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Abstract: With the increasing penetration of wind power, the uncertainty associated with it brings
more challenges to the operation of the integrated energy system (IES), especially the power subsys-
tem. However, the typical strategies to deal with wind power uncertainty have poor performance in
balancing economy and robustness. Therefore, this paper proposes a distributionally robust joint
chance-constrained dispatch (DR-JCCD) model to coordinate the economy and robustness of the
IES with uncertain wind power. The optimization dispatch model is formulated as a two-stage
problem to minimize both the day-ahead and the real-time operation costs. Moreover, the ambiguity
set is generated using Wasserstein distance, and the joint chance constraints are used to ensure
that the safety constraints (e.g., ramping limit and transmission limit) can be satisfied jointly under
the worst-case probability distribution of wind power. The model is remodeled as a mixed-integer
tractable programming issue, which can be solved efficiently by ready-made solvers using linear
decision rules and linearization methods. Case studies on an electricity-gas-heat regional integrated
system, which includes a modified IEEE 24-bus system, 20 natural gas-nodes, and 6 heat-node system,
are investigated for verification. Numerical simulation results demonstrate that the proposed DR-
JCCD approach effectively coordinates the economy and robustness of IES and can offer operators a
reasonable energy management scheme with an acceptable risk level.

Keywords: distributionally robust optimization (DRO); integrated energy system (IES); joint chance
constraints; linear decision rules (LDRs); Wasserstein distance

1. Introduction

In order to achieve the 1.5 °C temperature control target set by the Paris Climate Agree-
ment [1], the proportion of global power generation via renewable sources will continue to
rise. By 2050, renewable energy is expected to account for 86% of the power generation
source. Wind power, in particular, will meet more than 35% of power demand and become
the main source of power generation at that time [2]. However, as the penetration of
renewable energy sources (RESs) increases, the power network will be exposed to greater
risks due to the uncertainty of RESs. Therefore, there is an urgent need to improve the
flexibility of power systems or mitigate the variability. Constructing regional integrated
energy systems (IESs) has been proved as an effective way to provide more flexibility
to accommodate renewable sources and reduce the impact of uncertainty on the power
system [3].

Many researches have concentrated on the optimal dispatch of IESs to cope with the
uncertainties associated with renewable energy. Two common strategies include stochastic
programming (SP) [4-9] and robust optimization (RO) [10,11]. To handle uncertainties
of load demand and renewable energy, Yong et al. [4] propose a low-carbon optimal
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stochastic operation model using power-to-gas technology. In a building energy system,
a multistage-based scenario-driven approach is proposed to deal with solar power un-
certainty and nonschedulable load uncertainty [5]. However, stochastic programming
either relies on scene samples to approximate deterministic distributions [6] or assumes a
predefined probability distribution that random variables follow [7]. As a result, it imposes
a substantial computational burden on optimization [8] and adds difficulty to scenario
selection [9]. Compared to stochastic programming, the robust optimization approach does
not require any assumptions about wind power probability distribution, because it can
ensure system-operational robustness by using uncertainty sets to make optimal decisions
under the worst renewable fluctuation cases [10]. Robust optimization can provide a more
reliable scheme while considering wind power uncertainty [11], but it compromises system
cost-effectiveness and may result in over-conservative solutions.

Distributionally robust optimization (DRO), an effective strategy to overcome weak-
nesses of stochastic programming and robust optimization, loads all possible wind power
probability distributions information into an ambiguous set to incorporate uncertain wind
power distributions. In addition, DRO can ensure that all the possible wind power prob-
ability distributions in the ambiguous set are met by making the best decision under the
worst-case probability distribution [12]. There are several studies on distributionally robust
energy models based on moment-based ambiguity sets such as mean vector, covariance ma-
trix, and higher moment information [13-15]. Reference [13] develops a two-stage voltage
and natural gas pipe pressure management model for photovoltaic power in IES, where the
photovoltaic power uncertainty is modeled by an ambiguity set containing the first-order
moment and second-order moment information. Using the same moment information,
a distributionally robust optimal power flow problem is formulated to solve renewable
energy and load uncertainties [14]. Due to the distributions of renewable forecast errors
practically containing higher moment information, the first two moment-based ambiguous
sets may cause unnecessary conservatism. Therefore, Reference [15] proposes a DRO
model for an energy hub system with an energy storage function, where the ambiguity set
contains the first two moments and multimodal information of photovoltaic power fore-
casting errors. Despite all this, there may be the same moment information among different
distributions, which makes it difficult to determine the worst-case probability distribution.

