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Abstract: Thermal comfort is associated with clothing insulation, conveying a level of satisfaction
with the thermal surroundings. Besides, clothing insulation is commonly associated with indoor
thermal comfort. However, clothing classification in smart homes might save energy when the
end-user wears appropriate clothes to save energy and obtain thermal comfort. Furthermore, object
detection and classification through Convolutional Neural Networks has increased over the last
decade. There are real-time clothing garment classifiers, but these are oriented towards single garment
recognition for texture, fabric, shape, or style. Consequently, this paper proposes a CNN model
classification for the implementation of these classifiers on cameras. First, the Fashion MNIST was
analyzed and compared with the VGG16, Inceptionvv4, TinyYOLOv3, and ResNet18 classification
algorithms to determine the best clo classifier. Then, for real-time analysis, a new dataset with
12,000 images was created and analyzed with the YOLOv3 and TinyYOLO. Finally, an Azure Kinect
DT was employed to analyze the clo value in real-time. Moreover, real-time analysis can be employed
with any other webcam. The model recognizes at least three garments of a clothing ensemble, proving
that it identifies more than a single clothing garment. Besides, the model has at least 90% accuracy in
the test dataset, ensuring that it can be generalized and is not overfitting.

Keywords: clothing classifier; CNN models; thermal comfort; connected thermostat

1. Introduction

Clothing insulation is commonly associated with indoor thermal comfort. ASHRAE
defines clothing insulation as the resistance to sensible heat transfer provided by a clothing
ensemble, expressed in units of clo [1]. There are predictive models of clothing insulation
that consider outdoor temperature, season, climate, indoor air temperature, indoor opera-
tive temperature, relative humidity [2–4]. Rupp et al. [5] evaluated the clothing insulation
collected in the ASHRAE database II [6] to predict garment insulation from the indoor air
temperature, the season, and building ventilation type. Moreover, Wang et al. [7] proposed
a predictive model of clothing insulation for naturally ventilated buildings using the same
ASHRAE database II. Gao et al. [8] considered wind direction, posture, and the reduction
of clothing insulation due to airspeed to predict thermal comfort.

Alternatively, object detection and classification have been in rapid development for
the last 10 years since the famous AlexNet [9] algorithm won the 2012 ImageNet Large Scale
Visual Recognition Challenge and started a Convolutional Neural Networks revolution.
Hence, Liu et al. [10] used a Convolutional Neural Network (CNN) to recognize an individ-
ual’s clothes and activity type by capturing thermal videos as inputs. Kalantidis et al. [11]
implemented clothing ensemble recognition from a photograph; however, that proposal
was not suitable for a real-time solution due to a slow segmentation classification.
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There are real-time clothing garments or clothing characteristics classifiers such as
the one proposed by Yang and Yu [12]. They used edge detection to obtain information
separate from the background and then perform a technique similar to the model proposed
by Chao et al. [13], which uses the Histogram of Oriented Objects (HOG) and Support
Vector Machines (SVM) to obtain classifications. Yamaguchi et al. [14] focused their research
on subjects with single garments instead of a complete ensemble. Furthermore, some CNN
approaches used a modified version of the VGG16. Furthermore, some CNN approaches
used a modified version of the VGG16 [15] to orient the garment recognition towards
texture, fabric, shape, or style [16–19]. Nevertheless, those approaches did not produce
a complete clothing ensemble classification; hence, they only obtained a single clothing
garment classification per image.

Due to the increase in dynamic models, adaptive methods that predict clothing prop-
erties must understand how an individual adapts to indoor environments. Matsumoto,
Iwai, and Ishiguro [20] used a computer vision system and a combination of HOG and
SVM to recognize clothing garments. Bouskill and Havenith [21] used a thermal manikin
to determine the relationship between clothing insulation and clothing ventilation with
different activities known as metabolic rates. They concluded that clothing insulation
has less of an effect than the design and fabric of the clothing garment; thus, they recom-
mended analyzing the clothing garments worn in specific places during specific activities
to determine the best outfit that avoids colder or warmer thermal sensations.

Moreover, in [20], the authors used an early piece of computer vision hardware from
Omron called OKAO Vision to classify objects by proposing a limit that separated two
classes, and depending on where the features of new predictions lay, the SVM classified
them. However, the SVM was a binary classifier, which meant it only chose between
two classes, making it impossible to use this approach as a real-time clothing insulation
calculation method. Additionally, the SVM calculated the gradient of each pixel together
for every video frame with each computational cost’s class. A real-time implementation of
clothing recognition is useful for this field to obtain a real-time clo value.

The idea of using computer vision to detect clothing seems expensive when thinking
about the implementation of the camera system and the computer needed to process the
information and run the solution. However, as cameras are being spread across different
uses such as telecare [22–24] or combined with personal assistants such as Alexa [25,26],
the concept of cameras being part of the smart home infrastructure needs to be considered.
Thus, there would be no need to invest in a camera system and only think about the
processing part of the problem.

In [25], the authors proposed using Alexa and a camera to track seniors’ moods and
emotions to prevent social isolation and depression. In [26], the authors considered Alexa
for depression pre-diagnosis and suggested using cameras to track householders. Figure 1
displays the smart home structure. Hence, cameras can track garments. For example,
through a smart TV, if possible, camera detection can monitor householder reactions or
postures and profile end-users’ garments. Thus, this picture shows the integration of house-
hold appliances that can help to track householders’ daily activities and moods. Moreover,
in [26], the authors established for the first time the concept of a gamified smart home to
help end-users to save energy without feeling compromised. Besides, previous research
had been focused on reducing energy consumption through gamified elements [26–31]. A
smart home uses socially connected products [32–36] to profile end-users based on their
personality traits, types of gamified user, and energy users to propose tailored interfaces
that help them to understand the benefits of saving energy. Moreover, during this research,
the authors suggested considering thermal comfort for energy reductions [26,37].

