance level and Fa(r− 1, T − r) is the test critical value, which can be
obtained by referring to the table. The greater the CEr value, the greater the difference
between classes and the more accurate the classification effect.

3.3. Modeling Demand Response Based on TOU Price

The premise for the successful development of demand response measures is that
power consumers possess the characteristics of an “economic man”, that is, they are
capable of altering their consumption patterns in the pursuit of economic gain. Through the
implementation of various electricity pricing schemes, price-based demand response aims
to encourage power users to actively adjust their consumption time and mode in order to
alleviate the pressures associated with tight power supply during peak load periods. The
effective interaction of EVs with the power grid requires that the price regulation function
of electricity be fully utilized. TOU electricity price has developed relatively slowly and
currently holds a dominant position in China’s electricity market. As a result, this paper
analyzes the demand response of EVs primarily through the lens of TOU price. According
to economic theory, the charging volume of EVs is approximately inversely proportional
to the price of power [10,26]. To facilitate the study, a model that accurately reflects the
relationship between EV charging demand and TOU electricity price is developed in this
paper using price elasticity of demand.
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The increase in the price of electricity over time will reduce the amount of charging
during this time period. Equation (24) can be used to express this relationship.

εtt =
∆qt/q(0)t

∆pt/p(0)t

(24)

where εtt refers to the self-elastic coefficient, which is usually negative. q(0)t and qt are

charge quantity before and after response in time period t, p(0)t and pt are electricity price
before and after response in time period t. ∆qt and ∆pt are charge change and price change
in time period t, which are calculated by Equations (25) and (26), respectively.

∆qt = qt − q(0)t (25)

∆pt = pt − p(0)t (26)

In general, the demand in a given period will be influenced by the combination of
prices for that and other periods. This relationship can be expressed in Equation (27).

εts =
∆qt/q(0)t

∆ps/p(0)s

(27)

where εts is called the cross elastic coefficient, which is usually positive. p(0)s and ps are
the electricity price before and after the demand response at time s respectively. ∆ps is the
price change in time period s, which can be calculated from Equation (28).

∆ps = ps − p(0)s (28)

If T charging periods are considered in a day, Equation (29) is established.
∆q1/q(0)1

∆q2/q(0)2
...

∆qT/q(0)T

 =


ε11
ε21
...

εT1

ε12
ε22
...

εT2

· · ·
· · ·

...
· · ·

ε1T
ε2T

...
εTT

×


∆p1/p(0)1

∆p2/p(0)2
...

∆pT/p(0)T

 (29)

After responding to TOU price, the charging load of EV in period t can be further
obtained as shown in Equation (30).

qt = q(0)t

(
1 + εtt

∆pt

p(0)t

+
T

∑
s=1,s 6=t

εts
∆ps

p(0)s

)
(30)

4. Formulation of Charging Optimization Strategy for EVs
4.1. Objective Functions

Demand response measures based on TOU price are applied in this study to guide
EV users toward a reasonable charging schedule, alleviate pressure on the power supply.
Minimizing load fluctuation and narrowing the gap between maximum load and minimum
load are critical for EVs to participate in demand response from a grid perspective. Since
the voltage level also bears an effect on the grid’s power quality, this paper uses the
voltage deviation as an optimization objective. Equations (31)–(34) show the expressions
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for minimizing load fluctuation standard deviation, peak–valley difference, and voltage
deviation, respectively.

FG1 = min



√√√√√ T
∑

t=1
(qt + lt − Pave)

2

T

 (31)

where Pave is the average load of the whole day, which can be calculated from Equation (32).

Pave =

T
∑

t=1
(qt + lt)

T
(32)

FG2 = min
{

max
1≤t≤T

(qt + lt)− min
1≤t≤T

(qt + lt)
}

(33)

FG3 = min

{
T

∑
t=1

(
Vt −Vt

)}
(34)

where Vt and Vt are the highest node voltage and lowest node voltage in time period
t, respectively.

When conducting TOU demand response, it is necessary to consider the interests
of EV users in addition to those of the grid, in order to maximize their participation in
the demand response. As a result, the charging cost of an EV is used as the optimization
objective, as illustrated in Equation (35).

