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Abstract: This paper concerns the start-up process of a hydrostatic transmission with a fixed dis-
placement pump, with particular emphasis on dynamic surplus pressure. A numerically controlled
transmission using a proportional directional valve was analysed by simulation and experimental
verification. The transmission is controlled by the throttle method, and the variable resistance is the
throttling gap of the proportional spool valve. A mathematical description of the gear start-up pro-
cess was obtained using a lumped-parameters model based on ordinary differential equations. The
proportional spool valve was described using a modified model, which significantly improved the
performance of the model in the closed-loop control process. After assuming the initial conditions and
parameterization of the equation coefficients, a simulation of the transition start-up was performed
in the MATLAB–Simulink environment. Simulations and experimental studies were carried out for
control signals of various shapes and for various feedback from the hydraulic system. The pressure
at the pump discharge port and the inlet port of the hydraulic motor, as well as the rotational speed
of the hydraulic motor, were analysed in detail as functions of time. In the experimental verification,
complete measuring lines for pressure, speed of the hydraulic motor, flow rate, and temperature of
the working liquid were used.

Keywords: hydrostatic transmission; hydrostatic transmission start up; hydraulic drive

1. Introduction

In the case of heavy working machinery, some actuators often require low rotational
speed values, ranging from a few to tens of rotations per minute. A crane rotation mecha-
nism is an example of such equipment.

Hydrostatic drive units for low rotational speed movement can be constructed using
two methods: with a high-speed hydraulic motor combined with an additional mechan-
ical transmission, or with a low-speed motor coupled directly to the driven mechanism.
In practice, however, a solution based on a hydrostatic transmission with a high-speed
motor and mechanical transmission is used, as this is the only solution that can be applied
in the case of a crane rotation mechanism [1]. This results from the need to comply with
industry-specific legal regulations, which require using a mechanical brake to securely
block the rotation mechanism in the event of external forces (wind, sloping ground within
admissible limits, etc.). When a direct drive with a low-speed motor is used, the dimensions
of the mechanical brake are quite large, particularly in the case of high load values.

The designer of the drive unit, apart from basic parameters, such as output power,
speed range of the driven element, efficiency [2], etc., has to ensure specific dynamic
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characteristics corresponding to the nature of the designed machinery [3]. In some cases,
dynamic surplus is not allowed; for example, in the case of CNC machining tools, where
the tool must be positioned right next to the machined surface without overshoot of the
tool position.

Furthermore, the requirements applicable to machinery in dynamic states are con-
stantly increasing. Modern machine and equipment evaluation criteria have recently been
expanded to include vibration- and noise-level criteria, especially for hydrostatic drive
machines [4]. Apart from their well-known advantages, hydrostatic drive units have a
significant drawback—they generate relatively high noise emission levels, a factor which
can disqualify this type of drive by causing them to exceed the standard noise emission
levels (which are being gradually reduced), determined by ergonomic considerations [5–8].
It also means the necessity to reduce the risk of cavitation in hydrostatic systems [9] and the
need for its proper modelling. However, limiting the maximum pressure during start-up
will result in a reduction in the global noise emission level generated by the transmission
in a transient state [10]. On the other hand, reducing the time during which the maxi-
mum pressure is generated will result in shortening of the time of the maximum noise
levels of the unit during the start-up of the transmission. For a number of years, there
has been an increasing tendency to reduce energy losses in mechanical systems, including
hydraulic ones [11]. An increase in the efficiency of hydraulic systems can be achieved
through control and adjustment of the hydraulic elements (valves, pumps, receivers), the
use of systems featuring energy recuperation or hybrid systems, and reduction in dynamic
loads [12]. Specific solutions make it possible to increase the efficiency of hydrostatic
systems by several tens of percent. In the case of systems offering energy recuperation, the
consumption of energy can be reduced by approx. 30% [13]. In hydrostatic systems, this
can be achieved in a number of ways, depending on whether the system features fixed or
variable displacement pumps. In systems with fixed displacement pumps controlled by
throttle methods, the predominant approach is to limit the operation of the safety valve
(where serial throttle control is used). The introduction of proportionally controlled valves
(a proportional relief valve or a proportional spool valve) can also result in a reduction in
energy consumption by the hydrostatic system, particularly in a transient state [14,15].

Additionally, dynamic surpluses (pressure and speed) occurring within the system
contribute to excessive wear of the system elements and reduce the uptime [16].

