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Abstract: There is a lot of research on the neural models used for short-term load forecasting (STLF),
which is crucial for improving the sustainable operation of energy systems with increasing technical,
economic, and environmental requirements. Neural networks are computationally powerful; how-
ever, the lack of clear, readable and trustworthy justification of STLF obtained using such models is a
serious problem that needs to be tackled. The article proposes an approach based on the local inter-
pretable model-agnostic explanations (LIME) method that supports reliable premises justifying and
explaining the forecasts. The use of the proposed approach makes it possible to improve the reliability
of heuristic and experimental neural modeling processes, the results of which are difficult to interpret.
Explaining the forecasting may facilitate the justification of the selection and the improvement of
neural models for STLF, while contributing to a better understanding of the obtained results and
broadening the knowledge and experience supporting the enhancement of energy systems security
based on reliable forecasts and simplifying dispatch decisions.

Keywords: time-series forecasting; short-term load forecasting; energy forecasting model; neural
networks; explainability; local interpretable model-agnostic explanations

1. Introduction

Power (electric) load forecasting is of increasing importance due to the role of electricity
and the daily functioning of the information society in running a business; there is a need
to synchronize three processes: power generation, transmission and utilization, difficulties
with storing large amounts of electric energy, and inevitable changes in power systems
towards highly complex and intelligent solutions [1]. The results of electric load forecasts
make it possible to satisfy the electric utilities-related needs of business entities, including
those related to planning and operations of power systems, energy trading, rate design,
and revenue projection; they are also useful for industrial and big commercial companies,
regulatory commissions, trading firms, banks and insurance companies [2].

An essential concept in time series (TS) forecasting is the forecasting horizon, i.e.,
the farthest moment in the future for which forecasts are made. In general, from the
point of view of the forecasting horizon and the dissimilarities of the problems to be
solved related to it, load forecasting in power systems can be classified as follows: from a
few minutes to hour-ahead scheduling—very short-term load forecasting (VSTLF); from
hourly, daily and weekly to yearly TS—short-term load forecasting (STLF); up to 3 years
ahead—medium-term load forecasting (MTLF) and up to 10 years ahead—long-term load
forecasting (LTLF) [3].

The use of forecasting results with various time horizons solves different problems.
Solutions connected with VSTLF are applicable, e.g., for the precise prediction of loads in
energy management systems and the selection of demand response strategies for intelligent
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buildings, which can provide peak load reduction [4]. Models of STLF (typically from 24 to
72 h ahead) are often used to solve short-term unit commitment scheduling problems [5,6].
The improvement of solutions related to short-term forecasting is also conducive to the
development of currently necessary research on how to optimize the planning of complex
energy storage systems for electric and gas vehicles [7]. The monthly and yearly load
forecasting results are helpful, e.g., in renewable-energy integration processes, in medium-
term planning power plants or grids, and in generator maintenance scheduling [8]. On the
other hand, LTLF is used primarily in long-term power system operation and planning,
which can be based on macro-economic indicators (e.g., GDP and population), sectoral de-
composition, technological penetration in various market segments and detailed temporal
granularity [9].

Among the different types of forecasting, short-term load and electricity price predic-
tion play a key role; research on all kinds of valuable methods is being developed [10,11].
Further considerations are focused on this type of forecasting; theoretical analysis is sup-
plemented by the results of empirical research based on the load time series with a 3-day
horizon (hourly granularity).

Many methods that have been used in STLF have been developed and can be classified
as follows: traditional statistical methods (too complicated to properly analyze the electric
load data, which are often non-linear and are highly variable over time; a significant fluctu-
ation of features and high noise occur), artificial intelligence (AI) methods (accepting noisy,
incomplete and non-linear data) and hybrid approaches (eliminating the disadvantages of
different methods used separately) [12].

Statistical forecasting models include, e.g., linear regression, generalized linear regres-
sion, rule-based, classification and regression tree-based, mixed (multilevel) and ensembles
of models. In the context of large datasets and big data (many dimensions and compu-
tational complexity) problems related to STLF, AI approaches, machine learning (ML)
methods, and the most commonly used artificial neural network (ANN) forecasting are
an essential addition to traditional statistical methods. In different variants (e.g., using
pattern representations of TS), they work well in the case of STLF, for which complicated
and intricate relationships between predictors, outcome variables, and TS with multiple
seasonal cycles are required [13].