FC = min

{
T

∑
t=1

(qt × Pt)

}
(35)

where Pt is the charging price in time period t. Since the objective functions FG1, FG2
and FG3 are all concerned with distribution network benefits, they are integrated into an
optimization goal by assigning weight values to different objective functions, as shown in
Equations (36) and (37).

FG = g1FG1 + g2FG2 + g3FG3 (36)

g1 + g2 + g3 = 1 (37)

where g1, g2 and g3 are is non-negative. Finally, the single-objective optimization model is
obtained using the linear weighting method, as shown in Equations (38) and (39).

FGC = w1FG + w2FC (38)

w1 + w2 = 1 (39)

where the weight coefficients w1 and w2 are non-negative.

4.2. Constraint Condition

In order to enable EV users to actively participate in a charging strategy based on TOU
price demand response, it is necessary to ensure that the cost of charging EVs following
demand response does not exceed the cost of charging under disorderly charging. Equation
(40) can be used to express this cost constraint.

T

∑
t=1

(qt × Pt) ≤
T

∑
t=1

(Pc
t × Pt0) (40)
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where Pc
t is the charging load in t period during disordered charging, Pt is the electricity

price in t period after optimization, and Pt0 is the disordered charging price in period t.
Taking into account the combined effect of TOU tariff optimization strategies in

improving load profiles and reducing economic costs, the TOU price optimization strategy
should adhere to the constraints of Equation (41).

Pt ≤ Pt ≤ Pt (41)

where Pt and Pt are the minimum and maximum of TOU price in t period, respectively.
Before and after demand response, the energy required by EVs should be conserved,

which can be expressed by Equation (42).

T

∑
t=1

qt =
T

∑
t=1

Pc
t (42)

After the implementation of orderly charging, the new load peak larger than the
original peak should be avoided due to the transfer of charging load. The constraint can be
expressed by Equation (43).

max
1≤t≤T

(qt + lt) ≤ max
1≤t≤T

(Pc
t + lt) (43)

4.3. Solving Algorithm

However, the conventional genetic algorithm suffers from the following drawbacks.
First, it is easy for “premature” phenomena to manifest, particularly when the population’s
diversity is destroyed during the middle and late stages of the algorithm’s evolution, when
the algorithm’s search stops and settles on a local optimal. Second, the crossover and
mutation probabilities bear a significant effect on the optimization results. For instance,
as the crossover probability increases, the genetic structure may be destroyed, resulting
in the extinction of individuals with high-quality solutions; conversely, as the crossover
probability decreases, it becomes easy to cause low search efficiency and even stagnation.
When the mutation probability is set to a value that is excessively high, the genetic algorithm
degrades into a pure random search algorithm. However, the low mutation probability
renders it difficult to generate new individuals, which is detrimental to population diversity.
As a result, an adaptive genetic algorithm to improve the calculation of crossover and
mutation probabilities is proposed, in which the crossover and mutation probabilities are
calculated as shown in Equations (44) and (45).

Pc =

Pc1 × 1
(Pc1−Pc2)+exp

(
fave− f ′

fave− fmin

) , f ′ ≤ fave

k1 × Pc1 , f ′ > fave

(44)

Pm =

Pm1 × 1
(Pm1−Pm2)+exp

(
fave− f

fave− fmin

) , f ≤ fave

k2 × Pm1 , f > fave

(45)

where fmin and fave are the minimum and mean values of population fitness respectively,
f ′ is the smaller fitness value of the two crossover individuals, f is the fitness value of
the mutated individual, and k1, k2, Pc1, Pc2, Pm1 and Pm2 are other parameters required in
the algorithm.