Hydrostatic Transmission Control Methods

There are two basic methods for controlling a hydrostatic transmission in a hydrostatic
drive unit: a throttle method and a volumetric method [17]. The throttle method involves
an intentional modification of the flow resistance value (e.g., via an adjustable throttle
valve) to regulate the value of the usable flow supply to the receiver. There are two types of
control methods depending on the positioning of the adjustable throttle valve relative to
the receiver—serial or parallel. In practice, the variable throttling gap is often obtained on
the gaps of the spool–sleeve couple of the proportional spool valve. In the serial throttle
control method, the use of a proportional valve for the purpose of throttling the usable
flow supply to the receiver is justified by the fact that this solution enables changing the
direction of the movement of the hydraulic receiver, among other factors. The continuous
volumetric control method involves using a variable displacement pump and/or receiver.

This paper analyses a drive unit based on an M2C 1613 high-speed, hydraulic gear mo-
tor and an OH-500 three-stage planetary gear with a total gear ratio of i = 69.7. The paper
investigates the impact of the parameters of the control signal for the proportional spool
valve on the waveforms of the pressure and speed of the transmission, with a particular
emphasis on the transient state during start-up. The transmission start-up process was
examined according to the serial throttle control method. Additionally, a system featur-
ing feedback from the speed of the hydrostatic motor and a PI numerical control system
was analysed.
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In the research on the control of hydraulic systems using proportional spool valve,
many approaches can be found on how to model the opening characteristics of a hydraulic
distributor. Very often, a linear or quadratic relationship between the spool displacement
and the flow rate at a given differential pressure is adopted [18,19]. These methods often
give satisfactory results for basic analysis of control systems that rarely operate at small
valve openings. Unfortunately, when analysing closed-loop control systems, this approach
can produce simulation results that differ significantly from experiment, which makes a
proper machine control design process difficult.

Another method found in the literature is a very detailed modelling of the spool
shape, which allows one to determine the cross-section of the orifice responsible for the
flow [20]. This approach gives significantly better results than those of assuming a linear
relationship; however, it does not take into account the phenomena associated with flow
through a variable orifice. Additionally, such a spool modelling process requires one
to obtain detailed documentation from the valve manufacturer, or the disassembly and
detailed measurement of the spool and sleeve.

In this paper, a different method of spool modelling is presented, which does not
require any additional documentation of the valve beyond the opening characteristic curve
typically provided by the manufacturer.

It was assumed that the characteristic curve can be approximated with sufficient
accuracy by a polynomial equation. A similar approach was presented by the authors of pa-
per [21], but they did not present the implementation of this solution in the control system.

Figure 1 shows a diagram of a serial throttle control system for a hydrostatic trans-
mission based on the use of a proportional valve, while Figure 2 shows schematics of the
analysed control systems.
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2. Mathematical Model for the Serial Throttle Control Method

A mathematical description of the start-up of a hydrostatic transmission with serial
throttle control using a proportional valve was obtained based on a set of ordinary differen-
tial equations (a model with focused parameters). One of the equations for the model is the
flow continuity equation at particular points of the hydraulic circuit, and the other is the
equation of the equilibrium of torque values on the shaft of the hydrostatic motor [22].

In order to solve this set of equations, it is also necessary to formulate the initial conditions.
In the presented mathematical model, the following simplifying conditions were

adopted (among others):

• The temperature of the medium, and consequently its viscosity, remains constant
throughout the simulation;

• The pressure has no effect on the viscosity of the medium;
• The compressibility of the medium and the deformability of the hydraulic elements

was reduced to the concentrated capacitance at particular points of the system;
• There is no air in the system;
• There is no backlash in the mechanical system;
• The load of the motor is focused on its shaft (inertia);
• There are no wave phenomena;
• There are no external leaks in the system;
• The speed of the electric motor driving the pump is constant and is independent of

the pump load;

The flow continuity equation can be formulated as follows:

Qpt = Qvp + Qcp + QRD + Qz (1)

The throttling valve flow rate is determined as follows:

QRD = Qs + Qvs + Qcs (2)

QRD = GRD
√

pp − ps − pd (3)

In a system with a proportional flow valve, it is usually assumed that there is a
linear dependency between the area of the surface through which the liquid flows and the
displacement of the spool. Unfortunately, this simplification does not work in simulations
of systems where even the slightest displacement of the spool is a significant factor.