Recently, many successful STLF models have been based on ML and ANN. Among the
STLF methods, there are, e.g., the similar-pattern method (similar day, pattern sequence and
sequence learning), the variable selection method (stepwise method, correlation, mutual
information, filtering and optimization algorithm), hierarchical forecasting (bottom-up,
top-down, ensemble and weighed combination) and weather station selection (average
model and optimal-number-of-stations model) [14]. The possibilities of using various types
of ANN for STLF were investigated, e.g., convolutional neural network (CNN) [15,16],
recurrent neural network (RNN) [1], multi-layer perceptron (MLP) and deep learning
methods [17]. Neural networks are also helpful when building hybrid neural models, e.g.,
integrating CNN and bidirectional long/short-term memory (CBiLSTM) [18]. The results
of these studies confirm the high importance of neural models in STLF.

However, using neural models for STLF is associated with certain inconveniences
and problems. A clear and reliable selection of an appropriate neural network is often a
significant challenge. The type of neural networks used and the structural parameters of
the models are, to a large extent, selected heuristically. In addition, these are black-box
models that provide results that are difficult or impossible to interpret, on the one hand
(most often there is no justification for the forecasts obtained for specific input data), and,
on the other, regarding the selection of critical parameters and tasks related to control
processes, that work for the safety and planning operation of power systems. Therefore,
the demand from practitioners forces the need for a scientific solution to the problem of
the lack of a clear, readable and trustworthy justification of the STLF obtained with the
use of neural models. This article aims to present an approach based on explaining the
forecasting, which can constitute the basis for justifying the selection and improvement of
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neural models for STLF, building confidence in the results obtained, enhancing the security
of energy systems based on forecasts and improving decision-making processes in load
planning processes. The local interpretable model-agnostic explanations (LIME) method
was used to determine reliable premises that justify and explain the forecasts.

It should be emphasized that the main contributions of the research are related to
study findings regarding the possibility of interpretability and justification of neural models
for STLF. The use of deep neural networks in forecasting and obtaining the lowest error
values is not the objective of the studies. The obtained results are in line with the current
research trend of key and growing importance, related to the search for justification and
building trust in the many types of existing AI models. The study proposes an approach
based on the LIME method that supports reliable premises that justify and explain the
forecasts. The use of the proposed approach makes it possible to improve the reliability of
heuristic and experimental neural modeling processes, the results of which are difficult to
interpret in accordance with existing needs. Explaining the forecasting may facilitate the
justification of the selection and the improvement of neural models for STLF, contribute to
a better understanding of the obtained results, simplify dispatch decisions and broaden the
knowledge and experience supporting the enhancement of energy systems security based
on reliable forecasts.

Experimental implementations and verifications of the developed forecasting models
were realized; the proposed approach supporting the formulation of reliable justification
and explanation of the forecast was practically verified. To improve comparative results,
two computational experiments were performed. The first one used the STLF model
based on the RNN and long short-term memory (LSTM) architecture. Then, in the second
experiment, the first experiment results were compared to two benchmarks using linear
regression and the LSTM network. In this experiment, the five-fold cross validation was
conducted for linear regression and the LSTM network based on modified data. Then, the
five trained networks were used to generate LIME explanations. The use of cross-validation
and division of the dataset into several folds was a relatively simple way to enrich empirical
research and to improve the comparative results.

The next section discusses the key possibilities of justifying STLF obtained with the
application of ANN; Section 3 describes the methodological issues relating to the proposed
approach and empirical research. Section 4 presents the research results and indicates
the importance of the findings for filling the existing gap in the STLF field. The last
section briefly highlights the significant results achieved and outlines possible directions
for further research.

2. Possibility of Justifying and Explaining Neural Forecasts

Justifying and explaining neural forecasts consists in getting to know the variables
that impact the determined explained variable and examining their significance in the
forecasting processes. The forecast justification and explanation approaches differ for
the various models used (traditional statistics vs. ANN). Traditional statistics require a
thorough understanding of the predicted phenomena and the use of exploratory data
analysis (EDA) and hypothesis testing, while ANN allows for building flexible models that
are adapted to work with large volumes of data, that have good predictive performance,
and that do not require users to have such a significant knowledge domain nor to run a
complex EDA [19].