The other approach to characterizing ambiguity sets is on account of the statistical
distance between the true probability distribution and possible probability distributions.
One type of discrepancy-based ambiguity set is established by Kullback-Leibler divergence.
To guarantee the safe operation of the natural gas system under hydrogen injection when
utilizing power-to-gas technology, Ref. [16] develops a natural gas security DRO program-
ming for IES using a Kullback-Leibler divergence-based ambiguity set to capture wind
uncertainty. However, only in the circumstances that potential distributions are supported
on a set of limited values, the Kullback-Leibler divergence-based ambiguity set can be
observed through historical data [17]. In contrast, the ambiguity sets based on Wasserstein
distance, which include all possible probability distributions that have a narrow gap with
the discrete empirical distribution, are introduced and have been increasingly used. With a
Wasserstein-distance-based ambiguity set to deal with renewable energy uncertainties, a
power-flow DRO problem with multi-stage feedback policies is formulated in [18]. In [19],
considering dynamic line rating and operational risk, a power flow DRO approach is
established, which constructs the ambiguity set via combining the moment information and
Wasserstein distance. To avoid the calculation issue arising from a large number of historical
data sets, Ref. [20] proposes a distance-based aggregation method, and the Wasserstein-
distance ambiguity set is introduced to a distributionally robust unit commitment problem.
Regarding wind power uncertainty, the Wasserstein-distance-based ambiguity set has
shown good performance in both finite-sample guarantees and confidence sets.

Although the DRO method with chance-constrained problems has been extensively
addressed in optimal power flow [21-23], its research on energy optimization and man-
agement is still in the early stage. A distributionally robust individual chance-constrained
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energy dispatch model is put forward for an islanded heat and electricity system in [24]
while considering the uncertain renewable generation. However, due to the confidence
levels considered separately, the individual chance constraints will result in high-risk costs
and may even result in confidence levels as low as 0% for any individual constraint [25].
Therefore, a joint chance-constrained DRO model is proposed for the combined electricity
and natural gas system to address renewable energy uncertainty while using the ambiguity
set with the confidence bands of the true density function [26]. Joint chance constraints can
improve the simultaneous satisfaction of multiple safety conditions with a high probability,
but the ambiguity set only includes marginal distribution information, which will result in
a conservative solution.

Therefore, a two-stage distributionally robust joint chance-constrained dispatch (DR-
JCCD) model is proposed for the electricity-gas—heat IES with the Wasserstein distance-
based ambiguity set, considering the wind power uncertainty. The main contributions of
this paper are as follows:

1. For the electricity—gas—heat IES, a distributionally robust joint chance-constrained
dispatch model is proposed to boost the system flexibility while considering wind
power uncertainty.

2. Atwo-stage scheme is adopted to deal with wind power uncertainty. In the day-ahead
stage, energy outputs and reserve capacity of multiple energy devices are scheduled
considering the probability distributions of uncertain wind power forecasting errors
from historical data, and then the power outputs are adjusted accordingly in the
real-time stage. As a result, a cost-effective IES operation is achieved.

3. A Wasserstein distance-based ambiguity set focused on the empirical distribution of
wind forecasting errors is established to provide strict finite samples and approximate
the behavior of wind uncertainty.

4. The proposed model is transformed into a mixed-integer tractable programming
problem by linear decision rules and the linearization approach, which can be solved
efficiently by ready-made solvers.

The remainder of this paper is organized as follows. Section 2 presents the detailed
mathematical formulation for both the day-ahead and the real-time operation, where the
nomenclature could be found in Appendix A. Section 3 develops effective approximate
and re-modeled schemes for the distributionally robust joint chance-constrained model
under the Wasserstein ambiguity set. Numerical results are shown in Section 4. Finally,
conclusions and future work are given in Section 5.

2. DR-JCCD Modeling of IES
2.1. Framework for Electricity—Gas—Heat IES

As illustrated in Figure 1, a typical framework of the electricity, gas, and heat IES
uses a constrained transmission infrastructure to coordinate power generation and natural
gas resources. The configuration of multiple energy carriers employed in the energy
hub includes Combined Heat and Power (CHP), gas-fired generations, and an electric
boiler. CHP transforms natural gas into electricity and heat concurrently. Natural gas-fired
units transform natural gas into electricity, allowing them to respond swiftly to power
fluctuations. An electric boiler is introduced to supply enough heat power flexibly, and
three different energy sources are used to meet local electricity, gas, and heat demands.
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Figure 1. Multi-energy system framework for the IES dispatch.

2.2. Formulation of Day-Ahead Operation

The day-ahead operation schedules the output and reserve capacity of thermal gen-
erations, natural gas-fired generations, and CHP. In addition, it determines the natural
gas output of gas sources. The objective of the day-ahead operation is to minimize the
expected operation cost, including generation cost, reserve capacity costs for traditional
units, natural gas-fired units, and CHP, as well as the cost of consuming natural gas from
the source, as shown in Equation (1)

. IZ. I Ay PLE + A Gaast + ALyt ALy HE 1P, (0)] @
ie € loig € I,
teT

The detail constraints for day-ahead operation include constraints of the power sys-
tem, natural-gas system, heating system, and multiple energy converters, as listed in
Equations (2)-(29).