In the model, it was assumed that the aforementioned relation is a polynomial func-
tion (4), whose degree and values of coefficients were selected based on the characteristics



Energies 2022, 15, 1860 5 of 17

listed in the catalogue specification provided by the manufacturer of the spool valve. The
result of model matching has been presented in Figure 3.

sm = A3s3 + A2s2 + A1s + A0 (4)
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In the system with a proportional flow valve, it was assumed that the dynamics of the
proportional flow valve are characterised by the following first-order differential equation,
identical to the first-order inertial element:

sm · GRDmax = GRD + TRD
dGRD

dt
(5)

The flow through the hydraulic motor is described by the following equation:

Qs = qsωs (6)

The flow caused by the compressibility of the working medium [23] and the deforma-
tion of the elements of the system was assumed to be as follows:

• On the section from the pump to the proportional spool valve:

Qcp = cp
dpp

dt
(7)

• On the section from the proportional spool valve to the motor:

Qcs = cs
dps

dt
(8)

Losses caused by leakages in the pump and in the motor can be described linearly
with the following equations:

Qvp = avp pp (9)

Qvs = avs ps (10)

The pressure drop caused by the total loss of pressure resulting from viscous drag
values (Hagen–Poiseuille equation) as well as the turbulent flow (Bernoulli’s equation)
were modelled using the following relation:

pd =
8µLQRD

πR4 + ∑
j

ζ j
ρ

2

(
QRD

πR2

)2
(11)
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The equation of the flow through the safety valve can be presented in the following
form [24]:

Qz(t) =

{
hz
(

pp − p0
)
− Tz

dQz
dt for pp > p0

0− Tz
dQz
dt for pp ≤ p0

(12)

In the analysed case, the motor load torque consists of three components: the constant
one coming from static friction, the one coming from viscous friction in the motor and gear-
box, and the moment of inertia. The torque value equilibrium condition on the hydrostatic
motor shaft is described by the following relation:

qs ps = Mb + f ωs + Izr
dωs

dt
(13)

To solve the above equations, the following initial conditions were assumed (slightly
different from those found in the literature):

pp(0) = p0 +
Qpt

hz
(14)

ps(0) = 0 (15)

Qz(0) = Qpt − avp p0 (16)

ωs(0) = 0 (17)

The limit condition for the hydrostatic motor was defined as follows:

if qs ps ≤ Mb, then ωs = 0,
dωs

dt
= 0 (18)

Solving the above equations numerically requires their parametrization; this was car-
ried out based on the catalogue data and the information found in the literature. However,
the available literature does not specify the value of some of the coefficients for the equa-
tions; therefore, experiments were conducted in order to determine the friction coefficient
of the hydraulic motor and of the coupled planetary gear.

In hydrostatic drive units, damping is caused predominantly by internal leakage,
resistance related to the flow of the working medium, and friction forces caused by the
movement of the hydraulic motor and the driven mechanism. In the dynamic model of
hydrostatic transmission, leakages are taken into account in the flow balance equation,
while the resistance of the movement of the hydraulic motor and of the coupled mechanism
(independent of the speed in the case of Coulomb friction and linearly dependent on the
speed in the case of viscous friction) are described via the equation of the equilibrium of
the torque values acting on the shaft of the motor. The viscous friction coefficients of the
hydraulic motor and of the coupled planetary gear were determined by measuring the
resistance to idle running motion as a function of the angular velocity of the shaft of the
motor. The pressure differences, ps, in the connection pipes of the hydraulic motor were
taken as the measure of the aforesaid resistance values. Figure 4 shows the relation ps
as a function of the angular velocity, ωs, of idle running. As the graph of this function
shows, it is a linear relation, which—with accuracy sufficient for practical purposes—can
be approximated with a straight line, which confirms the assumption of viscous friction.
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The findings presented here pertain to an M2C1613 gear motor coupled with an
OH-500 planetary gear. The planetary gear was filled with SAE 85W90 transmission oil,
whose temperature was kept within the range t1 = 25− 28 ◦C during the measurements,
and the hydraulic motor was supplied with ISO-VG 46 hydraulic oil at a temperature of
t2 = 40 ◦C± 2 ◦C.

Based on the presented measurement results, one can determine the value of the
viscous friction torque, and, in consequence, also the coefficient f of that friction, according
to the following equation:

f =
(ps − pc)qs

ωs
(19)

Considering the specific absorptivity of the motor (qs = 5.03× 10−6 [m 3 /rad]), the vis-
cous friction coefficient—determined based on the data presented in Figure 4, in accordance
with Equation (19)—was f = 6.3× 10−2

[
N ·m · s/rad2

]
.

