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Abstract: This work aims to develop a novel system, including software and hardware, to perform
independent control tasks in a genuine parallel manner. Currently, to control processes with various
sampling periods, distributed control systems are most commonly utilized. The main goal of this
system is to propose an alternative solution, which allows simultaneous control of both fast and
slow processes. The presented approach utilizes FPGA (Field Programmable Gate Array) with
Nios II processor (Intel Soft Processor Series) to implement and maintain instances of independent
controllers. Instances can implement FDMC (Fast Dynamic Matrix Control) and PID (Proportional-
Integral-Derivative) control algorithms with various sampling times. The FPGA-based design allows
for true independence of controllers’ execution both from one another and the managing processor.
Also, pure parallel execution allows for implementing slow and fast controllers in the same device.
The complete flexible system with a matrix of controllers working in parallel in real-time was tested
with both simulated and actual control processes (servomotor), yielding the same results as fully
simulated experiments.

Keywords: Model Predictive Control; Fast Dynamic Matrix Controller; field programmable gate
array; servomotor; matrix of controllers

1. Introduction

As the Model Predictive Control (MPC) [1,2] approach is expanding from industrial
processes with long sampling periods to processes with sampling periods of single mil-
liseconds [3–5] or even microseconds [6,7], there is a demand for controllers executing and
calculating new control signals on time. There are research papers concerning the process
of solving control problems using fast solvers [8–10], as well as tuning MPC to reach lower
control error, which further influences control time [11]. On the other hand, some papers
aim for the robustness of the control algorithms despite uncertainties [12,13], unknown dis-
turbances [14] or unknown model of the controlled process [15]. This phenomenon is also
coupled with a still-growing interest in MPC in embedded systems, including microcon-
trollers [6,16] and Field Programmable Gate Arrays [17–19], which, despite having much
more limited resources, can be utilized for controlling complex, nonlinear processes [20,21].

The application of FPGAs is very wide. The general computational capabilities are
presented in the article [22]. Based on numerous examples, it can be concluded that FPGAs
allow much better performance than very fast classical processors [23]. In many cases, it is
possible to achieve more than 100 times algorithm speedup by using process decomposition
and computation parallelization [24,25]. The use of FPGAs in the multiplication of integer
with notation matrices was presented in the work of [26], where the optimal use of multipli-
cation circuits reduced the use of logic resources and increased the speed of computation.
In the field of pseudorandom number generators, attention can be drawn to the dissertation
of [27], where the applicability of FPGAs is described in detail. FPGAs are frequently used
in cryptography [28]. Also, applications in space vehicles find many opportunities from
the point of view of computation and their speed using low clock frequencies [29,30]. The
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implementation of a numerical predictive control algorithm based on a linear model in
the state space is discussed in the paper [31]. A hardware block solver for the quadratic
programming task (active constraint method) was used. The algorithm was applied to
a synchronization problem between two motors. An interesting item [32] deals with the
application of a numerical predictive control algorithm, based on linear models in the state
space, to an embedded system (for a simulated Cessna aircraft). Parallel operations were
used to reduce computation time. Optimization of operations in solving the quadratic
programming task was performed. Results are presented showing that the parallel im-
plementation allowed practically a twofold reduction in computation time. Solutions for
the military industry are discussed in the work of [33]. Although not common, there are
applications of FPGAs in automation of industrial processes. Examples of applications are
presented in the paper describing CNC control [34] or the paper [35], which describes a
proprietary PLC implemented using an FPGA chip.

The control of a DC motor with Proportional-Integrate-Derivative (PID) and Internal
Model Control algorithms, realized in hardware on an FPGA chip, is presented in the
paper [36]. An example of use for industrial robot applications can be found in work [37].
FPGA based predictive controllers are also utilized for winch servomotors [38] and power
converters [23,39,40]. There are applications of FPGAs in medicine, such as in computed to-
mography imaging tasks [41,42]. FPGAs have dedicated versions for military applications,
where, as an example from Xilinx, encrypted radio links can be used. Modern unmanned
aerial vehicles use FPGA technology for trajectory planning [43]. FPGAs can also be used to
control the electronic keying circuitry of capacitor batteries [44]. An interesting and giving
very illustrative comparison is the work of [45], which describes the implementation of a
numerical Dynamic Matrix Controller (DMC) algorithm in an FPGA.

Also noteworthy are the FPGA-based applications that have been used for distributed
systems [46], as well as real-time parallel systems [47], or distributed systems with Petri
nets [48]. Also worth mentioning are control and communication systems for distributed
power systems for space applications [49], or even high-speed multichannel distributed
data acquisition systems [50] used in high energy physics experiments.

The proposed system structure represents an original approach that allows simulta-
neous control of multiple high-speed processes requiring very short sampling periods,
where the sampling periods can be different for each control loop. The control loops are
fully realized in hardware as dedicated digital circuits. In addition to selecting the needed
sampling period, it is also possible to define which analog input of the real process is to be
measured by a given controller. In addition to the real processes, it is also possible to con-
nect a simulation block, which in particular can reproduce the behavior of the real process
with the accuracy of the proposed model, where first order inertia is used in the considered
case. The output of the controller—that is, the control value of the process—can be directed
to a number of ports that correspond to the physical output of the PWM, the analog output
or the simulation block. With this approach, it is possible to realize a comparison of the
control result of a real process by one controller with a second controller, which can be used
to control a simulated process based on the real process model. This will allow to study
the differences between simulation and real object behavior, where it will be possible, for
example, to monitor or diagnose the real controller. In addition to parallel connection, it is
also possible to cascade connection of up to three regulators, where there will be inertia in
the intermediate path, which will allow filtering the signal from individual stages of the
regulators. The considered cascade will follow the problem of simultaneous regulation
of slow and fast processes. This solution will also be characterized by universality, which
is lacking in the cited publications, because the control algorithms will not be limited to
a specific control process and each of them has the possibility of dynamically variable
parameters from the level of the managing processor. There are many possible applications
of the proposed system. The main targets are complex processes in terms of a structure yet
can be decomposed into many simpler control loops, even if requiring different sampling
control intervention frequencies, e.g., power plants. This approach would be beneficial
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to manage those processes better, as there would not be a necessity for multiple separate
controllers to control one process. The solution considered in this paper is as functional
as different controllers yet combine all of them with an integrated layer of management.
Nevertheless, more complex control loops would be considered as the system is developed.