Models of ANN are one of the best-known AI solutions that are used in predicting
energy and load TS. The interest of the scientific community in these issues is expressed in
the growing number of publications (about half of all publications in the area of energy fore-
casting are load forecasting papers); the massive development of computing technologies
is conducive to the application of various advanced ANN and ML methods [20]. Generally,
only the most commonly used regression models are more popular than the TS analysis
with explanatory variables using ANN [21].
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The idea of building mathematical neural models arose as a result of drawing inspi-
ration from the observed natural neurons and the connections between them (synapses)
that occur in the human brain. Biologists conduct comparative analyses of neural models
and brains in terms of biological characteristics and study human and animal performance
while solving various tasks; neuroscientists are interested in cognitive functions performed
by brains; the central area of interest of energy engineers is the possibility of using ANN
as a powerful forecasting tool [22]. Neural models used in STLF also more or less refer
to information processing of the brain, its structure, and individual areas, e.g., the visual
cortex of the brain [23]. Working with these models takes place in two stages: learning and
using the models for forecasting. In the first stage, a learning process (usually supervised)
takes place, as a result of which the weights assigned to individual synapses present in
the selected connection topology (architecture) are modified. The intuitively and heuristi-
cally selected architecture of neuron connections and their weights in the learned network
structure are the key elements of models that enable forecasting. While the first stage of
preparing such models might be complex and time-consuming, the second stage appears
to be relatively easy and fast in terms of its application.

Supervised learning (supervised ML) consists of using search algorithms for the most
appropriate output signals (network response obtained at the output) corresponding to the
input information. Models of ANN learn from datasets that contain learning examples, i.e.,
pairs of input and the corresponding output information.

For the successful performance of supervised learning, weak supervision sometimes
has to be used if it is impossible to provide strong supervision information based on the
usually costly research associated with collecting a large amount of learning examples and
the data-labeling process [24]. In the learning processes, the ability of ANN is used to
generalize the knowledge of the experiences obtained during the learning stage. Thanks to
this, it is possible to obtain correct output information also in the case when the input of
neural models is provided with information that the ANN did not deal with during the
learning process (it did not exist in the training set).

Models of ANN are simple to apply and have powerful application capabilities in the
field of load forecasting. They are easily used not only by experts with broad and deep
competencies in AI and ML but also by business practitioners. Essential advantages of
deep learning models based on ANNs are that they use mathematical tools extracted from
empirical data and that they often perform better than physics-based models when it is
necessary to conduct multifaceted and multidimensional analyses [25]. Moreover, such
models do not require detailed analysis nor learning the description of the relationships be-
tween the input (explanatory, independent) variables (features) and the predicted response
(explained, dependent) target variable.

The enormous potential of application values of neural models is accompanied by
serious difficulties resulting from the problem of the lack of legible and credible justifications
for the results obtained at the outputs of such black-box systems, inside which the forecaster
cannot see; the knowledge stored in the structures of connections between neurons and
the weights assigned to them is somewhat unreadable and incomprehensible. In general,
black-box-based approaches are among the most popular data-driven models (used for
energy prediction and forecasting), which, in addition to ANN, also include regression,
multiple linear regression, Gaussian process regression (GPR), support vector machines
(SVM), decision trees and several other optimization methods [26].

For black-box-based approaches and methods, it is challenging to build valuable de-
pendencies and mathematical functions that allow for reflecting the meaning and influence
of individual variables on the obtained values of the explained variable. The generation
of mathematical descriptions resulting from in-depth forecast phenomena is rather typi-
cal of traditional statistical forecasting models. This is positively perceived by business
practitioners, who usually do not want to study the forecasted phenomena thoroughly
and do not feel the need to use complicated mathematical tools. Satisfaction with the
easy application of neural models ends when there is a need to justify and explainneural
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forecasting models. Neural models are difficult to understand by practitioners due to their
increasing complexity, the presence of many dimensions, the unavailability of the contents
and their meaning, and the transparency of black-box tools [27]. One of the methods used
by practitioners is the ex-post evaluation of models, which consists of a simple comparison
of actual and forecasted values, and which, on this basis, determines forecast errors.

Justifying and explaining neural STLF based on ex-post evaluations of neural models
is usually of crucial importance in practice. The quality of the obtained results and the size
of errors primarily result from the hidden knowledge of the designers of these models, i.e.,
their experiences and intuition. It is challenging to build solely on this during STLF, as
the consequences of incorrect predictions of load in specific time intervals can be severe.
Load depends on many factors and is often random in nature, which may cause load
forecast errors, inefficient daily system operation, and the following negative economic
impacts: if the load is under-forecast, the energy demand may not be satisfied; in the case
of an over-forecast occurrence, there may be unnecessary start-ups and excessive spinning
reserve (SR) [28].