Due to the specific nature of the rotational speed measurement, it was assumed in
the model that the speed measurement system can be described using a first-order inertial
element with the following transmittance:

Gn(s) =
1

Tns + 1
(20)

Once the equations of the mathematical model had been parametrized and the initial
conditions adopted, it was possible to solve the model numerically, and subsequently to
present in graphical form the pumping pressure of the pump, pp, the pressure on the motor,
ps, and the angular velocity of the motor’s shaft, ns, over time, for various waveforms of
the control signal, s, supplied to the coils of the proportional electromagnet, as described
by Equation (21) and presented in graphical form in Figure 5:

s =

{
s0 +

smax−s0
t0

t for 0 < t < t0

smax for t > t0,
(21)
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Figure 5. Waveform of the control signal, s, for the proportional valve.

The coefficient s0 was taken in such a form as to compensate for the idle stroke of
the spool of the proportional spool valve resulting from the stationary overlap, smax was
assumed to be the maximum value of the signal as specified in the specification sheet of
the spool valve, and t0 is the signal rise time from s0 to smax.

Figures 6–8 show the waveforms obtained by solving the mathematical models for,
respectively, the pressure in the discharge flange of the pump pp, the pressure at the inlet
port of the motor ps, and the rotational speed of the motor shaft ns.
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The simulations were carried out for various values of the ramp time (edge rise time)
t0 = { 0.5 s, 1 s, 2.5 s, 5 s, 8 s, 10 s}.

For the obtained results, the following parameters enabling assessment of the transi-
tional state of the transmission were determined:

• Dynamic surplus pressure ps max as the maximum pressure recorded during the start-
up phase;

• Start-up time ts as the time after which the rotational speed reaches 95% of the set
value from the moment of supplying the control signal;

• Reaction time tr as the time after which the speed of the motor reaches 5% of the
set value;

• Energy Es generated by the pump during the start-up process (first 10 s).

Table 1 presents a comparison of the parameters of the control signal along with the
above-described values of the parameters for assessment of the transition state.

Table 1. Comparison of the control signal parameters and dynamic surplus pressure values at the
inlet port of the motor, and the transmission start-up duration and reaction time. Transmission
controlled with the serial throttle method without feedback.

t0 [s] ps max [MPa] ts [s] tr [s] Es [Wh]

0.5 9.29 3.00 0.48 5.58
1.0 8.63 3.12 0.58 5.62
2.5 6.99 3.61 0.81 5.76
5.0 5.23 4.60 1.13 6.08
8.0 4.03 5.91 1.44 6.54
10 3.53 6.87 1.65 6.87

Analysing the simulation results obtained for the open control system (Figures 6–8 and
Table 1), we can observe that for a signal rise time below t0 < 5 s the start-up time, ts, varies
in a small range. This is directly due to the performance of the system, specifically the large
moment of inertia and the maximum pressure set on the relief valve. Additionally, Table 1
shows the energy generated by the pump during start-up process. It can be observed that
increasing the rise time of the signal increases the energy used for start-up. This is due to
the fact that the pressure on the pump remains high for a longer period of time when the
signal rise time is increased.
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As the next step, the control system was equipped with a feedback loop from the an-
gular velocity on the shaft of the hydraulic motor of the tested transmission. The following
relation describes the transmittance of the PI controller used:

GPI(s) = KP

(
1 +

1
TIs

)
(22)

The linear rise from n0 = 0 rpm to the set value of nmax = 200 rpm was taken to be
the signal of the set value to the controller, and t0 = 10 s was taken to be the signal rise
time. The following is the mathematical description of the signal of the set value:

nr =

{
n0 +

nmax−n0
t0

t for 0 < t < t0

nmax for t > t0,
(23)

A series of simulations for various values of parameters of the PI controller was
conducted for the assumed control signal. To assess the state of adjustment, apart from the
above-mentioned parameters, two additional parameters were introduced:

• Overshoot parameter described by the following relation:

κn =
max{n}

nmax
(24)

• Steady-state error for the ramp input measured at the end of the ramp signal:

er = nr − ns (25)

Table 2 presents a comparison of the parameters of the PI controller for which the simu-
lation results are presented, as well as the determined values of the assessment parameters.

Table 2. Comparison of the parameters of the PI controller and the obtained values of the dynamic
surplus pressure on the motor, the start-up time, the reaction time, and the overshoot.