The main contributions of this paper are summarized as follows: (i) a system allow-
ing for parallel execution of control algorithms is developed, (ii) the robust structure of
this control system is justified and discussed, (iii) simulation and experimental tests are
performed using the proposed system to validate its applicability.

This paper is organized as follows. In Section 2, the theoretical formulation of DMC,
specifically its fast version Fast Dynamic Matrix Controller (FDMC) is given. FPGA is
described in Section 3, giving a foundation for system design description, which starts
in Section 4 with the description of testbench. In this section, there are given details
of the considered hardware interface between FPGA and the external devices. System
design description is then continued through Section 5, where the implementation details
in Verilog Hardware Description Language (VHDL) are given and discussed. Section 6
focuses on the last part of the presented system, i.e., the software Nios II processor, which
manages all the aforementioned elements of the system. The overall testing environment
is described in Section 7, presenting how separately discussed elements of the system are
connected into a whole solution. Sections 8 and 9 present simulation and real-life results,
respectively. Paper is concluded in Section 10, main advantages of the proposed system are
listed, and potential further development routes are shortly discussed.

2. Fast Dynamic Model Control

This chapter presents the theoretical basis of the predictive control algorithm with a
derivation of the formulas of the computationally efficient version.

A Dynamic Matrix Control is a Model Predictive Control algorithm used for asymptot-
ically stable processes. The control signal is determined by minimizing some cost function,
assuming that the optimization variable is a trajectory of future control increments. Further
on, only discrete control is considered. The following notation will be used: manipulated
variable y(k) denotes measured output signal of the process of control, controlled variable
u(k) denotes signal that affects the process of control, and ysp(k) denotes desired output
signal value, i.e., setpoint. In the introduced signals, discrete-time instants k = 0, 1, 2, . . .
are used. To stress some signals’ predictive nature, a notation x(p|k) is used, which should
be read as a value of signal x determined at time instant k, for the time instant p, where
p ≥ k. Also a abbreviation ‖x‖2

Θ = xTΘx is commonly used in following formulas. Only
controllers with single input and single output are considered in this paper, as the presented
algorithm is easily extended for larger problems [6].

To determine a quality of control based on the future control trajectory increments, i.e.,
optimization variable,4u(k) = u(k)− u(k− 1)):

4u(k) = [4u(k|k) . . . 4u(k + Nu − 1|k)]T (1)

where Nu is the control horizon, a following cost function is introduced:

J(k) =
N

∑
p=1

(ysp(k + p|k)− ŷ(k + p|k))2 (2)

+ λ
Nu−1

∑
p=0

(4u(k + p|k))2 (3)

In this formula ŷ(k + p|k) denotes the predicted values of the controlled variable (the
process output), N (N ≥ Nu) is the prediction horizon, λ > 0 is a penalty factor. DMC
algorithm repeatedly, at each time instant k, determines control signal increments (1) as
the solution of minimization of the cost function (3). However, only the first element of
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this vector is ultimately applied to the control process. In the next iteration of the control
algorithm, all calculations have to be conducted again.

The prediction of the process’ output signal is determined based on the step-response
model, in a form of a vector of coefficients s1, s2, . . . of length D. Value of D is called
dynamics horizon is determined as an index of step-response coefficient, which satisfies
relation si ≈ sD for i > D.

The cost function (3) can be written in a form of:

J(k) = ‖ysp(k)− ŷ(k)‖2 + ‖4u(k)‖2
Λ (4)

where vector ysp(k) = [ysp(k + 1|k) . . . ysp(k + N|k)]T is of length N, the same as vector

ŷ(k) = [ŷ(k + 1|k) . . . ŷ(k + N|k)]T (5)

The matrix Λ = diag(λ, . . . , λ) has a dimensionality of Nu × Nu. Thanks to the new
form of the cost function (4) it is suitable for both single input single output as well as
multiple inputs multiple outputs processes, assuming dimensions of the matrices used in
this function are appropriate to the extended problem.

Because of the quadratic dependency of cost function on the control signal increments,
i.e., optimization variable, the solution to this problem can be calculated analytically

4u(k) = K(ysp(k)− y0(k)) (6)

where the Nu × N matrix K is defined as

K = (MTM + Λ)−1MT (7)

=

 K1,1
...

KNu,1

 =

 K1,1 . . . K1,N
...

. . .
...

KNu,1 . . . KNu,N

 (8)

The step-response matrix

M =


s1 0 . . . 0
s2 s1 . . . 0
...

...
. . .

...
sN sN−1 . . . sN−Nu+1

 (9)

is of dimensionality N × Nu. The free trajectory y0(k) is defined as

y0(k) = y(k) + Mp4up(k) (10)

where the matrix MP, with dimensionality of N × (D− 1) is

Mp =


s2 − s1 . . . sD − sD−1
s3 − s1 . . . sD+1 − sD−1

...
. . .