2.2.1. Constraints for the Power System

The reserve capacity from thermal generations, natural gas-fired generations,
and CHP is shown in Equations (2) and (3), followed by their power output limits in
Equations (4) and (5). The adjustments of multiple energy devices for the uncertain wind
power forecasting errors are limited by Equation (6), which must be within the reserve ca-
pacity range. The ramping up/down constraints are restricted by Equations (7) and (8) [17].
Energy balance is presented in Equation (9). Constrain Equation (10) is used to ensure that
the power flows are well within the capacity limits of the transmission lines. Note that {-}
is the index and set of thermal units, gas-fired generations, and CHP.

0<rly, <Rl {}=ieggchp €y

0<riy <Ry {-} =ie,gg chp 3)
PP P () =g oy @

PR < PR =1y () = ieggchy ®

—r S POD) <7y, {) =de g8 chp (6)
PR+ ) = (P =) < P, (= g chp ®

PR i) = PR 0y ) S PR D) =ieggichp ®



Energies 2022, 15, 1796

50f18

T (PE{ -+ PRI@) + X (R +BEL(E)) + (PR + RIL(D)

. ot T Dggt ght ght
el DA, )
DA,i in
+ L (WP 4 ) + z fl” ini _ Pl + ¥ PEE+ ¥ fio, J
jE] le e Kg bgGBg l€€

{ A < QVBD PR + QUR +5) - QU RED)

QPP+ PO, (0) + QU(wBA + Gje) — Q7(PE, + PEB) fe

ie,t

However, constraints Equations (6) and (10) may not always be satisfied [27] due to
the uncertain wind power forecasting errors, or the strict restrictions may result in high
operational costs. Additionally, individual chance constraints may not be satisfied simulta-
neously with a certain confidence level. To deal with this problem, the two constraints are
converted into joint chance constraints in Equations (11) and (12).

P{=riy < P{ }t(é) ST 2 1= ) = e, g8, chp Vie, 8, chp (11)

P{— " < Q8(PER + PRL(D) + Q™ (wp +Zjp) — QUPE  + PED) < ™} > 1 — 8, (12)

2.2.2. Constraints for Natural Gas System

Equation (13) explains the relation between the natural gas pressure of gas compres-
sors’ headend nodes and terminals. The nodal natural gas balance is given in Equation (14),
whose total demand includes gas load, gas consumed by CHP, and gas-fired units. Con-
straint Equation (15) implies that gas flows only in the positive /negative direction, which
cannot exist simultaneously in the gas pipelines. Equation (16) is the Weymouth gas
flow equation [28], which describes the relationship between natural gas pressure and
natural gas flow in a steady-state condition. The constraints of natural gas pressure at
each node and the limits of the natural gas flow in each gas pipeline are represented by
Equations (17) and (18), respectively.

Pio bt = OcWig t (13)

source chp 38 load )
wit + Y. Wigj T Wi T Wit T Wi = ). Wigkg b (14)

igjg€Z(jg) jekg€Z (k)
Wigjg,t + Wigig,t = 0 (15)
.. 2

wlg]g/t lg]g l;b 1P]‘g,t ‘ (16)
lljmin S l/]ig,t S lpmax (17)
Wigjomin < Wigjy t < Wigjy max (18)

2.2.3. Constraints for Heating System

A closed-cycle heating system is employed, which comprises supply and return
pipelines. Hot water is selected as the heat medium for transmission, and quality adjust-
ment is adopted by adjusting the temperature of the heat medium. When the water from
different pipelines flows into the same node, there will be a mixture of water described by
Equations (19) and (20) [29]. Then, Equations (21) and (22) show that the temperature of
the output at each node is equal to the mixed water temperature. Equation (23) presents
the relationship between heat demand and the heat flow. Furthermore, Equation (24)
takes the loss of heat transmission into consideration. The nodal heat balance is given in

Equation (25) [30].
L,outb
Y (T my) =T Y m, (19)
bes; bes,
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2.2.4. Constraints for Multiple Energy Converters

Various energy converters are applied to make use of natural gas and electricity
resources conjointly to realize the policy to adopt a balanced energy mix. The constraints
Equations (26)—(29) detail the energy input—output relationship energy converters, i.e., CHP,
gas-fired generations, and electric boiler.

Hchpt_ Chchhp, (26)
T (27)
Pet = ngwiP" (28)
Hyt = e Pyt (29)

2.3. Formulation of Real-Time Operation

The real-time stage considers the re-dispatch and adjustive actions to address wind
power uncertainty. The second-stage objective function contains two parts: (I) fines for
the overrated or underrated schedule in the day-ahead stage and (II) fines for wind power
curtailment or load shedding, as shown in Equation (30).