As shown in Equations (44) and (45), individuals whose fitness is greater than the
average value of fitness perform poorly, and thus are assigned a high crossover and
mutation probability and are eliminated. Individuals with a fitness level lower than the
average fitness level exhibit superior performance and should be retained to the maximum
extent possible. Individuals with a lower fitness value exhibit a lower probability of
crossover and mutation, and a higher probability of the dominant individual remaining in
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the population. Additionally, as the TOU price is frequently expressed in decimal form,
binary coding is simple and intuitive, but may require a lengthy coding length. Along with
expanding the algorithm’s search space and increasing the difficulty of decoding, there may
be mapping errors. As a result, real number coding is used in this paper, and the adaptive
genetic algorithm’s flow chart is shown in Figure 3.
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5. Results and Analysis
5.1. Parameter Setting

The expected value us and standard deviation σs of EV initial charging time are set
to 17.6 and 3.4, respectively, in this paper [14]. The initial charge state is determined by
the uniform distribution U (0.3, 0.5), while the expected battery charge state is set to 1.
The EV’s battery capacity is 48 kWh. Since this paper assumes that the EV uses the slow
charging mode and the 7 kW charger was shown to be effective in earlier literature [19],
the charging power in this paper is set to 7 kW. Given the power loss when charging, a
charging efficiency of 0.9 is chosen.

The proposed method is demonstrated using a 32-branch IEEE-33 node standard
distribution network. The system voltage is 12.66 kV, and the network topology is shown
in Figure 4. The parameters of the distribution network are presented in Table 1 [27], and
the daily load curve for the distribution network is depicted in Figure 5 [28].
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Table 1. Distribution network system parameters.

No. From To Impedance (Ω) Voltage (p.u.)

1 1 2 0.0922 + j0.047 1.05
2 2 3 0.3660 + j0.1864 1
3 3 4 0.3660 + j0.1864 1
4 4 5 0.3811 + j0.1941 1
5 5 6 0.8190 + j0.7070 1
6 6 7 0.1872 + j0.6188 1
7 7 8 0.7114 + j0.2351 1
8 8 9 1.0300 + j0.7400 1
9 9 10 1.0440 + j0.7400 1
10 10 11 0.1966 + j0.0650 1
11 11 12 0.3744 + j0.1238 1
12 12 13 1.4680 + j1.1550 1
13 13 14 0.5416 + j0.7129 1
14 14 15 0.5910 + j0.5260 1
15 15 16 0.7463 + j0.5450 1
16 16 17 1.2890 + j1.7210 1
17 17 18 0.3720 + j0.5740 1
18 2 19 0.1640 + j0.1565 1
19 19 20 1.5042 + j1.3554 1
20 20 21 0.4095 + j0.4784 1
21 21 22 0.7089 + j0.9373 1
22 3 23 0.4512 + j0.3083 1
23 23 24 0.8980 + j0.7091 1
24 24 25 0.8960 + j0.7011 1
25 6 26 0.2030 + j0.1034 1
26 26 27 0.2842 + j0.1447 1
27 27 28 1.0590 + j0.9337 1
28 28 29 0.8042 + j0.7006 1
29 29 30 0.5075 + j0.2585 1
30 30 31 0.9744 + j0.9630 1
31 31 32 0.3105 + j0.3619 1
32 32 33 0.3410 + j0.5362 1Energies 2022, 15, x FOR PEER REVIEW 14 of 25 
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5.2. Analysis
5.2.1. Results of Optimal Electricity Price Charging for EVs

To demonstrate the efficacy of the orderly charging of OTOUP presented in this
research, we compared it with two other charging scenarios: disordered charging and
CTOUP response charging.

Scenario 1: Disordered charging (fixed price charging). The input of Scenario 1 is
composed of four components: a grid load curve, a load time division, a price for energy
for each time period, and an EV disorderly charging load curve. The disorderly charging
mode is assumed to use fixed electricity rates and that the peak, flat, and valley power
costs all measure 0.6 CNY/kWh in this article. The output of an EV’s unordered charging
process is comprised of four components: the standard deviation of load fluctuation, the
peak–valley difference in load, the charging cost, and the voltage deviation. As there are
no measurements of EV charging in an ordered fashion, the first three outputs can be
calculated simply using the grid load curve and the EV charging load curve in an ordered
fashion. The load from each period of the disordered charging load curve is added to the
IEEE-33 distribution network system, and the grid’s overall voltage deviation is calculated
by subtracting the difference between the highest and lowest voltages in all periods.