...
sN+1 − s1 . . . sN+D−1 − sD−1

 (11)

=
[

Mp
1 . . . Mp

D−1

]T
(12)

the vectors y(k) = [y(k) . . . y(k)]T and4up(k) = [4u(k− 1) . . .4u(k− (D− 1))]T are of
length N and D− 1, respectively.
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It is worth pointing out that the classical definition of the DMC algorithm assumes that
all elements of the control increment vector have to be calculated. At the same time, only the
first one is ultimately used, and the others are discarded. In the FDMC, calculations, which
result is not useful, are omitted to shorten calculation time, allowing it to be independent
on the control and prediction horizon. This is achieved by simplifying control law (6):

4u(k|k) = Ke(ysp(k)− y(k))−
D−1

∑
i=1

Ku
i 4u(k− i) (13)

where

Ke =
N

∑
p=1

K1,p Ku
i = K1Mp

i (14)

It is necessary to underline that this simplification is possible only if the setpoint value
is constant on the prediction horizon, i.e., ysp(k + 1|k) = . . . = ysp(k + N|k).

3. Field Programmable Gate Array

The chapter presents basic information about FPGAs taking into account their design
and features particularly relevant to the present work.

Since 1980 there has been a great breakthrough of MOS technology and it has begun to
dominate the entire integrated circuit market. The year 1980 celebrated the first one million
transistors in an integrated circuit, today there are hundreds of millions of transistors in
one integrated circuit bone using MOS technology.

The breakthrough came with the development of a reprogrammable integrated circuit.
In 1984, Altera first provided the market with a reprogrammable logic IC with symbol
EP300. The programming of the logic was accomplished using EPROM memory. Today
several leading companies offer FPGAs on the market: Intel (former Altera), Xilinx, Lattice,
Microsemi. The main principle of operation is the same with all manufacturers. Using
VHDL or Verilog hardware description languages allows design portability between dif-
ferent vendors, unfortunately using vendor-specific function blocks does not allow full
code portability as you have to adapt those blocks to the new vendor or even use their
dedicated functions. Differences also appear in peripheral hardware and hardware capa-
bilities. Advanced FPGA ICs contain a very large number of programmable logic cells
in their structure, typically from 3000 to as many as 9 million. A distinguishing feature
of FPGAs is that they can be repeatedly configured directly by the user. They are ideally
suited for concept testing in phase testing. Application Specific Integrated Circuit (ASIC)
chips, which have their configuration permanently written into their structure, are then
selected for volume production.

The three most important elements of FPGAs are as follows: logic blocks, input and
output blocks and internal interconnect matrix. The logic blocks are user-configurable.
Similarly, the input and output blocks are fully configurable. For the entire system to
function properly, an internal connection matrix still needs to be configured, where the
appropriate connections between the logic blocks and the input-output blocks can be
set. The entire configuration of the FPGA chip is stored in configuration memory. Most
commonly, this memory is static RAM. Upon power-up, the configuration is loaded from
the FLASH memory and only later the RAM is used.

Each logic cell consists of look-up tables (LUTs), multiplexers, arithmetic logic, and
registers. These blocks provide an optimal representation of the logic functions required
by the user. It should be noted that logic blocks operate simultaneously and can perform
independent operations. They can also perform mathematical operations. If we combine
both of these properties then programmable circuits allow different tasks to be performed
at the same time in many arithmetic units. The limitation, of course, is the number of logic
units available, but with current technology this limitation is insignificant.
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The input and output blocks allow you to use each pin as an input or as an output.
If the input option is selected, it is possible to use resistors to pull the line to supply
voltage or ground. The inputs are also protected against electrical charge-discharge. The
output configuration can use the built-in D flip-flop, a three-state buffer, synchronous or
asynchronous operation capability.

The internal connection matrix provides optimal connections between internal blocks
through three connection types. Available are general purpose connections, long lines,
and direct connections. General-purpose connections use metallization paths grouped
into segments. Switch matrices occur at intersections, and every distance there are also
built-in buffers for the signal regency. Long lines are dedicated routes that bypass the
switch matrices and are dedicated to connecting distant blocks. This achieves a small phase
shift of the clock signal, which is especially important in the synchronous operation of logic
circuits. Most often these connections are used to distribute the clock signal within the logic
circuit structure. Direct connections are used to connect adjacent blocks, thus achieving
minimal delay in propagation of signals bypassing switch matrices.

The advantages of FPGAs include highly parallelized signal processing. Due to the
functional representation of the algorithm in the structure employing an appropriate HDL
code, it is possible to completely transfer the algorithm to the FPGA structure. Hardware
realizations of control algorithms will be developed. What is more, FPGAs enable parallel
operation, which will allow operating many regulation algorithms simultaneously. The
possibility of parallel work of many circuits in FPGA structure will allow for a large increase
in computational speed. It is possible to implement several processors operating completely
independently. Thanks to the high speed and computational capabilities of FPGAs, it will
be possible to apply predictive control algorithms to complex processes with very short
sampling periods, of the order of a single millisecond or even less than one millisecond.

4. System Design—Testbench

This chapter describes the interface board assumptions, electronic design details and
hardware implementation.

The selected FPGA board provides universal connectors to which you can connect
your own devices. The allowable signal voltage levels are between 0 and 3.3 V. Such a
standard is, of course, completely impractical for use in industrial process control. This can
very often be a big problem, while e.g., PLCs offer interfaces that meet industrial standards.
To solve this problem, an interface board dedicated to the FPGA under consideration was
designed and fabricated. Each input and output is galvanically isolated using ADUM
circuits to provide magnetic isolation. This protects the ports of the FPGA chip from being
damaged by abnormal voltages. The following interfaces have been prepared, with the
main focus on industry standards:

• analog input ±10 V: signals from sensors, servo speed measurement,
• analog output ±10 V: servo speed control, proportional valves,
• digital input +24 V: binary signals, sensors, incremental encoders,
• digital input differential A, /A, B, /B: incremental encoders from servo,
• digital input +3.3 V: other low voltage sets,
• digital output +24 V: PWM, binary outputs, stepper motor or servo control,
• digital output +3.3 V: other low voltage sets.