Appropriate STLF is not only conducive to the creation of a proper SR capacity but
may also contribute to the minimization of production costs and to an increase in power
system reliability [29]. Minimizing the load forecasting error and determining correct
forecasts of this kind makes it easier to solve the unit commitment problem, taking into
account the SR of dispatchable units that help to ensure the availability of adequate energy
storage and correct operation scheduling under demand estimation uncertainties [30].

The possibility of forecast errors is increased due to the growing complexity of prob-
lems that are heuristically and intuitively solved with the help of dynamically developing
large deep neural models, which are also successfully used in forecasting. Therefore, it is
reasonable to look for solutions that enable the justification and explanation of neural STLF.
Among the different directions developed for explaining neural models, some are related to
already trained and fixed models; the others are related to self-explanatory neural models
with built-in modules for generating forecast explanations [31]. Further considerations and
computational experiments are focused on in the first type of model.

Justifying and explaining neural STLF for an already trained and fixed model can
be achieved, for example, using Shapley additive explanations (SHAP) [32] or the LIME
method that belongs to the model-agnostic methods (MAM) class and consists in using
an interpretable model to explain predictions in a credible way using local approxima-
tion [33]. Both methods are competitive, e.g., in relation to the feature importance plots
method (developed into partial dependence plots) [34] that provides information about the
global model behavior but that does not provide a clear interpretation of the relationships
between variables, i.e., an explanation of making particular classifications or forecasting;
therefore, it is not suitable for justifying STLF obtained with the use of ANN. The results of
empirical research related to comparative analyses of the effectiveness and efficiency of
basic explanation algorithms and methods are available in the literature [35].

Some argue that high-stakes decisions assisted by neural models should be avoided
due to the general difficulties in obtaining justifications and explanations for the results
achieved with black-box ML models [36]. That is why it is essential to conduct research in
this field and to provide solutions that allow one to justify and explain neural forecasting
models. Applying the universal (useful for various types of black-box models) LIME
method, one can obtain interpretive explanations that support the understanding and
justification of the results with a high likelihood, according to the feature space defined by
the user. Then, the local approximation of model behavior is determined, which applies to
most items from datasets [37].

In general, the justification of predictions and interpretability of ML and ANN con-
tributes to increasing the acceptance of the deepening integration of machines and soft
computing algorithms with the business environment and everyday life. Explanations
using MAM effectively support the interaction of people with machines thanks to the
model flexibility (cooperation with any ML model), explanation flexibility (different forms
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of explanation) and representation flexibility (other feature representation compared to the
model being explained) [38]. The main stages of the LIME method are as follows [39,40]:

(1) Selecting observation for explaining and justifying,
(2) Generating a new dataset with perturbed samples for a selected observation (ran-

domly around it),
(3) Using the chosen black-box model to calculate the forecast for the permuted data,
(4) Calculating the weights of new samples according to their proximity to the se-

lected observation—the weight values determine the relative importance of each
permutated sample,

(5) Identifying features from permuted data enabling the best description of the neural model,
(6) Using the permuted data to train a simple interpretable model,
(7) Explaining the neural models’ local behavior by using weights of features regarding

the simple model.

The use of the LIME method enables the prediction of the behavior of neural models,
building trust in them and the forecasts determined with their help. The results of justifica-
tions and explanations of the models also provide a basis for comparing different models
and an opportunity for their improvement.

3. Methodology

Empirical research was carried out using an electricity load forecasting dataset that
contains an hourly post-dispatch electricity load for Panama, ranging from 3 January 2015
to 27 June 2020 (48048 samples) [41]. Apart from the date, time and load, each sample
was associated with weather data from three big cities in Panama (David, Santiago and
Panama City). The weather data consisted of wind speed, humidity, air temperature (factors
measured at 2 m above ground) and total precipitable liquid water. Finally, all samples
were extended with binary features indicating whether the specific day was during the
school period and whether holidays were occurring at this time. The last feature of the
dataset was the holiday indicator (equal to 0 if there was no holiday). Since the period
of the year and the day are important factors regarding STLF, the DateTime feature was
divided into three features: month, date and hour, which resulted in the initial dataset
containing 19 features.

As part of the research, two computational experiments were implemented to carry
out the empirical verification of the proposed models, determine their forecasting metrics,
and check the suitability of the approach that supports the justification and explanation
of forecasts based on the LIME method. The first forecast experiment was performed as
follows. As in the previous studies, the horizon of 72 h (break of 72 h) was assumed [42].
Contrary to previous studies, the forecast concerned specific hours and was estimated
based on the values of the 96 h before the 72-h gap (Figure 1). Due to the forecasting horizon
of 72 h for pre-dispatch load reports, we decided to use the neural model for predicting the
load after the 72-h gap from the values of 19 features during 96 consecutive hours (therefore,
each input sample contained 1824 features). The dataset was divided into training (80%)
and testing (20%) by splitting the initial set after 80% of consecutive samples.
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Figure 1. The scheme of making the forecast (experiment 1).