Therefore, a computer vision system integrated into camera recognition is needed to
implement a real-time clothing insulation recognition system to obtain real-time feedback
on thermal comfort. Integrating this clothing classifier within the thermostat interface may
allow real-time feedback and monitoring to help the end-user to understand how their
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clothes affect thermal comfort. Besides, increasing the setpoint by 1 ◦C could save electricity
consumption by 6% [38].
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garments.

Thus, dynamic interfaces could use gamified elements to engage the householder in
enjoyable activities while saving energy. There are intrinsic and extrinsic game elements
for energy applications provided in the interfaces to help reduce energy [32,37,39]:

• Extrinsic elements: Offers, coupons, bill discounts, challenges, levels, dashboard,
statistics, degree of control, points, badges, leaderboard;

• Intrinsic elements: Notifications, messages, tips, energy community, collaboration,
control over peers, social comparison, and competition.

Object Classification Algorithms

A CNN handles multiple dimensions due to the convolutional layers [40]. Hence,
there are two types of approaches [41]:

• One-stage: The object detectors produce bounding boxes that contain the detected
objects without a region proposal;

• Two-stage: The object detectors carefully review the entire image, leading to a slower
process than the one-stage approach but with better accuracy.

Table 1 describes the five CNNs that markedly contributed to the CNN architecture
and classifiers.

Table 1. CNN classification algorithms.

CNN Characteristics Author

AlexNet [9]

This CNN has eight layers: five convolutional layers connected by
max-pooling layers, followed by three fully connected layers. Then, the
CNN is divided into two stages, with the feature extraction part done
by the convolutional layers and the classification part performed by the

fully connected layers. This became the basis for image classifiers.

Alex Krizhevsky

VGG16 [15]
VGG16 consists of convolutional layers stacked on each other. This

architecture does not change the size of the kernels in the convolutional
layers and keeps it constant in a 3 × 3 value.

Researchers from the
Oxford University
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Table 1. Cont.

CNN Characteristics Author

GoogleLeNet [42] or
Inception

The designers proposed a Convolutional Network with a kernel size of
1 × 1 to reduce the image. Therefore, the CNN significantly reduced
the number of parameters needed for the training. This architecture
produced better results than the existing algorithms at that moment.

Google

ResNet [43]

This algorithm introduced the residual blocks, which are layers
connected in which some weights skipped those convolutional layers.

Therefore, deeper networks are implemented to get rid of the
degradation problem.

Windows

YOLO [44,45]

YOLO stands for You Only Look Once and is a one-stage algorithm
proposed in 2016. This algorithm eliminated the region proposals
method of two-stage detector algorithms and instead produced
bounding boxes. Thus, the probabilities of the object inside that

bounding box belonged to that class. Although this algorithm presents
lower accuracy than two-stage object detectors, it can be considered an

accurate model.

Joseph Redmon

Tini YOLO [46]

Tiny YOLO is a modified version of YOLOv3 that keeps the algorithm’s
speed while making it computationally less expensive. Thus, the

embedded systems can have the trained model to produce predictions
without expensive GPUs.

Joseph Redmon

TensorFlow [47] is an end-to-end open-source platform written in Python and C++ that
provides tools and libraries to allow easy implementation of a machine learning application
since it provides a tool for the necessary creation, training, deployment, and performance
analysis [48]. In addition, it provides Application Programming Interfaces (APIs) which
help to create a model with few lines of code. Therefore, the user spends more time focused
on the model implementation and its parameters and less time on the coding part of
the implementation.

TensorFlow uses data in the form of tensors or arrays of multiple dimensions, also
called matrices, and all the operations inside Tensorflow work with these tensors.

Another plus of the Tensorflow package is that it handles data more efficiently and
tries to avoid the Graphics Processing Unit (GPU) or Tensor Processing Unit (TPU) waiting
for the Central Processing Unit (CPU) to deal with the input data by using its API, called
tf.data, to achieve a more efficient importation of the dataset and all the treatment needed
so that the GPU/TPU does not suffer from data starvation.

One of the most important APIs contained within the Tensorflow package is Keras [49].
Keras is an open-source deep learning library that was designed to quickly build and train
neural network models. It can build these models using the sequential method, which
consists of adding layers in turn with the indicated activation function and filter size [48].

Even though there are some object classification models directed towards clothing
recognition, most of the proposed algorithms are for fashion industry problems or produce
single clothing garment classifications and fail to generalize to other solutions and fail to be
able to be implemented in activity recognition or other areas where a real-time clothing en-
semble classification may be useful. Hence, this paper proposes a CNN model classification
for implementation on real-time devices, such as cameras: the clothing ensemble classifier.

The concrete contributions of this paper are as follows:

• The model recognizes at least three garments of the clothing ensemble, proving that it
recognizes more than a single clothing garment;

• The model had at least 90% accuracy in the test dataset, ensuring that it can generalize
and it is not overfitting.

Furthermore, the VGG16, Inception, TinyYOLOv3, and ResNet classification algo-
rithms were selected in this study because they are the most basic architectures for image
classification. Besides, the previous approaches found in the state of the art of clothing
recognition models took as a base architecture the VGG16 architecture [14,18]. Therefore,
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the aim of this study was to compare the basic architectures to identify which was the best
real-time clothing classifier. Furthermore, as the classifier will be used at home, TinyY-
OLOv3 has a small architecture that can be implemented on embedded systems such as the
Raspberry, FPGA, or NVIDIA Jetson Nano.