On the FPGA side, an IDC connector is available to connect the FPGA pins to the
corresponding signals on the interface board. A +5 V and +3.3 V power supply is also
provided on the FPGA side of the board to supply power to the galvanic isolation circuits.
There is a power supply on the interface board whose main task is to provide all the
required voltages on the isolated side. The main power input requires 24 V. There is a
10 V stabilizer, a 5 V stabilizer, a 3.3 V stabilizer for analog circuits, a 3.3 V stabilizer for
digital circuits, and a 2.5 V stabilizer as a reference for analog-to-digital converters. In
addition, a voltage converter module is available to produce +10 V and −10 V voltages
for the analog signal outputs. Each of the stabilizers is enclosed by a capacitor bank to
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provide adequate suppression of power supply ripple. The power supply is equipped with
LEDs confirming its operation. In Figure 1 shows a schematic of a single ±10 V analog
input, which is implemented as a resistive divider with correction capability. The voltage
at the output can vary in range from 0 to 2.5 V, which is required by the analog-to-digital
converter. Schottky diodes watch over the protection of the allowable voltage range. The
input signal can be applied to an ARK screw connector or two pin connectors. The output
of this simple circuit is given to a secondary built on an operational amplifier MCP6004.
From here, the protection diode is fed to a +3.3 V supply.

1
2

P11

ARK2

D5
BAT54S

1k

R43

1k

R42

20k
PR2

AGND

10k
PR1

+2.5V_EA

30k

R41

AGND

+3.3V_EA

Wejscie +/-10V

0/2.5V
AOUT

1
2

P12

GOLDPIN_2

Inputs +/−10V

Figure 1. Schematic of a single ±10 V analog input.

Figure 2 shows a further part of the analog-to-digital conversion circuit. Each input
voltage divider is connected to an operational amplifier whose purpose is to realize high
input impedance, and also to provide additional separation between the physical input
and the ADC. The converter is equipped with 8 channels, of which 4 are permanently
connected to the outputs of the operational amplifiers. The four remaining inputs can
be wired according to the user’s needs, e.g., they can be other operational amplifiers or
other external circuits dedicated to the application. The ADS8344EB ADC has an internal
multiplexer that selects an input for signal processing by successive SAR approximation.
The result is available on a digital bus that is controlled from the FPGA chip. A galvanic
isolation circuit, ADUM163N0BRZ, was used to transfer the signals. This circuit has internal
coding and decoding circuits, so that it is able to carry both the variable component and
the constant component.

A section of the digital-to-analog processing circuit has also galvanic separation in the
form of the ADUM160N0 chip, which passes signals to 4 independent DACs. The DACs
require only the SCLK clock signal, DIN data signal, and SYNC selection signal. The control
of the corresponding signal states is handled by the dedicated logic implemented in the
FPGA structure. A further digital-to-analog processing path has DAC8560 signal converter
itself and the OPA277U operational amplifier, which converts the analog voltage from the
0/3.3 V range to −10/+10 V. A single binary input for a 24 V signal consists of a simple
voltage divider. Additionally, a light-emitting diode is included for quick verification of the
current input state. After the divider there is also a voltage range protection with Schottky
diodes. A further processing of the 24 V binary signal goes to the galvanic isolation system
ADUM160N. The 3.3 V binary input has been solved similarly. A 24 V binary output
solution provides a possibility to manually control the output with the PB1 button. It is
possible to operate the output in two variants of logic. Transistor allows to control the signal
by shorting to ground the system, another transistor allows to control the signal by shorting
to power supply the system. The control type can be selected by jumpers. In addition,
the output is equipped with a light-emitting diode that indicates its current state. There
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are also diodes to protect against overvoltages that may occur when controlling actuators
with high inductance such as valve coils. A differential input circuit has 4 differential
channels, converted to digital form by the AM26LS32ACD chip. These signals then go to
the ADUM160N0 galvanic isolation circuit. Additional LEDs allow for quick verification of
proper connection. For the case under consideration, it is possible to connect two servo
motors with differential signals with A and B outputs. This allows the current position of
the motor or an independent incremental encoder to be counted. The designed PCB has at
the center an IDC connector for connection to the main FPGA board. Around the connector
are ADUM circuits for galvanic isolation. At the bottom is the power supply for external
signals. On the left are the 3.3 V output circuits, above on the right are the 3.3 V inputs, in
next are the differential inputs, then the ±10 V analog output circuits, on the top right are
the 24 V binary inputs, below are the ±10 V analog inputs. Between the IDC connector and
the power supply are the 24 V binary outputs. The designed board is double-sided, where
the bottom layer is mainly a ground plane. The analog ground is separated from the digital
ground to minimize interference. Due to the size of the designed board, the density of
component packing, and the very small ICs requiring soldermask for soldering, the board
was commissioned. All components were purchased and the assembly process began.
First, the power supply was soldered and all necessary voltages were verified. When they
were found to be working properly, the connection part to the FPGA board was soldered:
the connector, capacitors, resistors, and ADUM chips. The operation of the inputs and
outputs of the ADUM circuits was tested, in particular, the correctness of the DC transfer
was verified. The maximum transmitted frequency is about 100 kHz. The next step was to
solder the inputs and outputs in standard 3.3 V and test them. It was already possible to
connect the board to a PC via a USB-RS232 converter and test the communication capability
in both directions. In addition, communication with the thermal bench was tested, in which
communication follows the RS485 protocol. The last binary signals to be run were the 24 V
inputs and outputs. The corresponding circuits were soldered and connected to several
input test signals.
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5. System Design—Hardware Description Language

This chapter presents a description of the implementation of the digital layer, including
support for hardware interfaces and individual control algorithms.