After dividing the dataset, the subsets were preprocessed to form 96 blocks of features
(for each hour) and the corresponding load after a 72-h gap, which resulted in the creation of
the final training set of shape (38270,96,19) and the final testing set of the form (9442,96,19).
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This means that the data in training and testing datasets were collected in arrays with three
dimensions corresponding to the numbers of samples, hours and variables. Before training,
the input features were normalized to have a mean of 0 and a variance of 1. The testing set
was transformed using the same values for normalization as in the training set.

Since the STLF task structured in this way is based on sequential data, the ANN
model based on RNN was chosen. The developed model consisted of 2 LSTM layers (both
containing two units and rectified linear unit activation). The last layer of the model was
a fully connected layer composed of one neuron with linear activation to perform the
regression of electricity load.

The model was trained with a batch size of 64 using the mean squared error (MSE)
loss function. For the training, the method for stochastic optimization, i.e., the adaptive
moment estimation (Adam) method [43], with a learning rate of 0.001 for the first 20 epochs,
was used. Then, the model was fine-tuned for the next 60 epochs with Adam optimizer’s
learning rate of 0.0005. The hyperparameters of the model were chosen empirically after
initial experiments. The model had 219 trainable weights; one training epoch took 675 s
on average (with the mean training step of 1.13 s) on graphics card NVIDIA GeForce GTX
960M. After the model was trained, the LIME method was applied to explain the model
predictions of the electricity load in the next 72 h. This approach allowed us to justify the
model’s prediction and to clarify what could impact the electricity demand load. For clarity,
only the 40 most important features (detected by LIME) were analyzed.

Then, as part of the second computational experiment, the results from the first
experiment were compared to two benchmarks using linear regression and the LSTM
network. The dataset for training the linear regression was created from the 19 features
during the same hour and on the same day as in the previous four weeks (4 × 19 features
in each training sample). The second forecasting experiment used the above-mentioned
dataset and the LSTM network with parameters and architecture similar to those described
earlier in this article. The second network was trained with analogous parameters with
one change (0.001 learning rate was applied for the first 40 epochs of training, and 0.0005
learning rate was used for the next 80 epochs of training). Before training the LSTM
network, the number of features per hour was reduced to 10 (4 × 10 features in the training
sample) using the recursive feature elimination (RFE) function and cross-validated metrics.
RFE is one of the most crucial feature-engineering techniques, enabling the elimination of
features that could negatively affect training processes and model functioning [44]. The
5-fold cross-validation was conducted for linear regression and the second LSTM training.
Then, the five trained networks were used to generate LIME explanations. The second
LSTM network had 147 trainable weights (the number is lower than in the case of the
first network due to the lower number of analyzed days); one training epoch took 42 s on
average (with the mean training step of 71 ms).

To perform the necessary calculations, program codes were prepared using the high-
level object-oriented interpreted programming language Python [45]. The models were
implemented with Tensorflow/Keras frameworks and libraries for deep learning models
development [46]. Data processing was conducted using flexible Pandas [47] and Scikit-
learn libraries [48]. The LIME algorithm was derived from the original implementation [49].

4. Results and Discussion

Figure 2 and Table A1 present the real and predicted electricity load during 1–4 June
2019. It can be noticed that the ANN managed to learn the main trends in electricity load;
the only mistakes were made during high fluctuations between consecutive hours. The
figure containing more days of prediction curves is shown in the Appendix C section.

The qualitative analysis of the compliance of the forecasted values with the actual
load curve indicates the satisfactory suitability of the constructed model for forecasting.
The most popular (well described in the literature) error measurements (key performance
criteria, forecasting metrics) for the quantitative assessment of neural models (e.g., used for
TS forecasting) include the following: mean absolute percentage error (MAPE), given as
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a percentage, and following three as absolute values—mean absolute error (MAE), mean
square error (MSE) and root mean square error (RMSE) [50,51].
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Forecasting metrics determined for the test dataset (presented in Table 1) confirm that
the developed STLF model based on the RNN and LSTM architecture is characterized
by meaningful predictive ability and forms a reasonable basis for continuing research in
the second experiment. The model based on LSTM layers achieved the MSE error rate
of 8126.50 and RMSE error rate of 90.15. Those are satisfactory results considering that a
significant part of the testing set coincided with the COVID-19 pandemic, during which
the electricity load was radically different.