Scenario 2: CTOUP charging. Scenario 2’s inputs are identical to those of scenario
1, except that the electricity price for each period is different. In scenario 2, CTOUP is
considered for each period, and the peak, flat, and valley prices are, respectively, 1.05,
0.75, and 0.45 CNY/kWh. The procedure for EVs to participate in demand response is as
follows: The first step is to determine the variance in electricity prices throughout each
period covered by the CTOUP based on the fixed charging price (0.6 CNY/kWh). In the
second stage, one may obtain the charging load curve for EVs under the demand response
of a CTOUP by utilizing Equation (30) from the publication. In the third stage, scenario 2
produces the same four outputs as scenario 1, which can be obtained by applying the same
calculation method to the charging curve after response and grid load curves as scenario 1.

Scenario 3: OTOUP charging. The remaining three inputs in scenario 3 are identical to
those in scenarios 1 and 2, except for the fact that the price of electricity varies over time. In
scenario 3, EVs will participate in the demand response process to decide the OTOUP, and
the study develops a multi-objective optimization model using Equations (31)–(35). The
following protocol applies to EVs participating in the OTOUP demand response program:
The first step is to randomly establish the electricity price within the acceptable range.
In this article, peak electricity costs range between 0.9 and 1.2 CNY/kWh, flat electricity
prices range between 0.6 and 0.9 CNY/kWh, and valley electricity prices range between
0.3 and 0.6 CNY/kWh. The second to fourth steps are identical to those in scenario 2. The
fifth phase represents keeping the algorithm’s dominant people and selectively crossing,
crossing, and modifying them. The sixth phase iterates over the second through fifth stages
previously described until the algorithm converges. Finally, using the optimal electricity
price and Equation (30), the charging load curve of an EV subjected to the OTOUP demand
response is determined. The four outputs of scenario 3 are identical to those of scenario 1,
which may be derived by using the same calculation procedure to the charge curve after
response and grid load curves as in scenario 1.

Figure 6 illustrates the charging curve of EV in scenario 1 using Monte Carlo simulation.
As illustrated in the Figure 6, there are two charging peaks for EVs: one between 17:00 and
22:00 and another between 01:00 and 04:00. Figure 7 depicts the total daily load curve for
superimposed EV charging loads. It can be seen that the first peak of EV charging nearly
coincides with the peak period of base load, increasing the pressure on the power supply
during these periods.
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Since the peak EV charging load occurs at 20:00, Figure 8 shows the voltage at the
system nodes during peak charging period. Node 18 bears a voltage of 0.9235 due to
irregular charging of EVs. According to the distribution network’s allowable voltage
deviation range of ±7%, this charging behavior will be inconducive to the safe operation
of the grid. As a result, corresponding measures to guide EVs for orderly charging are
meaningful to maintain the reliability of the grid.
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The clustering results for load indicators under various classifications are shown
in Table 2. As displayed in Table 2, when the number of classifications equals three, the
corresponding clustering validity value is the greatest, indicating that this method produces
the best clustering effect. As a result, the base load is divided into three phases: peak, flat,
and valley. The peak period is from 9:00 to 23:00, the flat period is 8:00 and 24:00, and the
valley period is from 1:00 to 7:00.

Table 2. Time division results based on fuzzy clustering.

Sort (r) 2 3 4 5 6

F-statistics 43.7878 72.8242 67.1936 67.3222 54.7459
Fa (a = 0.2) 1.75 1.74 1.7 1.66 1.64