The digital part design is realized in a dedicated environment Quartus Prime in
version 18.0 by Intel. It is a comprehensive tool for FPGA, SoC (System on Chip) and
CPLD (Comple Programmable Logic Devives) projects. The implementation in hardware
description language is done in order, then the process of verification, logic synthesis and
optimization of the interconnect layout structure is started. The software has a rich database
of basic logic blocks. It is also possible to perform simulations in the related ModelSim
package. In this paper, a basic configuration of the FPGA circuit was performed based
on the VHDL language. The main unit contains, among others, instances of the Nios II
processor, process controllers, inertia modules, PLL modules, hardware counters, analog
interfaces and PWM interfaces. Both the PWM blocks and the analog signals are prepared
to operate at sampling rates on the order of 1 kHz to provide 1ms signal sampling. No
digital filtering operations are performed on the signals coming from the analog inputs.
The logic diagram of the analog input control module generated during synthesis is shown.
The circuit is designed so that values from four analog-to-digital converters (A, B, C, D)
are acquired and placed in registers within 1 ms. The data coming from the converter
are fed in series with one pin, so later they have to be processed by 16-bit registers and
placed in appropriate output flip-flops. The whole operation is controlled by a completely
independent state machine realized only by logic circuits using the process mechanism in
VHDL language. The logic diagram of the analog output control module generated during
synthesis is shown. The circuit is designed in such a way that values from four digital
registers (A, B, C, D) are set at each analog output within 1ms. The data from the registers
are fed in parallel and must be processed into a single signal fed to the converter. The
whole operation is controlled by a completely independent state automaton realized only
by means of logic circuits using the process mechanism in VHDL language. The automaton
sets synchronization outputs in appropriate moments in correlation with a selected digital
register. The logic diagram of the PWM output control module generated during synthesis
is presented. The circuit is designed to update the signal fill value within 1 ms. The carrier
frequency of the PWM signal is 1 kHz. The fill control is implemented by a 10-bit counter.
The smallest quantum that can be set is 1 ms/1024. The physical implementation of this
circuit has been realized using a combiner, a counter and a comparison circuit. It should be
noted that by using digital circuits the various operations are performed in parallel and
thus it is possible to obtain current measurements from each analog input at any sampling
time (even every 1 ms), send new values of control signals to each analog output and new
values of signals to PWM outputs. The implementation and assembly of the entire system
was done in a single VHDL file. It contains all the instances of the needed logic blocks
and the communication signals between them. As a result of compilation and synthesis
of the whole project, the logic diagram of the system was obtained. Looking for an error
in the obtained logic diagram is a big challenge. The compilation will naturally not hint
at the functional error of the logic circuits. With incorrect implementation of hardware
description code, it may happen that it is not possible to synthesize a given algorithm. Then
the compilation and synthesis will be successful, but the generated logic gate structure
will not resemble the designed circuit at all, the obtained result will not meet the assumed
functional requirements. In order to effectively verify such situations, it is necessary to
use a tool for simulating logic circuits. For Intel company the built-in tool is ModelSim
program. It is a powerful environment allowing to fully simulate VHDL code. It is possible
to simulate the original code written by the user and the code which is available after
compilation and synthesis in the Quartus system. This version of the code is an accurate
representation of the logic that will be on the chip. It takes into account the delays of signal
transmission and the operation of individual gates. This is why it is important to verify
your own code and the code generated by the Quartus program to be absolutely sure that
the final circuit will work. To facilitate the verification of the circuits in ModelSim you can
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use the test automation scripts. In such scripts it is possible to perform automatic code
compilation, add signals for drawing, give appropriate overrides on the set signals and
finally run the simulation for a specified time.

The Figure 3 shows a sample of the implementation of the computational part of the
algorithm including parameter registers, multiplication and summing circuits. All elements
have been duplicated according to the required dynamics horizon using the generation
function which allows to easily scale the solution. After the compilation, appropriate
connections of digital circuits were obtained and presented in the form of schemes as
shown in Figure 4. It is possible to check the correctness of the realized control system.

1 --Generate the modules
2 --storing previous control increments
3 gen_Du_array: for i in 0 to 31 generate
4 Du : D_P
5 PORT MAP
6 (
7 D_in => TempAFLT(i),
8 Clk => InClkSampling ,
9 Rst => InReset ,

10 Q_out => TempAFLT(i+1)
11 );
12 end generate gen_Du_array;
13
14 --multiplying parameter by previous control increments
15 gen_mult_array: for i in 0 to 18 generate
16 mult_module : ALTERA_FP_MULT
17 PORT MAP
18 (
19 clk => InClk ,
20 areset => InReset ,
21 a => SigParamData(i),
22 b => TempAFLT(i+1),
23 q => TempBFLT(i)
24 );
25 end generate gen_mult_array;
26
27 --summation of intermediate results
28 gen_addder_array: for i in 0 to 18 generate
29 adder_module : ALTFP_ADD
30 PORT MAP
31 (
32 clock => InClk ,
33 dataa => TempBFLT(i),
34 datab => TempCFLT(i),
35 result => TempCFLT(i+1)
36 );
37 end generate gen_addder_array;

Figure 3. Code snippet in Verilog Hardware Description Language describing a set of automatically
generated multipliers with summation.

This allows to implement PID algorithms using the structure presented in Figure 5.
Model Predictive Control algorithms are also feasible, and thus a fast variant of the DMC
algorithm is implemented using the scheme visible in Figure 6. It is worth mentioning
that further optimization can be done to lower computational time so that it grows in a
logarithmic manner depending on the dynamics horizon, as it is shown in Figure 7.
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Figure 4. Automatically generated multipliers with summation as seen in the Quartus software.
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Figure 5. Current PID design implemented in the Matrix of Controllers.
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Figure 6. Design of Fast Dynamic Matrix Controller algorithm for FPGA implementation.
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Figure 7. Improved design of FDMC with a logarithmic computational complexity.