. il
DAmlllgT 2 /\{ }‘P{ T 5{,t| + A Gglzst + /\shed 2 l]s{izetd SPZ Izw liA + é],t)' (30)
P ,P (g), ie S Ielig S Ig, kgng JEI
rer teT

Constraints for the real-time operation are the same as the constraints in the day-ahead
stage, Equations (7), (8), (10) and (13)—(29), and at the same time include Equations (31)—(34).
The constraint Equation (31) requires the load shedding quantity to be no more than
actual energy demands. Wind power curtailment quantity is restricted by Equation (32).
Constraint Equation (33) limits the adjusted power outputs of traditional generations,
gas-fired generations, and CHPs. Equation (34) is the real-time power balance constraint
considering wind spills and load shedding.

0< Y R Y P+ L B (31)
ke€Ke ke€Ke be€Be
RT
Psplt Z ]t +g]t (32)

PR = {}t<P?§t<P{}t+1’{}t,{}:ie,gg,ChP (33)
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3. Proposed Solution Method

The proposed two-stage DR-JCCD problem cannot be solved easily due to the wind
power uncertainty and the chance constraints. To find a solution to this problem, firstly,
a Wasserstein distance-based ambiguity set is used to collect the uncertain wind power
distributions information. Then, based on this ambiguity set, the day-ahead objective
function is reformulated through linear decision rules by considering the decision vari-
ables” ambiguity in the worst-case expectation. Moreover, the joint chance constraints
are transformed into tractable constraints through the Bonferroni approximation and the
Worst-Conditional Value-at-Risk approximation. Furthermore, the Weymouth gas flow
equation of the proposed model will increase computational burden due to its nonlinear
and nonconvex nature. Therefore, the linear programming technique is utilized to solve
the gas flow equation.

3.1. Basic Formulation
The proposed model is described as

minc’x + sup EY[Q(x, {)] (35)
xeX PeD;

s.t. Ax <b (36)

P{g(f)} >1—eid (37)

PUPRT ()} = 1— esen (38)

min f7y (39)

st. Ex+Fy+ Gl <h (40)

The objective function Equation (35) is to minimize the day-ahead operation cost
and the expected cost caused by the energy adjustments Equation (1) combined. x is the
decision including the energy output, reserve capacity, and adjustment of multiple energy
devices. D¢ indicates the ambiguity set containing possible probability distribution P of
wind data. Equations (36)—(38) present the day-ahead constraints. The real-time model is
shown in Equations (39) and (40), where f represents the coefficient of decision variables
in Equation (39).

3.2. Wasserstein Distance-Based Ambiguity Set

In order to estimate the probability distributions of wind power uncertainty, it is
important to build an effective ambiguity set. Although potential probability distribution
is uncertain, an enormous number of recorded historical data are accessible. Therefore, an
empirical distribution Py = %Zszl 07k can be considered as the approximate substitution
for the true distribution F, where 6« presents the Dirac measure on the wind power
forecasting error sample ¢ [31]. To estimate the distance between the true distribution P
and an empirical distribution Py, the Wasserstein distance is defined as follows.

Definition of the Wasserstein distance [32]: The Wasserstein distance dy,(P1,P7) :
RW x RW — R is defined via

d(Py,P2) =infd [0 = Gl T80, dC2) @)

RW x RW
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where || — (|| is the distance between random variables {7 and {». Additionally, 1-norm is
applied in this paper due to its superior numerical tractability. M(Z) denotes all probability
measures of wind power uncertainty supported on the polyhedron & = {{ € RW : H{ < h}.
The Wasserstein distance serves to establish an array of ambiguity sets. Every ambiguity
set differs from the empirical distribution within the preset distance [33]:

D; £ {P € M(Z) : W(P,Py) < p} (42)

3.3. Reformulation of Objective Function

It is complex and time-consuming to directly find the exact solution to DRO problems
when the decision variables are coupled with random variables. Therefore, the use of
LDRs [34], which is a typical approximate method that can deal with the coupling rela-
tionship between decision variables and uncertain parameters, is used to approximate the
model [35]. In this context, the objective function Equation (35) can be reformulated as a
conic program [32].

maxEP [T (Yo + YO)]
PEDg
IE%%)EIE vT(Yo + YO)P(Z)dC

= N A
sty X [z 10— GilPi(dg) <p Vi< N 3)
: = 1vN oo
Aggggﬂ"p + NLit1 S

A A
stoyd (Yo+Y5) + 90T (h—HG) <8¢ Vi< N
IHTy? = (Yo+Y)Tc|l, <A° Vi< N

where 77, A%, and s° are auxiliary variables.

3.4. Approximation of Joint Chance Constraints

Joint chance constraints Equations (11) and (12) include a series of constraints of energy
output adjustment and transmission lines separately. We consider the two joint chance
constraints in a general form.