2. Materials and Methods

Figure 2 displays the methodology used during this research. First, Fashion MNIST
was analyzed and compared with the VGG16, Inception, TinyYOLO, and ResNet classifica-
tion algorithms to determine the object classifier that best suited the clo classification. Then,
for the real-time analysis, a new dataset with 12,000 images was created and analyzed
with YOLOv3 and TinyYOLO. Since most real-time solutions used the YOLO algorithm,
a YOLO model was trained to obtain a real-time clothing garment classifier. Besides, a
Tiny YOLO model was tested for the intimacy of the users. Research suggested that Tiny
YOLO can be implemented for real-time image detections in constricted environments and
implemented into an embedded system. Furthermore, the Tiny YOLO was trained with
the recommended weights from another large-scale object detection, segmentation, and
captioning dataset known as COCO [50]. Finally, an Azure Kinect DT was employed to
analyze the clo values in real-time. Moreover, real-time analysis can be employed with any
other webcam.
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All the tests were performed with a GeForce TX 2080 Ti GPU and an AMD Ryzen 3950
12 core 3.5 GHz processor to avoid any bias during the time measurements. In addition,
a Huawei P30 Lite cellphone’s camera was used for static images and real-time videos.
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The recorded images show an individual in a living room walking off camera, changing a
garment, walking, and sitting down. The video lasted 24 s.

Furthermore, the current setting did not have more individuals to analyze at the same
time; hence, TV series scenes were used to compensate for that lack of individuals and
visualize the changes that the model had.

Figure 3 depicts the flowchart used during this research for the entire process for
training a neural network.
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2.1. Datasets

Two datasets were analyzed before training the CNN models. The Deep Fashion
dataset provided different labeled images grouped into category, texture, fabric, shape,
part, and style [16]. The Fashion MNIST dataset [51] provided 70,000 images of clothing
garments divided into 60,000 images for training and 10,000 images for testing. The
Fashion MNIST dataset was divided into 10 classes: T-shirt/top, trouser, pullover, dress,
coat, sandal, shirt, sneaker, bag, and ankle boot.

A new dataset consisting of 12,000 images was proposed because of the dataset
analysis. Therefore, 2000 images were data augmented to obtain 10,000 additional images,
resulting in a total of 12,000 images. These images were divided into sets of 10,800 for
training and 1200 for testing. These images were randomly selected from the internet with
different backgrounds and different clothing garments worn. The classes were decided
based on the premise of keeping the training time at a minimum but having eight different
classes to be recognized. Besides, due to hardware and time constraints, only eight labels
were selected. Hence, Table 2 presents the eight different classes that were considered.
Furthermore, dresses were labeled as skirts due to the similarity of the bottom part of
the clothing garment. During the study, there was no access to a computer with a Linux
operating system, so Google Colab was used instead to train both networks (YOLO and
TinyYOLOv3) with a custom dataset. However, Google Colab limited the GPU access time,
and the 60+ hours needed to train the network translated into several weeks.

Table 2. New dataset labels.

Label Description

0 Highly insulating jacket
1 Highly insulating shoes
2 Jacket
3 Shirt
4 Trousers
5 Shoes
6 Hat
7 Skirt
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The labelImg library was used to label the images because this library allows images
and texts to be handled to classify them through bounding boxes. Thus, this classification is
compatible with the YOLO format. The advantage of YOLO is that it can detect and classify
various objects inside an image, which is perfect for a clothing ensemble classification
problem; therefore, this was ideal for the research scope. After labeling the 2000 images, the
data augmentation was performed using the clodsa library, as the train and test files were
created in the YOLO format. This library was used to perform image transformations on the
labeled dataset by keeping the bounding boxes in the correct place. Thus, the augmented
dataset increased to 12,000 images.

2.2. CNN Algorithms

Figure 4 depicts the four CNN algorithms used during this research. The VGG16
and Inceptionv4 considered preloaded weights as the Keras application class [15,48]. The
ResNet18 [43,48] was built from scratch, and the TinyYOLOv3 [46] had no preloaded
weights and was built from scratch. Thus, the ResNet18 allowed us to make a comparison
with the Tiny YOLO model. Moreover, the Tiny YOLO model considered preloaded weights.
It was trained with Linux commands to perform a comparison with the independent images.
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Furthermore, the validation and training accuracy and the confusion matrices were
plotted to compare each CNN. Besides, five images were tested to obtain the clo value in
real-time. The model detected the eight different classes and displayed the total clo value
and the probability percentage of belonging to the class they examined.

The Tiny YOLO considered pre-trained weights because the other CNN models used
these feature extractors as their method to obtain weights. Thus, the Tiny YOLO performed
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the same tests on the same images and compared them with the other CNN models.
Furthermore, the comparison made it possible to visualize any difference with the model
created from scratch. Finally, the last model was trained in Google Colab and operated
with the new custom dataset of 12,000 images. These 12,000 images came from the original
image dataset of 2000 images gathered from the internet with no particular size. These
images were labeled with the YOLO format; then, data augmentation techniques were used
to add rotation, hue changes, contrast changes, horizontal flip, Gaussian noise, and gamma
color correction to enlarge the dataset and cover more areas where the camera and lighting
settings may affect the effectiveness of the model.