6. System Design—Software CPU

In the following chapter, a managing processor (Nios II) is described, and configuration
possibilities are discussed.

Two processors are considered in the presented approach. One is designed to oversee
the control algorithms:

• Maintain the safety of internal data.
• Perform synchronization of externally supplied parameters.
• Check if the overall configuration is without issues.

The other one is considered a simplified SCADA, i.e., its tasks are to transfer and visu-
alize data from the controllers. As the system is still under development, the functionality
of both processors is contained in a single instance of a Nios II processor.

There are many tasks for which this processor is responsible. One of those is to
maintain the consistency of the simulations running in the FPGA. Considering that the
presented system may be used to design the control system, simulation functionality is
incorporated into the described solution. The simulated process implemented on the
FPGA currently considers ARX models, which allow modeling most of the commonly
considered processes for industrial applications. State-space and neural models will be
further implemented as the system is still in development. In the following experiments,
two simulated processes with ARX models are presented.

The main concern of this processor is to maintain a safe working environment for
the controllers, which includes configuring controllers. Specifically, there are three main
steps of controller configuration: routing its input signals, routing its output signals, and
configuring its internal parameters. All those tasks have to be carefully planned so that
no uncontrolled signals from the controller are generated, as those could damage the
control process.

Currently, there are two sets of input signals which can be directed as an input of
the controller: measurements performed based on the analog-to-digital converters and
simulated outputs from the internal simulations. The configuration is performed by the
Nios II processor through a selector register, which allows deciding which source signal will
be used as an input to the controller block (Figure 8 (left)). This approach allows for easy
reconfiguration and even performing online changes to the signal routes. This approach
will be extensively utilized in further research where redundant controllers will be tested as
well as voting mechanisms. Apart from the input signal source, the intervention time of the
controller can be configured dynamically. In Figure 8 (right), there is another selector which
determines which clock signal will be used as the intervention signal for the controller.
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The set of potential input clock signals contains both constant, predefined frequencies, as
well as signals with configurable prescalers and PLL to allow customization of input clock
frequency, where it is necessary.

controller
clock

analog input 1

process
signal 

          ...
analog input Nai

simulated input 1
          ...

simulated input Nsi

clock 1
     ...
clock Ncc

selector

selector

Figure 8. Selectors for input signals of the controller: process signal (left) and controller clock (right)
in the considered system.

The analogous configuration has to be performed at the output side of the controller.
Each output signal can have its source selected as the output of one of the controllers to
prevent collisions in signal routes. This configuration is presented in Figure 9, where, as it is
currently implemented, there is a set of analog output signals, a set of PWM output signals,
and a set of signals that are connected with simulated processes implemented in the same
FPGA unit. Each of those inputs has at most one of the controllers’ outputs selected as its
source; therefore, it is not possible to direct the outputs of two controllers into the same
output signal.

analog output 1

          ...          

analog output Nao

simulated output 1

          ...          

simulated output Nso

PWM output 1

          ...          

PWM output Npo

selector

selector

selector

selector

selector

selector

selector

selector

selector

manipulated signal  (CNc)

...                     

manipulated signal  (C1)

Figure 9. Selectors for output signals of the controller directing manipulated signal to one of many interfaces.

The controller itself (Figure 10) consists of a set of input and output signals, of which
some are determined through a Nios II processor. Input signal named “process signal
y” and “controller clock” was already discussed, as well as output signal “manipulated
signal u”. Also, some signals are predefined and cannot be modified, as is the case with the
computation clock, which is used as the clock base for all internal mathematical operations
performed inside a specific controller implementation. Nevertheless, parameters of the
controller and setpoint value can and have to be configured through the considered in this
section processor. There is a predefined number of parameters, although because of the
automatic generation utilized in the controllers, this number can be easily modified in the
HDL description. Before the controller is used, the processor has to set each one of the
parameters to the correct value by setting its consecutive indices and values of parameters
and sending a pulse signal through the latching line. At this point in development, those
parameters are precalculated outside of the Nios II processor, and the processor is used
only to transfer those values, but the aim is to perform as many calculations as possible in
the FPGA itself. A similar concept is utilized with setpoint value – this time, however, there
is no need for index information as there is only one value for a single output signal. Again
latch signal is used to effectively store new setpoint value in the controller. There are also
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control and status signals that are used to perform additional operations on the controller
(e.g., stop or force its execution) and get information about its current state, respectively.
The latter is used to determine which controller performed all its operations and, therefore,
which data are ready to collect and transfer or visualize.

manipulated 
signal 

status

CONTROLLER

C1

computation clock

index

latch signal

parameters

control
setpoint

value

latch signal

value

process signal 

controller clock

Figure 10. General controller structure as it is implemented in the considered system.

The last task of this processor is to collect data from controllers. The processor ob-
tains data independently of the intervention periods of the controllers. In the following
experiments this period was set to 10 and 25 milliseconds. This allows collecting data with
a granularity fitting dynamics of the whole process instead of focusing on the particular
controller and its data. This approach makes it possible to first observe each control loop in
detail in the stage of controller tuning, and when it is finished, one can shift focus on the
whole plant, where there are more complex relations and more advanced controllers.

Data that are collected by the processor should also be accessible further in time for
the sake of analysis. Two approaches are considered: constant transfer of data as soon as
they are obtained and transfer of data in bulks. The first one is a proper approach when
sampling time is higher than the transfer time of a single set of data. In this case, there are
no issues, and thus a simple solution is the best one. In case data are collected faster than
the processor can send them, such a policy of transferring data would result in frequent
data inconsistency. If the inconsistency is imminent, it is important to have them under
control. Therefore it is advised to gather all data and buffer them inside the processor,
and when the amount of information is big enough, all of it should be sent in one transfer.
This would obviously generate a period of no measurements, as the processor is busy with
transferring data instead of collecting them, but the data that is already collected and is
being transferred is consistent in itself, which is critical in further analysis.