CEr 24.0216 40.853 38.5256 39.5555 32.3816

In scenario 2, Figure 9 illustrates the comparison between the disordered charging load
of an EV (green column diagram) and the CTOUP power response (purple column diagram).
The portion of the purple bar chart with a positive value represents the increased charging
amount for EVs during this period following the demand response, while the portion of
the color bar chart with a negative value represents the decreased charging amount for EVs
during this period following the demand response. As illustrated in Figure 9, a significant
portion of the charging demand for EVs during peak hours is transferred to the low load
period, which serves to improve the load profile. However, it is easy to identify that the
increase of charging load between 1:00 and 4:00 a.m. is nearly double the initial charging
load, resulting in a new load peak. Figure 10 depicts the load demand curve of EVs prior to
and following the response of CTOUP. The aggregation charging behavior of EVs reduces
the power grid’s minimum voltage level below the safe level. Figure 11 depicts the power
grid’s voltage distribution during the peak charging period.
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In scenario 3, Figure 12 compares the EV’s disordered charging load (green column
diagram) to the OTOUP power response (cyan column diagram). The positive portion of
the cyan histogram indicates that the EV’s charging amount increased during this period
following the demand response, while the negative portion indicates that the EV’s charging
amount decreased during this period following the demand response. Figure 12 illustrates
how the OTOUP incentive affects the charging behavior of EV users, and how the load
reduction during peak hours is transferred to the night trough period. In comparison to
CTOUP, no new load peak occurs following an EV demand response. The charging curves
of an EV prior to and following the OTOUP response are depicted in Figure 13. Although
the lowest voltage of 0.9422 is generated at 2:00 a.m., it all remains within the permissible
range of voltage and effectively ensures the power grid’s stability. The voltage profile of
the distribution network during the OTOUP charging peak period is depicted in Figure 14.
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Table 3 compares the charging of EVs in various scenarios. As the table indicates,
disorderly charging proves the worst. The standard deviation of load fluctuation increased
from 553.72 to 621.83 kilowatts, while the peak–valley difference increased from 1472 to
1895 kilowatts. Additionally, the operating voltage is unqualified, and the high charging
costs are prohibitively expensive for consumers. In comparison to disordered charging,
CTOUP charging is a significant improvement. In comparison to disordered charging,
the standard deviation of load fluctuation is reduced by 242.39 kW, and the peak–valley
difference is decreased by 379 kW. When load fluctuation is reduced, the user’s economy is
also somewhat improved. The cost of charging is reduced from CNY 6036 to 5404.7 in the
case of disordered charging. While the night load transfer reduces the minimum voltage to
0.9219, jeopardizing the safe operation of the power grid. By and large, when the OTOUP is
used, the charging effect is optimal. The standard deviation of load fluctuation is reduced by
214.67 kW when disordered charging is employed, and the peak–valley difference is further
reduced by 174 kW when OTOUP are used, achieving the best effect of load smoothing.
The power grid’s minimum voltage is increased to 0.9422, ensuring the grid’s reliability,
while the voltage deviation is the lowest of the three charging scenarios. Additionally, EV
users’ charging costs are low, which facilitates their participation in demand responsive
charging strategies to a certain extent. This charging strategy can balance the interests of
the power grid and the EV user, which is critical to solve the charging problem of EVs.

Table 3. Comparison of different charging scenarios.

Standard Deviation
(kW)

Peak Valley
Difference (kW)

Minimum Voltage
(p.u.)

Voltage Deviation
(p.u.)

Base load 553.72 1472 0.9767 1.4466
Scenario 1 621.83 1895 0.9235 2.1269
Scenario 2 379.44 1516 0.9219 1.9187
Scenario 3 407.16 1342 0.9422 1.9128

Charging Cost (CNY) Peak Electricity Price
(CNY/kWh)

Flat Electricity Price
(CNY/kWh)

Valley Electricity Price
(CNY/kWh)

Base load - - - -
Scenario 1 6036 0.6 0.6 0.6
Scenario 2 5404.7 1.05 0.75 0.45
Scenario 3 5334.6 0.9416 0.8303 0.3
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5.2.2. Comparison of Algorithms

To evaluate the proposed algorithm’s effectiveness, the traditional genetic algorithm is
compared with the adaptive genetic algorithm proposed in this paper. The population size
is 50, crossover probability Pc and mutation probability Pm are 0.95 and 0.01, respectively.
Other parameters, such as k1 and k2, are set to 0.9 and 0.6, respectively, while Pc1 and Pc2 are
set to 0.9, Pm1 and Pm2 are set to 0.1 and 0.05, respectively. The algorithm is implemented
in MATLAB software, and Figure 15 depicts the iterative curves for the two algorithms.
As illustrated in the figure, the adaptive genetic algorithm exhibits better convergence
and stronger optimization ability. After 394 iterations, the traditional genetic algorithm
discovered the optimal fitness value of 1.0161, whereas the adaptive genetic algorithm
discovered a better solution of 1.0137 after iteration 120, demonstrating the proposed
algorithm’s superiority.
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5.2.3. The Effect of EVs’ Varying Responsiveness on Charging Strategy