The threshold refers to the models’ confidence percentage that a detected object
belongs to a class. For instance, a threshold value of 0.5 generated bounding boxes around
objects that have over 50% probability of belonging to the predicted classes. Thus, this
project used an initial threshold of 0.4 and lowered it to 0.2 for the video test. For the
images, the threshold was set to 0.1 to study all the classifications the model makes.

2.3. Training the Models

The training was conducted using 100 epochs, a batch size of 128, the Adam optimizer,
and a constant learning rate of 0.01. A change to a test of 0.05 was tried with no significant
change. Besides, due to time and hardware constraints, changing the parameters using
Google Colab would take several weeks. Thus, no further changes were performed for this
hyperparameter. However, these parameters could be tested in future work.

The compile method configured the network, whereas the fit method was used for
the model training. Therefore, the training dataset was the input parameter. Besides, the
number of batches, epochs, and callbacks were chosen. The batches were divisions of the
dataset used to train on a random portion instead of the whole dataset to avoid the failure
of the computer due to not having enough Random Access Memory (RAM) to produce
the result.

Google Colab was used for the YOLO training because a Linux command was needed
to create the required environment and train the model. However, the main drawback was
the time limit. Google Colab allows access to its GPU for 4 h; then, it is necessary to wait
for 18 h to gain access again for another 4 h. Hence, the Tiny YOLO model training took
90 h, of which 60 h corresponded to the training time.

Currently, there has been no comparison between Tiny YOLOS’s feature extraction
architecture with the other common architectures. Consequently, during this research, the
comparison was performed against the other image classifiers. Furthermore, neither YOLO
nor Tiny YOLO was previously implemented on Keras. Hence, the sequential method was
built to compare the different CNN models with Tiny YOLO. Moreover, this model was
built from scratch using the same activation functions and the number of filters, sizes, and
strides to keep the model as close to the original as possible.

As for the VGG16, Inceptionv4, and ResNet18 models, Keras included a method to
call on these models and used them as feature extractors to add a few dense layers and
differentiate the classifications. Thus, this method was used to compare the models.

2.4. Comparing the Models

The accuracy results were obtained from the training models and were plotted against
the epochs to see how the models changed their performance along with the training and if
there was any overfitting present, as well as to recognize if early stopping should have been
used to avoid overfitting. This accuracy corresponds to the best accuracy of the validation
data and the corresponding best accuracy on the training data for that same epoch.

Additionally, confusion matrices were built using the network’s predictions compared
to the actual values with the test dataset to analyze if the accuracy was true. A model that
classified everything as a negative except a few positive classifications correctly can have
an accuracy value of over 90%; nonetheless, this model would be useless. Furthermore,
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the metrics for model evaluation used during this study were the precision, recall, and
F1 score.

2.5. Study Case: Clothing Insulation Real-Time Analysis Applied on Thermostats

Once the CNNs were trained, a real-time clothing recognition approach that can be
implemented at home was proposed. This real-time recognition was oriented to infer
clothing insulation based on the clo values presented in Table 3. Figure 5 depicts the flow
chart considered during the proposed solution to obtain a real-time implementation of
clothing recognition.

Table 3. Clothing insulation values considered for the classes [52].

Label Garment (clo) 1 (m2 C/W)

0 Highly insulating jacket,
multicomponent 0.40 0.062

1 Highly insulating shoes, boots 0.10 0.016
2 Jacket, no buttons 0.26 0.040
3 T-Shirt 0.09 0.010
4 Trousers (straight, fitted) 0.19 0.029
5 Shoes [1] 0.04 0.006
6 Warm winter cap 0.03 0.00
7 A-Line, knee-length 0.15 0.023

1 1 clo = 0.155 m2 C/W.
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Thus, the process used in this study was to select the dataset to be implemented in
the model training, label the images to add more precision, and provide information about
the people wearing the clothes and background. Clothing affects factors that involve the
heat transfer between the human body and the ambient environment; besides, clothing
insulation affects thermal comfort because the difference in the value of this factor can
change the perception of the ambient environment’s temperature.

For this reason, both human-centered and building-centered thermal comfort calcula-
tions consider clothing insulation as a factor for the overall thermal comfort range. However,
a thermal calculation method has been overlooked due to the difficulty of detecting and
classifying every clothing garment that a user is wearing.

Then, a home located at Concord, California, was energy simulated to measure the
impact of increasing or decreasing the temperature by 1 ◦C at the HVAC setpoint. A change
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of 1 ◦C can save 6% of electricity [38]. Other elements fed into the energy model were a
weather file from Concordia, the construction materials, the home schedule, and loads.
The energy model simulation used LadybugTools v1.4.0 from Rhinoceros + Grasshopper.
The living room zone was analyzed to obtain the HVAC consumption and calculate the
PMV/PPD to determine if the householder was comfortable. The parameters considered
were a metabolic rate of 1.0 and a dynamic clo value based on Table 3.

Then, a dynamic interface was proposed based on the energy model results. This
interface was built in MATLAB/Simulink V.R2021a. This interface determined, in an
interactive and ludic manner, how to save energy by modifying the setpoint and suggesting
appropriate types of clothes. Figure 6 displays the input values inside a green box (interface,
the month, day, and hour); the output values were the hourly consumption in Watts, the
outdoor and indoor temperature, the relative humidity, the setpoint, and the expected
savings. In the “Did you know?” section, a message was displayed, and based on the
possible energy savings and thermal comfort, three actions were displayed:

1. Wear lightweight clothes;
2. Wear the same clothes;
3. Wear warmer clothes.
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The “Take a look” button showed the householder the potential savings achieved
by performing those actions. The “Reward available” and “Community news” elements
belong to a gamification structure. These buttons are displayed this way because gamifica-
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tion theory suggests that promoting intrinsic motivations and extrinsic motivations in real
activities can achieve specific goals, such as energy reduction [28,32,37,39].