This approach can be further extended with the compression algorithms or intro-
duction of a threshold of changes in signals after which the signal is determined to have
changed, as it is commonly used in SCADA systems.

As the processor has many tasks to handle, no visualization is currently performed on
board. As this is a task of lower priority, it should be performed with another processor
specifically designed for this task only, and it should be connected to the data bus of the
considered in this section processor.

7. Testing Environment

This chapter describes the hardware bench built and lists the major components
included. The testing environment considered in this research is shown in Figure 11.
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Figure 11. The testing environment, which includes: Power supply, FPGA development board
DE10-Standard, Interface board and servo motor—the process of control.

DE10-Standard board is connected with the interface expansion board, which is further
connected with a modular servomotor. This servomotor is made by Inteco and allows the
use of a PWM signal to influence the rotational speed of the servo. As the measurements,
readings from the tachogenerator are used. As the power cannot be given from the de-
velopment board directly, an amplifier is necessary. Technical details are gathered in the
Table 1. Servomotor’s speed is controlled with an FDMC controller with an intervention
period of 0.01 s.

Table 1. Test enviroment equipment summary.

Section Component Additional Information

Terasic DE10-Standard
development board

FPGA chip Cyclone V SoC SCSXFC6D6F31C6N
110,000 logic elements

Memory 64 MB SDRAM

Interface USB, Ethernet, JTAG, USB

User interface Switches, Buttons, LEDs

I/O interface 40 pin connector

Interface board

Power supply 10 V, 5 V, 3.3 V DC
Analog inputs 4 ports ± 10 V

Analog outputs 4 ports ± 10 V

Digital inputs 6 port 24 V

PWM outputs 6 port 24 V

Servo stand

Control Unit Power supply, Safety
Interface Unit Conversion signals to 24 V standard

Main Motor 24 V DC motor, 3000 rpm, 3.1 A

Measurements Tachogenerator, Incremental Encoder

Power
Power supply 24 V DC 3.2 A

Fuse short circuit protection



Energies 2022, 15, 1833 17 of 23

Two additional simulated processes are introduced to emphasize the ability of the
presented system to control processes with various controller intervention periods. Those
processes are modeled as transfer functions, namely:

G1 =
1

0.25 s + 1
G2 =

1
0.50 s + 1

(15)

where G1 and G2 are simulated both with a frequency of 1 kHz, and controllers are config-
ured to have an intervention period of 0.1 s and 1 s, respectively. Process G1 is controlled
with FDMC while G2 is in loop with PID controller. The selection of control algorithms
for those processes is arbitrary as both FDMC and PID are equally good choices. The
development board is connected to the PC computer, where it periodically sends mea-
surements in sets of 3000 because of the short sampling time. It is worth mentioning that
the Nios II processor is used to set controllers’ setpoint values and does it based on the
number of iterations of the sampling loop. This aspect will be described further in the
following sections.

To configure the system described in this paper, one has to perform the following steps:

1. determine which algorithm is appropriate for the process,
2. perform configuration of the controller:

(a) choose one of the free instances of the appropriate control algorithm,
(b) select the input signal for the controller (ADC/output of simulated process),
(c) select output of the considered controller as a source for the output signal

(DAC/PWM/input of simulated process),
(d) set intervention period of the controller,
(e) determine and set parameters of the control algorithm:

• for the FDMC first 63 of 64 registers represent values of Ku
i , while on the

last position, a Ke is stored.
• for the PID algorithm, values of r0, r1 and r2 are stored at registers with

indices 0, 1 and 2, respectively.

(f) define setpoint values based on the current requirements.

In the case of the PID algorithm, tuning of the parameters can be performed using one
of many commonly used methods, e.g., step response method, relay method. In the case
of the FDMC algorithm, to determine parameters of the controller, one has to obtain step
response coefficients and determine values of Ke and Ku

i :

1. set control values as constant in time (e.g., connect source for the output signal directly
to Nios)

2. when the output signal stabilizes, change the control signal, generating a step input
on the process of control

3. from this point in time onward, store all measurements in a reference to the stable
signal from 2 as long as the output signal changes

4. filter obtained measurements or generate ideal approximation of the step response
5. store step response coefficients in a form of vector s = [s1, s2, . . . , sD]

T

6. calculate final parameters of the FDMC controller:

(a) calculate matrix M using Equation (9)
(b) calculate matrix MP using Equation (11)
(c) calculate matrix K using Equation (7)
(d) using Equations (8), (12) and (14) determine values of Ke and Ku

i .

After those steps, the controllers are ready to be utilized. Nevertheless, even during
runtime, it is allowed to change the controller’s parameters and thus perform online tuning,
or even reroute signals, e.g., routing redundant measurement to the controller in case of
problems with the original signal.
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8. Simulation Results

In this section a reference control trajectories are determined based on the MAT-
LAB simulation.

Before the experiments on the testing environment were conducted, a MATLAB
simulation was implemented and executed. A model of the servomotor was determined
based on experimental data:

Gservo =
−0.3876

0.0387 s + 1
(16)

and an offset of 0.9 was determined for the control signal.
Three controllers are defined to control output signals of the simulated processes.

Namely, FDMC is used to control the output signal (rotational speed) of simulated servo—
this controller will be called C1. Another FDMC is used to regulate simulated process
based on a transfer function G1, and lastly, the PID controller regulates the output signal of
a simulated process G2 (Figure 12 (left)).