Table 1. Forecasting metrics (experiment 1).

Type of Error Value

MAPE 5.68
MAE 68.54
MSE 8126.50

RMSE 90.15

Figure 3 and Table A2 present the explanations provided by LIME for the 40 most
essential features in the model’s prediction (the numbers after feature name and underscore
indicate the hour in the 96-h period in the input sample for which the feature was taken
and analyzed). The horizontal axis visible in the explanation for the prediction chart clearly
shows the impact of individual features; this impact is measured in MWh. Such units allow
a clear interpretation of the positive and negative measurable impact defined by the plus
or minus signs.

The explanation was generated for the prediction of the electricity load in the first
hour of 1 June 2019. The real electricity load for this hour was 1072.2 MWh; the predicted
value was 1063.06 MWh. As expected, the features that had the most significant impact on
the prediction were the hour values (indicating the time of the day for which the forecast
was being made) and the national electricity demand. For instance, the national demand
at midnight of 25 May 2019 (nat_demand_0), higher than 1029.32 MWh, impacted the
model’s prediction by around 22.3 MWh. After the two most essential feature types, the
weather variables started to appear. For example, air temperature 2 m above ground in
Panama City at 4 a.m. on 25 May 2019, lower than 26.94 degrees Celsius, increased the
electricity load prediction by 5.90 MWh. The LIME algorithm offered insight into the
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previously created black-box model and provided knowledge about the features impacting
the national electricity load.
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The two computational experiments allowed us to examine the quality of the predictive
models and to outline the possible results from applying the LIME method. The dataset
presented earlier were used in the empirical study of the first experiment; the second
experiment expanded the diversity of data spaces and feature dimensions by introducing
5-fold cross-validation in this set. Forecasting metrics for the second experiment are
presented in Table 2. The obtained MAPE values were not very good, although sometimes
even 6–7% values are considered accurate [52]. Still, they can be acknowledged to be
satisfactory at this research stage, focused mainly on examining the possibility of using the
LIME method.

The results of the second experiment were related to slightly better MAPE values
compared to the first one. It may be noted that the average MAPE for linear regression was
a bit lower than for LSTM. This is somewhat surprising, as it could be expected that this
deep neural network would have much better results than the simpler model. The applied
LSTM model was, however, relatively simple, and the full potential of this type of neural
network was not used, which would probably be revealed after using higher complexity
deep learning networks (with more layers and units). Moreover, obtaining such results
could be caused by the specificity of the dataset, which, to some extent, included data for
the testing set related to the COVID-19 pandemic period (Fold 5).
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Table 2. Forecasting metrics for the second experiment.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

Errors for linear regression

MAPE 4.69% 4.30% 4.38% 4.24% 5.25% 4.57%
MAE 52.47 48.47 50.96 48.59 63.2 52.73
MSE 5590.97 4916.31 5260.55 4924.68 7491.08 5636.72

RMSE 74.77 70.12 72.53 70.18 86.55 74.83

Errors for LSTM based on cross-validation splitted data

MAPE 4.99% 4.09% 4.24% 4.16% 5.48% 4.59%
MAE 55.79 45.8 49.23 47.87 66.55 53.05
MSE 6157.98 4668.14 5115.48 4787.59 8231.21 5792.08

RMSE 78.47 68.32 71.52 69.19 90.73 75.65

Future research may involve using more empirical datasets. Applying the k-fold cross-
validation method in these experiments made it possible to better examine the developed
models’ quality using the single dataset. In the first experiment, a division into a training set
and a test set was made. Using the previously mentioned method in the second experiment
allowed us to enter five equinumerous subsets (folds) of the available dataset. Consequently,
individual subsets were applied for testing; the rest were applied for training. Thanks
to this, it was possible to eliminate misinterpretations related to the strict selection of the
division into training and test sets.

As a result of applying the RFE algorithm implemented in the Scikit-learn Python
environment, the following ten best features were obtained: ‘nat_demand’, ‘T2M_toc’,
‘W2M_toc’, ‘T2M_san’, ‘W2M_san’, ‘T2M_dav’, ‘W2M_dav’, ‘month’, ‘day’ and ‘hour’.
These features were used for each of the four hours that fell on the four days of the
consecutive weeks preceding the forecasts. For this reason, there are 40 items on the vertical
axis of the LIME explanation chart.