P[Aix+ (BY+C)I <b VI<L] >1—¢ (44)

where [ represents the index of energy devices or transmission lines and is the total quantity
of energy devices or transmission lines. ¢ is a predefined confidence level.

Then, the joint chance constraints can be divided into L individual chance constraints
whose confidence level is ¢; = /L by the Bonferroni conservative approximation [36]:

min P{Ax+ (BY +C)E < b > 1 ¢

D¢

— min P[Ax+ (BY+C)0—b <0] >1—¢ (45)
PGDg

The worst-case Conditional Value-at-Risk approximation can be used to transform
Equation (45) [24] into

max P — CVaRgy[A;x(B;Y 4+ C) — b;]

PEDC
= nggg i%f{ T+ LEP[(Ax(B)Y + C)g — by — Tz)ﬂ} (46)
= max inf{ EP [max{ 7, L(Aix(B)Y + C)¢ — bl)}]}

PEDg T
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3.5. Reformulation of the Weymouth Gas Flow Equation

The Weymouth gas flow Equation (16), applied to characterize the natural gas flow,
is nonlinear and nonconvex. These properties make the optimization of natural gas sys-
tem operation an NP-hard problem. The problem can be solved by mixed-integer linear
programming techniques [37]. Among linear programming techniques, piecewise lin-
ear functions describing nonlinearities and binary variables can avoid local optima due
to nonconvexities.

Assuming that natural gas flows from pipe node ig to pipe node jg, the variable lPizq,t

is replaced by the second-order conic ¢; ,, representing the pressure of the pipe node ig.

ig,t/
Then, Equation (13) can be transformed 1nto the constraint as follows:

Wi r = Ci (Wi, — W 0) (48)

igjgd

Next, the square term of each pipeline on the left hand of the equation can be piecewise
approximated into m linear segments shown in Figure 2.

v

Figure 2. Approximation of a nonlinear function.

When the direction of the gas flow is from node ig to node jg, the range of the gas flow
Wigjo ¢ 18 from 0 to w; i maxs which is the maximum flow in the pipelines. The transformed
model of w et is shown as:

0= Aiglgrt - 51!g]'grtdég]'g (1=1)

(5113]8 tdlgfg - Afg]gf - 6£gjgftd§gfg (1=2)

Eélgl 4 =1 511] =01 Azg] = Wigje t

R0 U= =) 02 .
K e s

igig ~ f T ]l; >

dig]g - ““g]g%

, 2
lpmin — lpig,t S lpmax
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Finally, the Weymouth gas flow equation is transformed into the form as:
2 (Al Y gl
Claje Wit = i) = Z (At = digi Kigia T figia it (50)

I
—

1

Therefore, the two-stage distributionally robust joint chance-constrained dispatch
model considering wind power uncertainty can be converted into a mixed-integer conic
reformulation with Equations (1) and (30) as the objective function and Equations (2)—(5),
(7)-(9), (11)—(15), (17)—(29), (31)—(34), (43), (47), and (50) as the constraints, which can be
solved directly by calling Gurobi solver under Matlab.

4. Case Study

As shown in Figure 3, a regionally integrated energy system for electricity, gas, and
heating comprising a modified IEEE 24-bus system, 20 natural gas nodes, and 6 heat nodes,
was used to test the validity of the proposed DR-JCCD model. The detailed information
for the generators and natural gas sources are given in Appendix B. The power and the
gas subsystems have three coupled points: buses 13 and 23 in the power subsystem are
severally connected with natural gas nodes 3 and 19 via two gas-fired generators, and a
CHP at bus 22 is linked with gas node 6. The heat demand is satisfied by the gas turbine at
power bus 22, and an electric boiler supplied by power bus 13.

w

[l Energy
L Converters |

+Wind turbines {llGas-fired units*------- * Power transmission ------- » Gas transmission

€9 Thermal units CHP Electricboiler ~ -=----- »Heat transmission
Figure 3. Modified 24-electricity bus, 20-natural gas node, and 6-heat node system for regional IES.

4.1. Robust Performance with Different Sample Sizes

In general, by using another dataset diverse from the experimental one, out-of-sample
performance is a helpful tool for assessing the robustness of the optimal schedules [37].
Additionally, sampling errors that comes from limited historical data may cause poor
out-of-sample performance in operation. In this condition, the empirical evidence based
on out-of-sample forecasting errors is used to measure the robustness of the model in
this paper.