KP TI ps max [MPa] ts [s] tr [s] κn [%] er [rpm]

0.020 0.50 2.70 9.72 1.49 102.7 4.4
0.020 0.75 2.34 9.84 1.63 101.8 6.4
0.020 1.00 2.15 9.94 1.73 100.9 8.8
0.015 0.50 2.51 9.79 1.70 102.7 5.7
0.015 0.75 2.19 9.94 1.87 101.6 8.6
0.015 1.00 2.03 10.09 2.00 100.5 11.5
0.010 0.50 2.28 9.93 2.05 102.6 8.5
0.010 0.75 2.04 10.16 2.28 101.2 12.9
0.010 1.00 1.91 10.39 2.45 - 17.4

The diagrams in Figures 9 and 10 illustrate the significant impact of the control and
adjustment parameters on the waveforms of the pressure on the pump and on the motor,
as well as the speed on the hydrostatic motor shaft.

Figures 11 and 12 show simulation results for different moments of inertia of the
system in the range I = 0.5− 2.5Izr. The presented model corresponds to other rotating
systems of machines in which the moment of inertia changes significantly by changing the
value and position of the load. In addition, the changes of the static load are insignificant,
so it is assumed in the simulation that they are constant.
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3. Experimental Verification of the Mathematical Model

Experimental studies were conducted to verify the mathematical model, the assumed
values of the parameters, and the assumptions. The experimental studies also made it
possible to determine the relation between the shape (parameters) of the control signal for
the proportional spool valve and the dynamic surplus pressure (at the inlet port of the
motor) and the speed on the shaft of the motor. Additionally, the duration of the start-up
process was analysed for various waveforms of the control signal for the proportional
spool valve.

Figure 13 shows the test stand that was used to verify the model. The hydraulic power
source is based on an axial variable displacement piston pump (flow was set to 14 L/min).
The system is protected by a direct operating relief valve (nominal flow 25 L/min). A direct
proportional spool valve (nominal flow 16 L/min) with spool position feedback was used
to control the gear motor (size 32 cm3/rev). The control signal was generated using a
multifunction DAQ device with analogue I/O (NI USB-6001) connected to a PC with dedi-
cated LabVIEW-based software. The measurement system was based on a 16-bit recorder
(Hydrotechnik Multi System 8050) and piezoresistive pressure transducers (Hydrotechnik
HySense PR100). The speed was measured using a tachometer (PZO E2/CPPB4).
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Figures 14–16 show the waveforms obtained during the start-up of the transmission
controlled by the serial throttle method with a proportional spool valve.
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In Figure 14, for the simulation time t = 0, the difference in pressure between the
experiment and the result of simulation can be noticed. This difference is caused by the
residual pressure remaining in the line from directional spool valve to the motor.

Figure 17 presents the result of two simulations compared with the experimental
run. The simulation labelled “sim.” is the result of the simulation including the opening
characteristic fit (Equation (4)). In addition, the simulation labelled “sim.*” is shown, which
assumes a linear dependence of flow on slider displacement (s = sm), as in [18]. In the
first control phase, a significant difference between the responses of different modelling
approaches can be observed, which has a significant impact on the evaluation of the
control dynamics.
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between simulation results with and without the modified spool valve model (Equation (4)).

The experimental verification studies demonstrate that the simulations satisfactorily
model the actual transmission. This enables further work intended to optimise the pa-
rameters and the waveform of the control signal, which will result in a reduction in the
dynamic surplus of the selected parameter (e.g., pressure at the inlet port of the motor)
while maintaining control of the duration of the transitional process.

4. Conclusions

The paper describes the start-up process of a hydrostatic transmission controlled with
a serial throttle. Additionally, it includes analyses of a transmission installed in a system
equipped with a PI regulator controller. Based on the resulting waveforms over time,
it can be concluded that during the start-up phase of an open-loop-controlled transmission
with the serial throttle method, the positive-displacement pump operates under high load
regardless of the ramp time of the proportional spool valve control signal. The pump
high load time is correlated with the start-up time and the pressure waveform on the
motor. However, the high load time of the pump can be reduced by suitably adjusting
the parameters of the control signal supplied to the coils of the proportional spool valve.
It was demonstrated that the maximum pressure value at the inlet port of the hydraulic
motor during its start-up can be modified by adjusting the shape of the proportional spool
valve control signal. In this way, it is also possible to reduce the noise generated by the
transmission during start-up [25,26]. Therefore, reduction in the maximum pressure is an
effective method for reducing the noise emission levels of a hydrostatic transmission in both
transient and steady states. By adjusting start-up parameters (the control signal waveform),
it is possible to regulate the maximum pressure value, the start-up time, and the reaction
time. The start-up process can be also modified by selecting the shape of the spool of the
proportional spool valve (e.g., symmetrical, asymmetrical) or by adjusting the stationary
overlap and operational overlap, but these methods are not analysed in this paper. These



Energies 2022, 15, 1860 15 of 17

methods also result in reduction in the load of the elements of the transmission, which
extends its operational life.