Figure 4 presents the explanations provided by LIME for LSTM and Fold 1. The results
for the remaining four folds are presented in Figure A1. These figures show that justifi-
cations and explanations are slightly different due to the data set’s introduced divisions.
There are, however, clear analogies and repeated dependencies between these LIME results,
which confirms the practical usefulness of the proposed approach.

The obtained results indicate the possibility of practical local interpretation (for spe-
cific observation), concerning even complex and complicated neural forecasting models;
they also offer a deeper understanding and justification of their load predictions, while
also generating explanations, thanks to the identification of features that are particularly
important for the values obtained on the output of models.

Regardless of these positive features of approaches based on the LIME method, many
of their disadvantages should be identified. One of these drawbacks is related to possible
problems with stability issues and the generation of different justifications for repeated
calculations under similar conditions, which may, for example, result from randomly
generated data around selected observation.

For the LIME stability assessment, additional indicators may be helpful; they make it
possible to increase confidence in the achieved results of calculations and to avoid cases
when different explanations for the same forecasts are obtained [53]. One of the possible
ways is to reduce instability in the obtained explanations, e.g., by replacing random pertur-
bation of data with agglomerative hierarchical clustering (AHC) [54]. The robust model
interpretability can sometimes be difficult due to the application of local approximation
based on linear models, which may be inadequate for many analyzed problems.

One way to overcome this limitation is to use a kernel-based LIME with feature
dependency sampling (KLFDS), which can contribute to reducing errors resulting from
the use of linear approximation, not taking into account complicated correlations between
features and usually-non-linear local decision boundaries [55].
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5. Conclusions

Results of short-term load forecasting affect the selection of critical parameters and
tasks related to the control processes, production cost, work safety and planning for the
operation of reliable power systems. The approach proposed in the article, supporting
the determination of credible premises that justify and explain the forecast, opens a vast
research area for improving the applied neural short-term load forecasting models and the
reliability of the processes of building machine learning and neural network models used
for forecasting based on black-box models, the results of which are often not trustworthy
and are challenging to interpret. On the one hand, neural networks are characterized by
substantial computational capabilities that are useful in forecasting energy and load time
series; a significant number of publications in this field have been created. On the other
hand, the scientific community and business practitioners notice the critical problem of
the lack of a clear, readable and credible short-term load forecasting justification obtained
using such models.

The aim of the article, to present an approach based on the explanation of forecasting,
was achieved, which can constitute the basis for justifying the selection and improvement
of neural models for short-term load forecasting. The short-term load forecasting models
using the recurrent neural network architecture and long short-term memory were built in
connection with introducing this goal. Then, its experimental implementation and empirical
verification were carried out, confirming its meaningful predictive ability. Finally, this
approach supported establishing reliable premises, justifying and explaining the forecast
based on the local interpretable model-agnostic explanations method.
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Taking the abovementioned into consideration, on the one hand, the obtained research
results form the basis for the use of a satisfactory accurate neural forecasting model. On the
other hand, the analysis using the local interpretable model-agnostic explanations method
and justification of the prediction results may contribute to their better understanding,
broadening the knowledge and experiences that contribute to increasing the possibilities of
improving the quality of subsequent forecasts. The presented research outcomes show that
the explanation of forecasting can be the basis for justifying the selection and improvement
of neural models for short-term load forecasting, building confidence in the results obtained,
increasing the security of energy systems based on forecasts and improving decision-
making in load planning processes.

The availability of data used in calculations increases the presented results’ credibility
and facilitates comparative analyses by other researchers and business practitioners. The
achieved results constitute a reasonable basis for further development of research in the
field of load forecasting. For example, future research could use different neural models
and various methods for explaining black-box models. It is possible to attempt research
on reducing explanation algorithms and on defects of methods resulting from stability
issues, as well as on randomly generated data around selected predictions and on obtaining
different justifications for repeated calculations under similar conditions. Another area
of possible research may focus on ways to overcome the limitations that result from the
determination in the local interpretable model-agnostic explanations method of local ap-
proximations using linear models, which may be inadequate for many analyzed problems.
It is also worth developing research on how to justify and explain load forecasting types
other than short-term load forecasting, i.e., very short-term, medium-term and long-term.
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Appendix A

Table A1 displays the results of the forecasts for two days within experiment 1.

Table A1. Selected forecasting results.