3. Results

Although the proposal was to use both datasets to compare results, only Fashion
MNIST was considered because the Deep Fashion dataset was encrypted and required a
password to decompress the dataset files. Therefore, an e-mail was sent to the authors, but
we never received a response or the required password. Thus, a new dataset was created.

3.1. Datasets Treatments

Figure 7 depicts the dataset observation and the divisions considered for training
validation and testing stages with the Fashion MNIST dataset. The image shows that
the dataset had 10 different classes with the grayscale format and was printed into the
NHWC format. Figure 8 shows that the distribution showed no significant difference for
the training data and validation data. That means that the model was not biased.
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Figure 8. Fashion MNIST division.

In addition, the data augmentation process used the clodsa package. Figure 9 shows
an example of these transformations. Therefore, the results of each transformation allowed
the labeled bounding boxes to keep their place without affecting the training.

Figure 9a shows the flipping transformations. They cover different postures of the
people; the vertical flip considers some individuals that prefer to lay down with their
feet up, for instance, to alleviate feet pain. Figure 9b displays the hue and the contrast
transformations to cover different lightning environments and possible impediments for
a camera. Figure 9c represents the blurring and histogram transformation. They were
selected to cover the difference between the image resolution taken from cameras with
fewer megapixels or lower resolution than the ones used for training.
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There were some differences in the number of examples containing people wearing
jackets, shirts, and trousers because it was relevant to discern between a highly insulating
jacket and a regular jacket. Any shoe that covered the ankle was labeled as a highly
insulating shoe. Furthermore, no differentiation for sandals was made. Every dress was
labeled as a skirt due to its similarity with the skirt’s shape. Besides, the objective was to
have fewer classes to have less training time, and thus we prioritized recognizing several
parts of a clothing ensemble such as shirts, jackets, shoes, and skirts that are more common
and have different clothing insulation values.

3.2. Object Classifiers Comparison

The validation and training accuracy graphs for all models are shown in the fol-
lowing images, where Figure 10a is from the VGG16 network, Figure 10b is from the
inception model, Figure 10c is from the ResNet34 network, and Figure 10d is from the Tiny
YOLO network.
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Figure 10a shows that the reached accuracy was below 0.8. Although this model used
preloaded weights, it was not as accurate as the other models. This architecture was the
basis for some of the proposed solutions for clothing recognition found in the literature
reviews. Therefore, it was relevant to inspect the performance of this algorithm. Even
though there was no difference between the accuracy from training and the validation, it
had a low score in the accuracy metric compared with the other models.

The accuracy graph of the Inception model (Figure 10b) shows that the Inception
model fares better in the accuracy metrics when compared with the VGG16 model but
failed to reach a stable point within the 100 epochs. Therefore, this model required more
epochs. Although, there was little difference between the validation and training accuracy,
the ResNet18 and Tiny YOLOv3 models had better scores in both datasets.

Figure 10c reveals that the ResNet algorithm reached a perfect training accuracy, but
the validation accuracy was barely above 90%. Hence, overfitting needs to be considered,
and implementations of dropout can improve the model. Moreover, early stopping can be
considered because the best accuracy for the validation was in the first epochs.

Figure 10d shows that the Tiny YOLO made from scratch had a good accuracy but
that there was overfitting since the top accuracy score was reached in the first epochs and
the difference between training and validation accuracy was greater than 5%. Therefore, a
dropout layer with a 50% drop rate was implemented at the middle of the hidden layers.
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Figure 11 presents the result of the dropout layer implementation, showing that there
was no discerning difference between the results obtained with and without dropout.
Therefore, for this implementation, the difference in accuracy scores was not enough to
consider dropout, and the test dataset results needed to be analyzed. Besides, this may also
indicate the need for a bigger dataset.
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Figure 11. Tiny YOLO with 50% dropout.

As the accuracy may be a misleading metric, a confusion matrix was employed to
make a more complete comparison.

Figure 12 depicts the confusion matrices. The model seems to have problems detecting
the T-shirt/top, pullover, coat, and shirt classes. The shirt class had more errors because
the model misclassified clothing items as a shirt. Hence, this model was sensitive towards
the shirt class. Moreover, all the models presented this problem, because it was difficult to
separate the shirt class from the T-shirt/top class and some of the coat class examples.

The confusion matrices show that even though ResNet and Tiny YOLO seemed to
have better results for the accuracy metric than the Inception model, Inception seemed to
perform better in the test dataset. So, to finish this comparison, we consider the numeric
values side by side to be able to have a better look at the differences between the models.

Table 4 shows that Tiny YOLO and ResNet18 performed better in the training and
validation stages than the other models. The testing accuracy was below that of the
Inception model, but this model extracted better features, as confirmed by the recall value.

Table 4. Comparison of models.

Model Training
Accuracy (%)

Validation
Accuracy (%)

Test
Precision (%)

Test
Recall (%) F1 Score

VGG16 76.16 75.17 75.85 75.85 75.85
Inception 96.0 94.76 95.18 95.07 95.12
ResNet 99.9 92.71 95.46 92.85 94.14

TinyYOLOs 99.48 91.11 91.07 91.10 91.08

Therefore, the Inception model was the best model in terms of recognizing clothing
garments, but it used preloaded weights. Hence, for real-world implementation, a trained
Tiny YOLO was created using Linux commands and used preloaded weights to make a fair
comparison. Nevertheless, these commands did not offer a way to see the accuracy in the
different datasets used for training, validation, and accuracy determination. Therefore, the
testing images were used to compare the models. These images were considered due to the
complexity of the postures or objects in front of the individuals.