As illustrated in Figure 4, an unwise decision that ignores ambiguity (by setting
p = 0) has a large out-of-sample size, which is the maximum cost ($5.37 x 107). Therefore,
this unwise decision is costlier than a more advanced decision that takes the ambiguity
of uncertain wind power into account by setting an appropriate distance p. The largest
difference in cost is up to $5.1 x 10°. In short, the distance p precisely regulates the
conservativeness of the optimal decision. A considerable distance will make optimal
decisions more independent of the characteristics of the historical data and offer stronger
robustness to energy adjustments and reserve policies.
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Figure 4. The acquisition cost of out-of-sample size influenced by training sample sizes and Wasser-
stein distance.

Furthermore, a model considering uncertain variable ambiguity is more competitive
for larger sample sizes N. For example, as shown in Figure 4, the acquisition cost of out-of-
sample sizes is higher when using an N = 20 training sample ($5.35 x 10”) versus an N = 100
training sample ($5.32 x 107). This is due to the fact that a smaller sample size results in a
poorer robustness choice in the first stage, necessitating a higher cost for adjustment at the
second stage. It is now obvious that the out-of-sample acquisition cost decreases gradually
as the training sample size increases. It further implies that, with adequate data support,
the proposed solution is fairly robust to wind uncertainty.

4.2. The Influence of Different Confidence Levels

Because risk levels of renewable energy uncertainty can be estimated by confidence
level or the parameter ¢, we investigate the influence of a series of confidence levels on the
total cost. The whole system cost with different parameters 1 — ¢, including 99%, 95%, 90%,
75%, 65%, 55%, and 45%, are summarized in Figure 5.

Total expected cost ($)

Figure 5. The impact of different confidence levels on the operational cost.

With the same p, when the ¢ increases from 0.01 to 0.55, the marginal cost gradually
decreases from $5.39 x 107 to $5.32 x 107, as shown in Figure 5. The largest marginal
cost difference is $7 x 10° among the listed confidence levels. This is because the lower
the decision-risk maker’s tolerance, the greater the necessity for the reserve to balance
the unpredictability of wind turbine output, and the greater the amount of natural gas
consumed. Meanwhile, a small € value represents a low tolerance level of risk-taking. It
means that as the level of confidence diminishes, the marginal cost decreases. In particular,
when the confidence level change from 99% to 95%, the marginal cost dramatically decreases
by $5 x 10°, which accounts for 71% of the largest marginal cost difference. Therefore, it
will cost more to achieve more a reliable operation of the system. It acts as a reminder to
decision-makers that in practice, they should choose an adequate confidence level to avoid
the significant costs associated with high-reliability standards.
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4.3. Comparisons among DR-JCCD, RO, and SP

To assess the effectiveness of the proposed DR-JCCD in balancing robustness and
economy, this subsection compares the operating costs among the DR-JCCD approach, RO,
and SP methods.

As shown in Figure 6, the total expected costs of the DR-JCCD model increase as the
confidence level increases. The expected costs of the DR-JCCD model are always between
the RO and SP, regardless of how the expenses change. Meanwhile, the RO approach has a
higher total expected cost than its counterparts by at least $1 x 10* and at most $6.4 x 10°
due to overly conservative decisions on energy reserve and dispatch. In particular, when the
Wasserstein distance is zero, the total expected cost of DR-JCCD is equal to the anticipated
expenses of SP. According to the definition of the Wasserstein distance, the ambiguity set
contains only empirical probability distributions of wind power on this condition. When
the Wasserstein radius approaches infinity and the confidence level reaches 100%, DR-JCCD
almost degrades into RO, where the cost of DR-JCCD is only 0.02% lower than the cost of
RO. This is because the former has the tendency to contain all probability distributions.

5.36
5.35

Total expected cost
$)

L
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) 90%
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Figure 6. Comparison of total expected costs among DR-JCCD with different ¢, RO, and SP.

Moreover, the acquisition cost of out-of-sample size of the DR-JCCD model decreases
with the increase in training sample size. However, this cost is always between RO and SP,
as illustrated in Figure 7.

7
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Figure 7. Comparison acquisition cost of out-of-sample size among DR-JCCD with different sizes of
training samples, RO, and SP.

Moreover, the acquisition cost of out-of-sample size of the DR-JCCD model decreases
with the increasing training sample size. However, this cost is always in-between RO and
SP, as illustrated in Figure 7.

From a different perspective, RO, which dispatches and reserves more energy in the
worst case of wind power generation, has the most robustness of the three techniques.
However, taking accurate dispatch and reserve into account, the proposed approach has
lower operational costs than RO. This is due to the fact that it bases its decisions on
the worst-case probability distribution of wind power generation, which means more
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information on uncertain wind power considered. It also has a higher energy reserve than
the SP to cope with the wind power uncertainty.

To sum up, by employing partial distributional information, the DR-JCCD approach
realizes that the robustness of the model is well-balanced with its economy.

