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Abstract: The safety of power batteries has received more and more attention in promoting electric
vehicles. The external short circuit is particularly prominent as an abnormal and harmful event of a
battery, and the exploration of in-situ low-cost detection technology for such an event is the starting
point of this paper. By building an experimental bench that could detect the external short circuit of the
battery and obtain the acoustic, electrode, and temperature responses, the resulting acoustic analysis
would establish an internal connection with the electrode and temperature measurement when the
external short circuit occurs. The respective acoustic response characteristics of different initial battery
states of charge were analyzed by selecting appropriate acoustic characteristic parameters in the
time and frequency domains. The acoustic measurement could represent the battery abnormality
synchronously like the electrode measurement, and the results of the damage and rearrangement of
the internal of the battery are easy to characterize through a moderate amplification of the acoustic
response. The different initial state of charge (SOC) state reflects noticeable differences in the acoustic
characteristics. Therefore, it is considered that the acoustic emission technology might have potential
battery condition assessment capabilities and be a tool for in-situ battery fault diagnosis.

Keywords: lithium-ion battery; acoustic emission; state of charge; external short circuit; acoustic
characteristic

1. Introduction

With the vigorous development of lithium battery chemistry technology, pure electric
vehicles (PEVs) have gradually begun to replace fuel vehicles. Lithium batteries are widely
used in electric vehicles due to a good balance of many aspects, such as cost, capacity, safety,
and other excellent characteristics. People have anticipated higher requirements for the
overall performance indicators of lithium batteries, especially in terms of volume/mass-
energy density, power density, life cycle, cost, safety performance, etc.

Battery-embedded sensors are used to collect valuable data to optimize battery op-
eration strategies [1,2]. The data will help the battery management system to acquire
the correct status of the battery, optimize the battery performance, and detect abnormal
conditions of the battery in time. At the same time, from the perspective of vehicle battery
driving range and power requirements, the demand for the number of lithium-ion batteries
is increasing, and the performance of these batteries, such as fast charge and discharge
capabilities and safety issues [3–5], are also constantly improving. To meet the needs of
the market, enhance the performance and safety of batteries, and shorten the development
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cycle of new battery systems, it is necessary to carry out failure analysis and fault diagno-
sis of lithium batteries in the course of battery operation. The diagnostic techniques for
Li-ion batteries are increasingly emphasizing a balance of economy and reliability due to
their need to target larger battery sizes and the cost of batteries deployed in increasingly
expensive applications, including electric vehicles.

1.1. Literature Review

Lithium-ion battery cells usually have variable electrical characteristics and are very
sensitive to operating and environmental temperatures. With diagnostic tools and sophisti-
cated battery management strategies, battery performance has been improved by confining
battery operation within specified limits [6–8]. Those limits balance the battery’s perfor-
mance and alleviate the problem of rapid degradation. The causes of rapid degradation
include high-current charging and discharging, low-efficiency temperature environments,
and low or high battery charge timing. The state of the lithium battery would affect the
life of the battery itself and be directly linked to the performance of the vehicle. The char-
acteristic response of the battery electrode as a real-time diagnostic tool usually involves
complex algorithm processing, and the high-precision hardware sensors for the battery
management systems (BMS) are expensive. In this case, although the detection of electrode
characteristics could identify abnormal data, it is challenging to locate the specific fault
location, especially when the batteries are arranged in groups or packages. It can be used as
a supplement to the judgment of battery failure by combining visualizing the inside of the
battery. In recent years, acoustic-related testing methods have gradually gained more and
more attention in lithium battery fault diagnosis due to their versatility, ease of operation,
and acceptable accuracy of results.

In situ and ex situ diagnostic techniques have been broadly used in the fabrication,
planning, performance assessment, and tracking of electrochemical devices [9,10]. There
are four main methods for measuring lithium-ion battery (LIB) failure [11], including
destructive testing, imaging methods, methods based on battery swelling, and methods
based on acoustic measurements. The experimental study of lithium-ion battery failure is
primarily destructive testing, which means that the battery is damaged or severely affected
in its operational behavior and safety; it is crucial for the study of the mechanical and
electrochemical relationships of the battery, but it rarely applies to troubleshooting.

Imaging methods such as X-ray or computed tomography are used to gain insight
into the physical structure of a battery or material and can measure layer thickness through
changes in the state of charge (SOC) or state of health (SOH) and identify structural defects
in materials and battery components. Historically, X-ray tomography has been commonly
used to obtain 3D images of batteries [12–14]. The introduction of lock-in thermal imaging
technology also enables internal visible battery inspections. Combined with the thermal
imaging technology developed in recent years, a clearer view of the internal failure of
the battery would be achieved [15]. However, this usually requires a lot of laboratory
equipment, space, and funds, so there is a high threshold for promotion and application.
Another limitation is that the components to be tested must absorb X-rays to ensure the
feasibility of detection [16,17].