A test on five different images that were not part of the datasets was used to test the
real implementation of the CNN models since the objective was to train a CNN model with
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a high accuracy rate in a training dataset and implement it in a real-world situation, where
external factors such as noise or light could affect the models’ performance.
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Figure 12. Validation and train accuracy graphs: (a) VGG16 accuracy; (b) Inception accuracy;
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Figure 11 depicts five images with different postures and garments. Figure 13a shows
an individual with a seated posture and lighter garments, Figure 13b shows an individual
with reclined posture with a jacket, Figure 13c shows a reading posture with a highly
insulated jacket. Figure 13d shows a model in a standing posture with sandals and lighter
garments. Figure 13e shows an individual in a writing posture with lighter garments.

Table 5 shows the predicted classes, separating between the top choice for the model
and the other possible classes, according to how close the probabilities for the top class
were, considering a threshold of 10%. The final column has the time in milliseconds it
took for the model to produce the classification. Tiny YOLO from scratch (Tiny YOLOs),
Tiny YOLO from Linux (Tiny YOLOl), and the Inception model produced more than one
classification. Nonetheless, they had problems differentiating between the T-shirt/top,
shirt, coat, and pullover classes.
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Figure 13. Test photos: (a) Test photo 1: seated posture; (b) Test photo 2: reclined posture; (c) Test
photo 3: reading posture; (d) Test photo 4: standing posture; (e) Test photo 5: writing posture.

Table 5. Testing on independent images.

Model Top Class Probability Other Classes Time

Test photo 1

TinyYOLOs Bag Shirt, Pullover 53
VGG16 T-shirt/top 60

Inception Shirt Pullover, Trouser 32
ResNet Shirt 50
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Table 5. Cont.

Model Top Class Probability Other Classes Time

Test photo 2

TinyYOLOs Bag T-shirt/top, Shirt 57
VGG16 T-shirt/top 68

Inception Shirt Pullover 46
ResNet Shirt 47

Test photo 3

TinyYOLOs Shirt Bag, Pullover 48
VGG16 Bag 65

Inception Shirt Pullover 57
ResNet Shirt 48

TinyYOLOl Coat Pullover

Test photo 4

TinyYOLOs Bag Trouser, Shirt 53
VGG16 Ankle Boot 68

Inception Shirt Pullover 48
ResNet Shirt 47

TinyYOLOl Pullover

Test photo 5

TinyYOLOs Bag Shirt, Pullover 52
VGG16 T-shirt/top 72

Inception Shirt Pullover, Trouser 50
ResNet Shirt 40

TinyYOLOl Coat Pullover

Moreover, these three models managed with these images to produce multiple classes
of classification in most images. Unfortunately, none of them were consistent, possibly
due to the lack of additional information from the Fashion MNIST dataset. Besides, these
models can be used for clothing ensemble recognition. Nevertheless, they had problems
making the correct classifications; thus, bounding boxes were required.

Furthermore, real-time detection algorithms considered the YOLO or Tiny YOLO
architecture. The Inception algorithm could present problems for real-time implementation
due to the average recognition time. Therefore, the Tiny YOLO model was considered since
it tested the possibility of obtain a garment ensemble classifier by using a dataset with
more information.

3.3. Tiny YOLO and YOLO Using Transfer Learning

Figure 14 depicts the labeled dataset with bounding boxes for the YOLO and Tiny
YOLO models using a threshold of 0.1; then, the threshold was increased for the YOLO
model to 0.4 and 0.5.

Figure 14a, shows that the sofa was misclassified as a skirt with a 51% probability.
Figure 14b shows that the model only classified the shirt and jacket. As these figures show,
we found that a threshold of 0.1 was labeling the sofa and floor, and thus the threshold was
increased to 0.4. Hence, Figure 14c shows that the model recognized the jacket, trousers, and
shoes but misclassified the coach. Moreover, Figure 14d shows that the model recognized
three garments; thus, another test was made by increasing the threshold up to 0.5. Therefore,
as shown in Figure 14e,f, the model recognized two clothing garments. This threshold
was needed because this algorithm proposes the classification and the bounding boxes for
recognized objects. Furthermore, this threshold value was considered to avoid detected
objects that were not contained in any of the classes, such as the sofa or the floor.
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Figure 14. Bounding boxes with a 0.1 threshold: (a) YOLO results for test photo 1; (b) YOLO results 
for test photo 2. YOLO results: (c) test photo 3 with 0.4 threshold; (d) test photo 4 with 0.4 threshold; 
(e) test photo 5 with 0.4 threshold; (f) test photo 4 with 0.5 threshold. Tiny YOLO results with 0.1 
threshold: (g) test photo 1; (h) test photo 2; (i) test photo 3; (j) test photo 4; (k) test photo 5. 