The responsiveness of EVs refers to the percentage of EV owners participating in
orderly charging measures, which directly affects charging power response. If the response
capacity of EV is insufficient, it will not achieve the purpose of improving the load curve.
If the responsiveness is set too high, a new load peak may emerge. Additionally, the
responsiveness of EVs will bear an effect on the OTOUP’s electricity price optimization
results. This paper compares the effect of EV responsiveness of 30%, 40%, 50%, 60%, 70%,
and 80% on orderly charging strategy and OTOUP. Charging results of EVs with varying
responsivity are depicted in Figure 16. The peak valley difference is calculated as follows:
maximum load—minimum load. As illustrated in Figure 16, when the responsiveness of
the EV is less than 60%, the standard deviation of load fluctuation gradually decreases,
indicating that the EV effectively inhibits load fluctuation in the demand response strategy
of orderly charging. However, as the responsiveness of EVs approaches 70% and greater,
the standard deviation of load fluctuation increases, indicating that EVs’ excessive response
behavior results in the generation of new load peaks. Similarly, the peak–valley difference
exhibits the same phenomenon. When the responsivity of an EV is less than 70%, the
improvement of responsiveness can reduce peak–valley difference, which is beneficial to
improve load stability. However, when the EV responsiveness increases to around 80% and
beyond, the aggregation charging behavior increases the peak–valley difference in load.
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The results of TOU price optimization and the charging costs of EVs with varying
degrees of responsiveness are shown in Table 4. As Table 4 indicates, as the responsiveness
of EVs increases, the peak electricity price also increases. Electricity prices in flat periods
change in the opposite direction of those in peak periods, and electricity prices in valley
periods always remain at their lowest levels. Peak–valley electricity price differentials
gradually increase as EV responsiveness increases, which means that EV users’ charging
loads will decrease during peak periods, while charging demands will increase during
valley periods. Additionally, as the responsiveness of EVs improves, the cost of charging
for EV users decreases gradually. This benefits EV users by allowing them to participate in
the demand response strategy’s orderly charging strategy.

Table 4. Charging electricity price and charging cost of EVs under different responsivity.

Responsivity Peak
(CNY/kWh)

Flat
(CNY/kWh)

Valley
(CNY/kWh)

Cost
(CNY)

30% 0.9426 0.8177 0.3 6208.4
40% 0.9437 0.8027 0.3 5773.4
50% 0.9483 0.7421 0.3 5341.4
60% 0.9522 0.6826 0.3 4908.6
70% 0.9537 0.6701 0.3 4469.9
80% 0.9580 0.6122 0.3 4027.9

6. Conclusions and Future Work
6.1. Conclusions

To address the detrimental effect of large-scale EV disordered charging on the distri-
bution network, this paper proposes an orderly charging strategy based on the OTOUP
demand response of EV (This research encompasses load prediction for electric vehicles,
load period division, and multi-objective optimization, among other things. We are willing
to communicate with scholars who are interested in this topic and to share the findings of
the experiments). To begin, the Monte Carlo method is applied to forecast the charging
load of electric vehicles. In distribution networks, load time is classified scientifically
using a fuzzy clustering algorithm in conjunction with a selected load index. Then, using
demand price elasticity, a relationship between EV charging load and charging electricity
price is established. Finally, the optimization model is established while considering the
comprehensive interests of distribution network and EV users, and an orderly EV charging
scheme is obtained by solving the problem using an improved genetic algorithm. The
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proposed method is validated using an IEEE-33 node distribution system simulation. In
comparison to fixed power prices and CTOUP, the demand response charging strategy
based on OTOUP achieves better results in terms of reducing load peak–valley differences
and increasing power grid operating voltage, while also being less expensive for EVs. Addi-
tionally, the effect of EVs’ varying responsiveness in demand response on charging strategy
is analyzed. The results illustrate that the trend of peak electricity price and flat electricity
price is opposite to the increase of responsiveness. While increasing the responsiveness
of EVs within a certain range can effectively reduce load fluctuation and charging costs,
additional measures are required to deal with the new load peak caused by over-response.