Time Real Data Forecasted Value
0 1072.1968 1063.062134
1 1032.3157 1021.810242
2 1007.6383 990.6638794
3 990.8934 974.3623657
4 1010.025 978.1856079
5 961.7391 1001.430359
6 1061.3078 1054.686035
7 1185.7693 1152.481079
8 1282.3128 1310.768188
9 1336.0031 1355.456787
10 1332.4882 1378.082275
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Table A1. Cont.

Time Real Data Forecasted Value
11 1290.6503 1386.229858
12 1227.4551 1378.469116
13 1215.3455 1372.918579
14 1199.5798 1360.308105
15 1185.8578 1335.524292
16 1163.5908 1303.252197
17 1181.7484 1291.111572
18 1228.4201 1280.887939
19 1227.8296 1270.615356
20 1190.3462 1249.526245
21 1132.5383 1194.442871
22 1087.9636 1143.660767
23 1033.2848 1089.948975
0 992.4635 1047.69165
1 969.2115 1005.492493
2 946.2374 974.3960571
3 939.9386 959.0457153
4 909.2571 955.1030273
5 873.436 961.0645142
6 909.0867 985.1030273
7 988.2789 1120.075073
8 1047.6219 1169.357788
9 1117.3657 1199.871338
10 1167.4369 1228.380249
11 1180.0029 1247.645508
12 1205.2567 1262.932129
13 1202.2126 1258.16394
14 1198.2685 1243.799683
15 1197.2401 1233.031982
16 1184.4191 1242.855103
17 1192.5696 1268.72876
18 1266.025 1285.984131
19 1283.757 1293.797607
20 1279.0493 1274.454834
21 1245.9557 1214.341064
22 1186.8137 1162.392456
23 1130.7019 1103.609497

Appendix B

Table A2 shows the explanations for essential features within experiment 1.

Table A2. Results concerning explanations.

No Feature Impact

0 hour_0 ≤ 3.25 34.34750015
1 hour_20 > 17.25 −28.84380605
2 hour_1 ≤ 4.25 27.26926009
3 hour_15 ≤ 16.25 23.48685886
4 nat_demand_0 > 1029.32 22.30685105
5 hour_2 ≤ 5.25 19.22766052
6 hour_14 <= 16.25 18.46285147
7 hour_21 > 6.75 −16.52832108
8 11.50 < hour_18 ≤ 20.75 −15.38437866
9 hour_22 > 6.75 −14.97356073
10 nat_demand_5 ≤ 1078.71 −13.16680104
11 hour_3 ≤ 6.25 11.32555623
12 nat_demand_6 ≤ 1144.51 −10.06540743
13 hour_11 ≤ 14.25 9.260677418
14 hour_28 ≤ 7.25 8.95563697
15 hour_10 ≤ 13.25 8.685037066
16 5.75 < hour_16 ≤ 18.50 −8.446567774
17 hour_13 ≤ 16.25 8.376842584
18 hour_12 ≤ 15.25 8.233946128
19 hour_23 ≤ 2.25 8.209306696
20 hour_27 ≤ 6.25 8.184816332
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Table A2. Cont.

No Feature Impact

21 922.33 < nat_demand_1 ≤ 1138.17 −7.865249086
22 hour_44 > 17.25 −7.166772948
23 hour_9 ≤ 12.25 6.855280623
24 903.39 < nat_demand_3 ≤ 1108.44 −6.797931718
25 hour_31 ≤ 10.25 6.05921166
26 T2M_toc_4 ≤ 26.94 5.907768902
27 hour_4 ≤ 7.25 5.862321239
28 TQL_toc_20 > 0.01 5.393426144
29 hour_24 ≤ 3.25 5.310395233
30 hour_26 ≤ 5.25 5.102217001
31 TQL_san_31 > 0.02 4.736387869
32 QV2M_san_67 > 0.02 4.474977329
33 W2M_san_43 ≤ 11.59 −4.388825137
34 25.96 < T2M_toc_1 ≤ 26.36 −4.321585585
35 26.86 < T2M_toc_58 ≤ 29.20 4.257097006
36 nat_demand_26 > 1006.93 −3.967277063
37 nat_demand_7 > 1213.21 3.526961657
38 26.55 < T2M_toc_37 ≤ 29.09 −3.399095666
39 QV2M_san_15 > 0.02 −2.975194042

Appendix C

Figure A1 shows actual vs. predicted electricity load in experiment 1 (the presented
period is 9 July 2019–20 July 2019).
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Appendix D

Figure A2 presents the explanations for LSTM and Fold 2–5 within experiment 2.
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