Figure 15 depicts the best and worst video results for the YOLO and Tiny YOLO 
models with 0.4 thresholds. Screenshots were taken to produce the results and show them 
in this paper. Figure 15a,b show that the model misclassified the shirt as a skirt because 
the model understood that this type of shirt seemed more like a skirt. However, Figure 
15a shows that the model reflected the best classification for the YOLO model. In Figure 
15c, the Tiny YOLO model classified correctly the highly insulated jacket. Nevertheless, 
Figure 15d shows that the model misclassified the sofa as trousers. Therefore, the thresh-
old was decreased up to 0.2 to review if there were more classifications that the model 
obtained for multiple garment detections. Since the threshold was lower, there were more 

Figure 14. Bounding boxes with a 0.1 threshold: (a) YOLO results for test photo 1; (b) YOLO results
for test photo 2. YOLO results: (c) test photo 3 with 0.4 threshold; (d) test photo 4 with 0.4 threshold;
(e) test photo 5 with 0.4 threshold; (f) test photo 4 with 0.5 threshold. Tiny YOLO results with
0.1 threshold: (g) test photo 1; (h) test photo 2; (i) test photo 3; (j) test photo 4; (k) test photo 5.

The Tiny YOLO model classified the garments with a threshold of 0.1. Figure 14g
shows that the model properly classified all the clothes. Figure 14h shows that the model
misclassified the trousers. Figure 14i shows that the model failed in classifying the garments
except for the trousers. Figure 14j shows that the model misclassified the sofa as a skirt and
trousers. Figure 14k shows that the model wrongly classified the laptop as a shirt.

Figure 15 depicts the best and worst video results for the YOLO and Tiny YOLO
models with 0.4 thresholds. Screenshots were taken to produce the results and show them
in this paper. Figure 15a,b show that the model misclassified the shirt as a skirt because the
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model understood that this type of shirt seemed more like a skirt. However, Figure 15a
shows that the model reflected the best classification for the YOLO model. In Figure 15c, the
Tiny YOLO model classified correctly the highly insulated jacket. Nevertheless, Figure 15d
shows that the model misclassified the sofa as trousers. Therefore, the threshold was
decreased up to 0.2 to review if there were more classifications that the model obtained
for multiple garment detections. Since the threshold was lower, there were more resulting
images. Figure 15e–h depict the worst classifications, whereas Figure 15i–l show the best
classifications.
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Figure 15. Video results with 0.4 thresholds: (a) YOLO’s best classification; (b) YOLO’s worst
classification; (c) Tiny YOLO’s best classification; (d) TinyYOLO’s best classification. Worst video
results with 0.2 thresholds: (e) YOLO with sofa view; (f) YOLO with a seated individual; (g) Tiny
YOLO with highly insulated jacket; (h) Tiny YOLO with a seated individual. Best video results with
0.2 thresholds: (i) YOLO with highly insulated jacket; (j) YOLO with a shirt; (k) Tiny YOLO with
highly insulated jacket; (l) Tiny YOLO with a seated individual.

Figure 15e shows that the model misclassified the sofa as trousers. Figure 15f shows
that the model misclassified half of the scene as a highly insulated jacket, some books
as shoes, and the shirt as a skirt. Figure 15g shows that the model did not recognize the
individual’s garments and misclassified the sofa as trousers and highly insulated shoes.
Figure 15h shows that the model misclassified the sofa as a shirt, the floor, the shirt, and
the shoes as trousers.

Figure 15i shows that the model classified the garment as a highly insulated jacket and,
due to the shape, also as a skirt. Figure 15j shows that the model correctly classified the
shows and the shirt, and even suggested that it could be a skirt; nevertheless, it misclassified
the trousers as highly insulated shoes or a skirt. Figure 15k shows that the model correctly
classified the clothing as a highly insulated jacket but misclassified it as a trouser. Figure 15l
shows that the model classified the shirt and trousers; however, the model considered the
trousers to include the sofa.
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3.4. Study Case: Clothing Insulation Real-Time Analysis Applied on Thermostats

The clothing insulation values are shown in Table 3. Moreover, since the previous
video testing did not produce proper classifications, multiple users, garments, and posture
were tested on a TV show. Nevertheless, to avoid any copyright problems, these images
are not displayed here. Hence, the results were as follows:

• 0.4 threshold:

# The YOLO model had problems detecting the garments with darker objects,
but with clearer objects, it produced a full clothing classification;

# The Tiny YOLO model did not detect multiple clothing garments and incor-
rectly classified hair as a hat, and it did not detect darker objects.

• 0.2 threshold:

# The YOLO model showed incorrect classifications or multiple classifications
for a single object. However, the YOLO model classified multiple clothing
garments and produce more correct classifications than the Tiny YOLO model;

# The Tiny YOLO made multiple clothing garment classifications, but it misclas-
sified darker objects.

Hence, an Azure Kinect DT was employed to test the clo value in real-time. This test
was oriented toward clothing insulation classification. Thus, the bounding boxes had color
values depending on the clo with this assumption:

• Warmer clothing garments were closer to the red color of the bounding box; colder
clothing garments were closer to the blue color.

However, the Tiny YOLO model did not provide noteworthy results for multiple
clothing garments recognition. Consequently, Figure 16 depicts the YOLO model results.
Figure 16a shows that the model correctly classified the garments, giving a clo value of 0.32;
nevertheless, it did not recognize the highly insulated jacket. Figure 16b shows that the
model considered the highly insulating jacket, giving a clo value of 0.72. Figure 16c shows
that the model accurately classified the highly insulated jacket and the trousers, but it did
not classify the shirt. Figure 16d shows that the model correctly classified all the garments.

The total HVAC consumption for the living room zone was 3952 kWh. The cooling
setpoint was 24.4 ◦C, and the heating setpoint was 21.7 ◦C. After increasing by 1 ◦C the
cooling setpoint and decreasing by 1 ◦C the heating setpoint, the HVAC consumption
was 2923.7 kWh. Figure 17 depicts the monthly chart of HVAC kWh consumption before
and after increasing or decreasing the setpoint. There were monthly reductions that went
from 18% to 47%. Nevertheless, strategies in the thermostat interface need to engage the
householder to reduce energy consumption without losing thermal comfort.