As the simulated processes are updated each millisecond on the FPGA, in the sim-
ulation, the same 1ms was used as a period after which all three considered processes
determine the new measurement. As the sampling time, 10 ms was used, and the controller
intervention period was set to 10 ms, 100 ms, and 1000 ms for C1, C2, and C3, respectively.
The setpoint value for each controller is determined and configured in a sampling subrou-
tine, which is executed each 10ms. Setpoint changes occur in a regular fashion for each
controller: for C1 each 150 sampling periods (1.5 s), for C2 each 300 sampling periods (3 s),
and each 600 sampling periods (6 s) for C3. Results of the simulation are presented in
Figure 13. The output signal of the process is denoted as y, while the control signal from
the controller is written as u. The number of the control loop (for C1, it is 1, for C2 – 2, and
for C3, it is 3) is visible in the subscript of the signal name. On the left-hand side, there are
results of the whole experiment, while on the right-hand side, only a selected period of
time is visible. This allows us to see how the frequency of controller interruption varies
between defined controllers.

MATLAB

C1
FDMC

C3
PID

C2
FDMC

Controlled
process

Interface
board

FPGA board

C3
PID

C2
FDMC

C1
FDMC ServoPWM

ADC

N
io

s

Power
stage

Figure 12. The structure of control loops in the simulated (MATLAB) environment (left) and FPGA
with servomotor as a process of control (right).

It is worth noting that due to the artificially introduced offset between the setpoint
changes of C3 and its intervention periods, there is a delay before controller C3 reacts to
the change of control error. Nevertheless, this has to be underlined that this behavior is
expected and should not be considered as an error.

There is a drawback to this simulation, as all the controllers are executed in synchro-
nization to one global clock, thus executing in the worst-case scenario all three controllers
in the same iteration of the simulation. Although in this example there are no complex
calculations, the total time of execution of all controllers equals the sum of time required
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to run each of the controllers. With more complex or more dynamic processes, this time
would lengthen, whereas, in the proposed system, all controllers work independently, and
thus execution time of any controller does not depend on the time of any other controller.

–

–

–

–

–

–

–

–

–
–

–
–

–

–

Figure 13. Results of fully simulated experiment implemented in MATLAB: full experiment (left)
and zoomed (right).

9. Experiment Results

Experimental results are presented in this section and the configuration utilized to
obtain those results.

The analogous experiment was performed with the testing environment, and thus
with a real-life servomotor connected via ADC and PWM, and two internally implemented
in the FPGA simulated processes. All of those are controlled with independent controllers
implemented inside of FPGA (Figure 12 (right)).

Time periods for updating simulated processes, controller interruption, and sampling
are the same as in the simulated environment. Also, setpoint trajectories are kept the same
for the sake of a clear comparison between expected results and collected ones.

Results are presented in Figure 14. There is visible noise in the output signal of the
servomotor (y1), which is connected with the inaccuracies of the mechanical connections
between the servomotor shaft and the tachometer. Also, a shift in the control signal is
visible, as the servomotor is controlled using reverse polarity PWM, and thus with greater
width of the PWM, the power delivered to the servomotor decreases.

It is important to notice that the control quality of the second and third control loop
is the same as the quality presented in simulated results. Even though this observation
might be expected, it implies that the execution of a number of controllers in parallel can
be executed in such a way that they indeed do not interfere with each other keeping their
control quality as if they were executed one after another.

To further stress independence between the process of control and process of data
gathering, Figure 15 shows data collected with a sampling period of 25 ms. As there are
still samples from 3000 discrete time instants, the overall time increased to 75 s even though
the setpoint trajectory did not change (because it is dependent on the sampling iteration)
measured output signals of processes of control change faster, which is to be expected.



Energies 2022, 15, 1833 20 of 23

–

–
–

–

–

–
–

–

–

–

–

–

–

–

Figure 14. Results of experiment conducted with the servomotor and simulated on FPGA processes,
with a sampling period of 10 ms: full experiment (left) and zoomed (right).

–

–
–

–

–

–

–

–

–

–

–

–

–

–

–

–

Figure 15. Results of experiment conducted with the servomotor and simulated on FPGA processes,
with a sampling period of 25ms: full experiment (left) and zoomed (right).

10. Conclusions

In this paper, the authors presented the novel design of the control system based on the
FPGA unit, which allows running independent controllers with various intervention times
in an organized manner. This approach gives the ability to perform data gathering in yet
another process, which is designed to mimic a simplified SCADA, which is implemented
using the Nios II processor implemented in the same FPGA. Simulations were performed
and compared with the experiments in the testing environment to determine if the quality
of the controllers was hindered by the presented approach, and results show no such effects.

The main advantages of the solution proposed in this paper compared to the alterna-
tives include.
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1. the ability of the proposed system to simultaneously control both fast and slow processes,
2. the scalability of the system in terms of number of controlled processes—new con-

troller instance does not influence already existing control loops,
3. the flexibility of input and output signals routing, which can be modified during

runtime and allow redundancy in controllers by connecting one measurement signal
to multiple controllers,

4. the ability to store parameters as mutable registers shared between Nios processor
and controller instances,

5. the separation of the control loops from the controller manager unit (Nios proces-
sor), allowing its code modification without affecting the stability of the running
control loops,

6. the modular approach to the configuration of control loops, allow for easy develop-
ment of defining operations on input/output signals.

The authors plan to further develop this system—main areas of development will
include incorporating a larger set of control algorithms and designing a user interface for
easier controller configuration and maintenance. In addition, the possibility of developing
the system with control algorithms such as General Predictive Controller is considered. The
authors plan of developing the system towards control signal mixing, and thus allowing
implementation of fuzzy systems. Other goals include using solutions that do not require
expensive licenses and increasing the number of controllers and connecting more real
control processes.
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6. Chaber, P.; Ławryńczuk, M. Fast Analytical Model Predictive Controllers and Their Implementation for STM32 ARM Microcon-

troller. IEEE Trans. Ind. Inform. 2019, 15, 4580–4590. [CrossRef]
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