The method of modelling the hydraulic system presented in this paper, in particular
the method of modelling the opening characteristics of the proportional spool valve, allows
improving the simulation results obtained. The detailed construction of the model and
conducting simulations enable initial adjustment and analysis of the control or regulation
parameters prior to their application on the target machine. This is extremely important
because it reduces the risk of errors during the prototype start-up phase, and therefore it
reduces the time and costs of prototyping.

The presented detailed model for the start-up of the hydrostatic transmission equipped
with a proportional valve can be used for the purpose of optimising the start-up process in
terms of the execution of the objective function for the following parameters: dynamic sur-
plus of a selected value, start-up time, reaction time, or the energy efficiency of the system.
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Nomenclature

avp pump leakage coefficient [m 3 /Pa·s]
avs motor leakage coefficient [m 3 /Pa·s]

A0, A1, A2, A3
coefficients of the polynomial function describing
the opening of the spool valve [−]

cp
capacitance of the liquid and of the pipes on the section
from the pump to the proportional spool valve [m 3 /Pa]

cs
capacitance of the liquid and of the pipes on the section
from the proportional spool valve to the motor [m 3 /Pa]

er steady-state error to ramp input [rpm]
Es energy generated by the pump during the first 10 s [Wh]
f viscous friction coefficient [N·m·s/rad 2

]
Gn transmittance of the rotational speed measuring system
GPI PI controller transmittance
GRD conductivity of the spool valve

[
m3/s

√
Pa
]

GRDmax maximum conductivity of the spool valve
[
m3/s

√
Pa
]

hz amplification factor of the relief valve [m 3/Pa · s]
i gear ratio of the planetary gear [−]
j summation index [−]
s0 minimum value of the control signal [−]
smax maximum value of the control signal [−]
Izr reduced mass moment of inertia of rotational masses

[
kg ·m2]

KP proportional gain of the PI controller [−]
Mb braking torque on the shaft of the hydrostatic motor [N·m]
L total length of the pipes between the pump and the motor [m]
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n rotational speed of the hydrostatic motor [rpm]
n0 initial rotational speed in the controlled system [rpm]
nmax target rotational speed in the controlled system [rpm]
nr current rotational speed set point in the controlled system [rpm]
ns rotational speed on the shaft of the hydrostatic motor [rpm]
p0 opening pressure of the relief valve [Pa]
pd total pressure drop resulting from flow rate losses [Pa]
pp pressure on the pump [Pa]
ps pressure on the hydraulic motor [Pa]
ps max dynamic surplus pressure on the motor [Pa]

pc
pressure at the hydraulic motor corresponding to
static resistance values (for ω ≈ 0) [Pa]

R inner radius of the hydraulic pipes [m]
s control signal [−]
sm modified control signal [−]
t simulation time (step) [s]
t0 control signal edge rise time [s]
t1 oil temperature in the planetary gear [◦C]
t2 oil temperature in the hydraulic system [◦C]
tr transmission reaction time [s]
ts transmission start-up time [s]
TI time constant of the integrating element of the PI controller [s]
Tn time constant of the system for measuring the rotational speed [s]
TRD time constant of the spool valve [s]
TZ time constant of the relief valve [s]
qs displacement of the hydraulic motor [m 3 /rad]
Qpt theoretical pump output flow [m 3 /s]
Qvp flow value resulting from losses in the pump [m 3 /s]
QZ flow through the relief valve [m 3 /s]
QRD flow through the proportional valve [m 3 /s]

Qcp
flow caused by compressibility in volume
between the pump and the spool valve [m 3 /s]

Qcs
flow caused by the compressibility in volume
between the proportional spool valve and the hydraulic motor [m 3 /s]

Qs flow towards the hydraulic motor [m 3 /s]
Qvs flow value resulting from losses in the hydraulic motor [m 3 /s]
ζ coefficient of pressure losses caused by turbulent flow [−]
κn speed overshoot in a PI controlled system [%]

µ dynamic viscosity of the working medium [N · s/m2
]

ρ density of the working medium [kg/m 3
]

ωs angular velocity of the hydrostatic motor [rad/s]
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