Thus, Figure 18 displays the interface on three different dates and the required actions
to reduce energy consumption:

1. 10 July at 4:00 p.m. (Figure 18a): increase the setpoint by 1 ◦C and wear lightweight
clothes to reduce the HVAC consumption;

2. 8 December at 9:00 p.m. (Figure 18b): decrease the setpoint by 1 ◦C and wear the
same clothes;

3. 8 February at 8:00 p.m. (Figure 18c): decrease the setpoint by 1 ◦C and wear
warmer clothes.
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4. Discussion

The Fashion MNIST dataset helped as a guideline for the new dataset images. There-
fore, the new dataset fitted the models’ input parameters. Figure 5 shows that the printed
images were correctly labeled and there was no clear bias towards a certain class after the
dataset division. Accordingly, the datasets were ready to train all the CNN models.

In terms of the overall behavior, the models presented problems with the shirt, T-
shirt/top, and coat classes due to the dataset containing dresses labeled as skirts. This
labeling was performed to have the minimum number of classes to make the training
process as efficient as possible because the increment of one class relied on 2000 more
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iterations for the training. Consequently, more examples are needed to avoid this confusion
and improve the classifier.

The real-time implementations were successful. The real-time test for the YOLO
model successfully recognized the clo values for each item of clothing and even managed
to produce results in a close-up. However, at certain times, it had difficulties differentiating
overlapping garments. Thus, more examples with these considerations are required. The
Tiny YOLO model misclassified some garments; hence, more training images are required
to make this model more robust.

Another factor to consider is that the Tiny YOLO model seemed to have no prob-
lem with computational power, but the YOLO model slowed down the real-time feed of
the video. Hence, the model requires certain hardware characteristics to be successfully
implemented in real-time.

Besides, real-time feedback, monitoring, and the interaction between the interface,
the thermostat, and the householder allow actions to promote energy reductions without
losing thermal comfort. Thus, householders can receive suggestions to increase comfort
and save energy. Furthermore, to deeply understand thermal comfort and how it affects
the environment and householder preferences, it is relevant to understand the type of user
that is behind the interface, their preferences, and their location because their behavior
will depend on other factors such as gender, age, country, culture, and fashion style,
among others.

5. Conclusions

The results from the model comparison showed that the feature extraction architecture
of the Tiny YOLO algorithm was on par with other image classifiers’ architectures and can
be used as a clothing ensemble classifier since it produced multiple clothing classifications,
and it produced accuracy percentages over 90% in all three datasets, which was the objective
for this project.

However, it failed to obtain better results in the independent images because the
Fashion MNIST dataset had insufficient information to differentiate between the shirt class,
the coat class, and the T-shirt/top class. The Tiny YOLO model only achieved 73% of
correct classifications on that class, and of the remaining 27%, only 11% was misclassified
as the T-shirt/top class. Thus, more information on these classes is needed since this was
observed for all models, not only Tiny YOLO.

Hence, the Fashion MNIST dataset was not good enough for use as a clothing en-
semble classifier since the models trained with it failed to produce more than two correct
classifications in a single testing image or even obtain 90% accuracy in the independent
image tests.

The YOLO model classified at least three clothing garments in real-time, but the Tiny
YOLO model only produced one clothing classification 5% of the time. Hence, the YOLO
model improves upon the state of the art because it outperformed the other models, giving
up to four different clothing garment classifications, and consequently resulting in entire
clothing ensemble recognition.

For use as a real-time clothing classifier, the YOLO algorithm is ideal as it produced
results over 95% of the time in the real-time test with a threshold value of 0.5. This value was
the highest obtained in the literature review for real-time implementations. Nevertheless,
the Tiny YOLO model required more training examples and a greater variety of images to
achieve similar results to the YOLO algorithm.

The results revealed that the new dataset proved that the model was more effective
and accurate than the one trained with an existing dataset. In this new dataset, the images
contained different postures to try to cover all possibilities since it hinders the accuracy of
the model when the person is not in a standing posture. Furthermore, darker environment
pictures need to be considered to avoid incorrect detection and classification.

Alternatively, the transfer learning method exposed that it is not ideal if the weights
come from a model that is trained with a very specific dataset. Finally, the image classifier
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was implemented for the clothing insulation classifier during the thermal comfort calcula-
tions. Currently, the clothing garments range from 0.04 clo to 0.74 (Table 3); however, these
values can be increased. Moreover, an initial assumption for underwear should be made.

The clothing insulation values are provided in the entire video; therefore, any possible
changes that occur in front of the camera can be captured and considered for thermal
comfort calculation, but this still leaves a gap since the system is not able to recognize the
underwear the user is wearing along with any other clothing garment that the camera
cannot see, making these readings inaccurate but still better than a constant value.

Hence, the clo value can be calculated in real-time, and these moving values of clothing
insulation can be used in a human–machine interface, where changes in clothing garments
are proposed to keep a clothing insulation value constant and allow the user to stay inside
the thermal comfort ranges, but these can be equally distributed along the entire body to
avoid the user feeling warm or cold due to unbalanced clothing insulation distribution.

The batch normalization eliminated the need for the dropout technique since the Tiny
YOLO architecture with dropout implementation was the same as the one without it and
there was no change in the accuracy scores on the training and validation datasets.
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