4.4. Analysis of Energy Conversions in Energy Balance

Different confidence levels will result in various solutions in multi-energy manage-
ment. Here, 1 — e = 95% is chose to show the energy mutual assistance effect of gas-
fired generations and CHP in the gas system. Note that positive values in Figure 8 rep-
resent the result of day-ahead operation, while negative values represent the result of
real-time dispatch.

0.4

Gas(Mm3)

04— 11 I S | TN N N S N N |
) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

mmm  Day-ahead GasGenNeed mmm  GasGenNeed Adjustment Time
B Real-time GasGenNeed

Figure 8. Natural gas consumed in day-head and real-time operation.

A small amount of natural gas is transformed into power at 1:00-3:00 and 24:00 owing
to the large output of wind power, as illustrated in Figure 8. At this time, the results
of the day-ahead operation will not be adjusted in real-time. Because the influence of
the expectation of wind power real-time deviation at the first stage is considered, the
adjustment may always take a cut action to revise the results over day-ahead dispatch
between 4:00 and 23:00, where the maximum adjustment amount accounts for 19.83% of
the day-ahead dispatch. It can reduce unnecessary costs and verify the robustness of the
decisions made at the first stage. Meanwhile, by CHP and gas-fired units, the natural gas
system effectively supports the power grid under wind power uncertainty.

The output of the heating system is shown in Figure 9. Additionally, the difference
between the heating source and heating demand is precisely the transmission loss, as
shown in Figure 9a,b. According to Figure 9¢c, the CHP and electric boiler convert the
electricity in order to meet the heating demand, where CHP is the dominant heating source
with 83% of the heating capacity and the electric boiler assists with 17% of the heating
capacity. When the wind power is abundant at 1:00-5:00 and 23:00-24:00, the electric boiler
transforms more wind power to heat, enhancing the IES capacity of wind power utilization
in IES.

4.5. Effect of Gas-Fired Generations on Electric Peak Shaving

Peak shaving in a multi-energy system proactively adjusts actions of energy utilization
to broaden energy sources or reduce short-term multi-energy demand at peak periods.
As a device of multi-energy cooperation, gas-fired generations have a positive effect on
Electric Peak shaving, as illustrated in Figure 10. At the peak of power consumption, gas-
fired generation systems quickly adjust their output to meet the power demand, thereby
reducing the regulatory burden of the power system. Especially at 11:00, the supply of
gas-fired generators reaches its maximum, accounting for 22.26% of the power demand.
This demonstrates the advantages of multi-energy cooperation in the proposed model. This
is particularly the case when the regulation resource is limited or the regulation cost is too
high in a subsystem.
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Figure 9. The output of the heating system. (a) The heat balance of the heating system. (b) The
transmission loss of heating system. (c) The output of heat sources.
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Figure 10. Actions of gas-fired generations in Electric Peak-shaving.

5. Conclusions

A two-stage distributionally robust joint chance-constrained dispatch model for
electricity—gas—heat IES with wind power uncertainty is investigated in this paper. The
wind power generation uncertainty is captured in the model by employing the worst-case
probability distributional information in an ambiguity set based on Wasserstein distance. In
light of the operational risk caused by wind power uncertainty, the joint chance constraints
ensure that multiple safety conditions are met simultaneously with a high confidence level.
Next, by the linear decision rules and linear incremental method, the problem is reformu-
lated as a mixed-integer tractable optimization issue. The effectiveness of the proposed
model is corroborated on an electricity-gas—heating regional integrated energy system with
a modified IEEE 24-bus system, with 20 natural gas nodes and 6 heat nodes. Notably, the
proposed DR-JCCD method can pay 1.3% less than the RO method and achieve a more
robust out-of-sample performance than the SP approach at risk, which is a shaving of 22.3%
on the acquisition cost of out-of-sample size. Hence, the proposed model achieves a good
balance between economy and robustness. Furthermore, the higher the risk preference of
the decision-maker, the cheaper the operating cost of the optimization solutions will be,
but this will also lessen the robustness of this scheme. To put it differently, the DR-JCCD
method can provide decision-makers with information on cost and risk.

With the increase in the number of wind power data, the statistical wind power
characteristics are closer to the true wind power distribution. However, a large number of
data sets will bring about a calculation issue. Therefore, it is necessary to consider effective
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scene reduction technology in future work. For more flexible energy management, the IES
can take more functional interdependent coupling devices into account and integrate a
multi-energy demand response. In addition, multiple uncertainties can be considered in
future work, such as various uncertain energy supply and energy demand.
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Appendix A

Table A1. Nomenclature.