6.2. Future Work

While the strategy suggested in this research bears the potential to aid in the orderly
charging of EVs, it does contain some drawbacks. The paper’s drawback is that the charging
effect reduces as the rate of EV adoption increases, mostly as this paper only discusses the
division of time periods once, which is related to the setting of energy prices, which bears a
big impact on guiding orderly EV charging. When the pace of EV charging penetration
grows, the period of low load may become the period of high load, reducing the charging
effect. Further research can be conducted in the future on the following two points. On
the one hand, dynamic load period division can help avoid the situation in which the
valley phase of an EV charging with a high permeability becomes the peak period, thereby
improving the charging effect. The second aspect is that the charging strategy should take
into account the vehicle-to-grid characteristics of EVs. In the future, EV discharge behavior
will prove critical for energy management of large-scale EVs.
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Nomenclature

Abbreviations
EV electric vehicle
TOU time-of-use
OTOUP optimal time-of-use pricing
CTOUP common time-of-use pricing
SOC state of charge
LCR load change rate
CE clustering effectiveness
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Indices and sets
i index of EV
j index of classification
k index of clustering object characteristic indicator
t, s index of time period
L set of load periods
Up set of peak period
Uv set of valley period
Parameters
us, σs mean and standard deviation of initial charging time
a, b minimum and maximum values of initial state of charge
Ec battery capacity
Pch charging power
η charging efficiency
N number of EVs
xi

t charging state of the i-th EV
Pc

t charging load of EV in the t-th period
T number of load periods
lt load in the t-th period
lmin, lmax minimum and maximum load
LCR(t) rate of change of load in the t-th period
ltk value of the k-th index of the t-th cluster object
l′tk value of the k-th index of the t-th cluster object after standardiza-tion
lk average value of the k-th index
Sk standard deviation of the k-th index
l ′′tk value of the k-th index of the t-th cluster object after normalization
rts similarity between the t-th clustering object and the s-th clustering object
t(R) transitive closure of similar matrix R
λ confidence level, between 0 and 1
t(R)λ intercept matrix at confidence level λ

r̃ts values of elements in the intercept matrix at confidence level λ

r number of classifications
Tj number of individuals in class j
L(j) clustering center of class j
L clustering center of the total sample

l(j)
g g-th sample in class j

CEr clustering effectiveness under r classification number
Fa(r− 1, T − r) value of F distribution with degree of freedom (r−1,T−r) under significance

level a
εtt self-elastic coefficient
εts cross elastic coefficient

q(0)t charge quantity before response in time period t
p(0)t electricity price before response in time period t
p(0)s electricity price before response in time period s
Vt highest node voltage
Vt lowest node voltage
g1, g2, g3 weight coefficients of FG1, FG2 and FG3 respectively
w1, w2 weight coefficients of FG and FC respectively
Pt0 disorderly charging price in period t
Pt minimum value of TOU price in t period
Pt maximum value of TOU price in t period
k1, k2 adjustment coefficient
Pc1, Pc2 cross coefficient
Pm1 , Pm2 mutation coefficient
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Variables
SOCi initial state of charge of the battery
SOCe SOC of the battery at the end of EV charging
qt charge quantity after response in time period t
pt electricity price after response in time period t
∆qt charge change in time period t
∆pt price change in time period t
ps electricity price after response in time period s
∆ps price change in time period s
Pave average load of the whole day
FG1 load fluctuation standard deviation
FG2 load peak–valley difference
FG3 sum of voltage deviation
FC EV charging cost
Pt charging price in time period t
FG comprehensive objective function value on the power grid side
FGC comprehensive objective function value of power grid side and user side
Pt electricity price in t period after optimization
f ′ smaller fitness value of the two crossover individuals
f fitness value of the mutated individual
fmin minimum value of population fitness
fave mean values of population fitness
Pc crossover rate
Pm mutation rate
Operators
◦ synthesis operation of matrix
‖ · ‖ norm calculation
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