Nomenclature
Indices and sets 17§§ Efficiency coefficient of gas-fired units.
t,T Index and set of time periods. n }ff Efficiency coefficient of electric boiler.
le, Le Index and set of transmission lines. € Confidence levels of chance constraints.
. .. . Cost coefficients for traditional units,
ie, Le Index and set of traditional units. AiysAgg, /\chp gas-fired units, and CHPs.
s : + 2= A+
88/GG Index and set of gas-fired units. A Aio g Cost coefficients up and down reserve of
Chp, CHP Index and set of CHPs. )‘g_g )ﬁ} A traditional units, gas-fired units, and CHPs.
7 "“chp’ " “chp
iJ Index and set of wind farms. Aig Cost coefficient for natural gas source.
ke, Ke Index and set of power demand. Ashed pspil C(.)St coefﬁgent forload shedding and
ke 777j wind spilling,.
be, Be Index and set of electric boilers. Variables
o + = Lt
g/ jgrkg Z Index and set of gas nodes. Tigs Vi g t Up and down reserve capacity of
b Index and set of heat pipes. Feat o ot et traditional units, gas-fired units, and CHPs.
in, I Index and set of heat nodes. . . )
DA »DA DA  Active power output of traditional units,
_ dex and set of heat pipes at the end/head  F;,,"/ i Pept _fi i
s- gt Inde pip ley 7 "884""chpt  gas-fired units, and CHPs day head.
ih’ “ih of node ij,.
Parameters P¥ (Z), P¥ () The adjustment of traditional units,
Lot 7 g8t 4 . . .
F— Mo q - 4 - gas-fired units and CHPs responding to
R, Rz‘e, Rgg ax1mum up ag. max1mum ov{n reserye P chp,t(g) uncertain wind forecasting errors.
capacity of traditional units, gas-fired units, - —
Ree, th », R, p and CHPs. Pbb;l? Active power consumed by electric boiler.
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Table Al. Cont.

Nomenclature

Pimax, Pimm,
e e

Maximum and minimum limits of active

shed
e

Load shedding at bus k. in period t.

pget, P ?g’ " power output of traditional units, gas-fired p]iT,spi Wind spilling of wind farm j in period ¢.
- units, and CHPs. RT RT
P IZZXI P 5711;;15 t iy 7 88t The real-time adjustments of traditional
RU pRD RT units, gas-fired units and CHPs.
[ﬂe ’ Iyg Pthi &
pRU  pRD Maximum ramp-up and ramp-down rate of
83 7 " 88 traditional units, gas-fired units, and CHPs.  ini_ fi”f Injected active power flow at bus i, and j,.
ng, PCI}ZL,; et o terminal services
e Maximum active power flow of line . Pi b Pressure of gas node 7.
Qs, Qv, 4 Matrices of power transfer source Output of natural gas sources
= distribution factors. it '
P,i v Wl-X””d Electricity, gas load in period ¢. Wi jo t Gas flow of pipeline ig, jg-
DA Forecasting output of wind farm j in chp  gg Injected gas flow of gas turbine and
wjy period £. Wy, v Wit gas-fired units.
Gt Uncertain wind forecasting errors. psinb s outh .Inlet / Qutlet temperature of feed piping b
Pc Gas compressor coefficient. bt bt in period .
Cije The coefficient for Weymouth equation. prinb prouth .Inlet / Qutlet temperature of return piping b
Mg, , My, Heating water mass of feed /return piping. b in period t.
Heating demand at heat piping node 7, in
df',,e :z ! period gt PIpIg " ms  mr Mixed temperature at node 7, of
A feed/return piping in period ¢.
Cp Specific heat capacity of water.
T Ambient temperature. HDA DA Heat output of CHPs and electric boilers in
&b Heat transfer coefficient of heat piping b. chptr EBA period t day ahead.
Lb Length of heat piping b. Iloj.; ; Heat loss of heat piping in period f.
8,
ng};p , ;7;2"’ Efficiency coefficient of CHPs.
Appendix B
Table A2. Parameters of traditional units, gas-fired units and CHPs.
prex prin A Ramp u Ramp down
) ) ) ) p up p
No MW) MW) (KS/MWHh) Bus MW) MW) Type
1 304 40 17.5 1 150 150 0
2 304 40 20 2 150 150 0
3 600 70 15 7 300 300 0
4 1182 60 22.5 13 590 590 1
5 120 30 30 15 60 60 0
6 310 30 225 15 105 105 0
7 310 30 25 16 105 105 0
8 800 50 5 18 400 400 0
9 800 50 7.5 21 400 400 0
10 652 50 225 22 325 325 2
11 620 60 15 23 310 310 1
12 700 40 225 23 350 350 0

Where type 0\1\2 represents traditional units\gas-fired units\CHPs.
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Table A3. Parameters of natural gas sources.

No. Gas Node w,-gjg' min (Mm3) w,-gjg' mux(Mm3) ($/I:\/[lfn3)
1 1 0.9 1.7391 85,000
2 2 0 1.26 85,000
3 5 0 0.72 85,000
4 8 1.0 2.3018 62,000
5 13 0 0.27 62,000
6 14 0 1.44 62,000
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