The research conducted by the swelling method is mainly based on the contact mea-
surement for the pouch battery. It is an economical way to reveal most of the phenomena
in LIBs and is widely used in laboratory-stage research. The research includes the correla-
tion of SOC and charge-discharge C rate, considering the battery structure, battery SOH
estimation, and the effect of temperature on swelling, etc. [18]. There is no report on the
measurement of swelling under abuse conditions. Experimental modal analysis (EMA) is a
relatively new topic in LIB measurements. No firm conclusions could yet be drawn about
SOC, SOH, and other effects on EMA behavior, but can be used as an integrated diagnostic
development tool.

A class of acoustic-based methods transmits mechanical waves into the battery cell
through an actuator, and the receiver sensor measures the response of the device to an
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external stimulus, called ultrasonic testing (US) [19]. During scanning, the distance between
the transducer and the object’s surface to be measured remains constant. The energy of
sound waves decays faster in gas than in liquids and solids, which will lead to low accuracy
of measurement data. To enhance the transfer energy of sound waves in the sample and
avoid external interference of the measured object, both the transducer and the battery are
usually invaded into the coupling medium (gel or water) to reduce the effect of reflections
at the outer interface on the measurement. The US can detect not only operating values,
such as SOC and SOH, but also abusive behaviors, such as high temperature, electroplating,
and overcharging, and applies to a wide range of frequencies and various form factor
studies [20,21]. As a non-destructive battery diagnostic tool, some literature has explored
acoustic methods to characterize Li-ion pouch cells, with sound as an indicator of battery
structural health and state-of-charge-related parameters. Time of fly (TOF) offset and
total signal amplitude as index parameters for ultrasonic analysis are used to predict the
battery state and state of health. Combined with traditional electrode detection data, TOF
could present direct structural information of actual batteries in real-time [22,23]. At the
same time, many macroscopic-level static strains of batteries have been associated with the
operating state in the battery, which shows a strong correlation with the volume change
in some pouch batteries. Acoustic measurements have also been used to detect possible
macroscopic crack detection, and microscopic measurements have been used to further
clarify the cause of the shock response in the electrochemical reaction of the battery [24,25].
However, critical explanations for battery fault diagnosis and acoustic detection feature
extraction are still lacking.

Acoustic Emission (AE) is another acoustic-based measurement method that differs
from ultrasonic testing in that the object to be measured is not subjected to external mechan-
ical excitation, but the material itself is measured by a connected (surface) sensor collecting
fast releasing mechanical stress. The resulting sound waves are widely used to monitor
fatigue, crack formation, and mechanical damage in building materials. Also included
under external stimuli (e.g., changes in pressure, strain, temperature, or load), local sources
within the material trigger energy release in the form of stress waves, which can be detected
and converted on the surface of the measured object as electrical signals for subsequent
studies [26,27]. Therefore, the use of AE to detect the electrochemical process of the battery
is also a further application of its technical characteristics. For LIB batteries, the particle
fracture will inevitably fluctuate in acoustic signals, which can be obtained theoretically
through the selection of appropriate equipment and the tuning of filtering algorithms.
However, it is accompanied by an increase in acquisition cost and higher requirements for
robustness. Therefore, from the perspective of balancing the cost of signal acquisition and
the ability to predict abnormal events, the recognition object of the acoustic signal may
also need to be carefully selected. Potential sources of AE events in LIBs include electrode
cracking, transition metal dissolution, cathode electrolyte interface (CEI) formation, solid
electrolyte interface (SEI) formation, etc. On a cylindrical 18,650 cell, some researchers
measured AE during full cell discharge [28], detected SOH by AE [29], and observed the
trend of the AE intensity for each window as a function of a cycle. Other researchers used
the AE to probe the generation, change process of solid electrolyte interphase (SEI) in
batteries [30]. The acquired AE signals could also be divided into various types. Targeting
for different analysis purposes, appropriate characteristic indicators should be selected care-
fully to explore the damage mechanism of lithium-ion batteries [30,31]. Generally speaking,
with the occurrence of electrochemical reactions inside the battery, the transformation of
almost any energy level will be associated with the rearrangement of the local structure. An
acoustic signal will inevitably be emitted in this rearrangement process, which also means
that AE can be regarded as a relatively simple principle diagnostic tool on the one hand; on
the other hand, their broad applicability is accompanied by high sensitivity issues. At the
same time, according to the different anode and cathode material selection and rational
design processes mentioned in the literature [32], it is necessary to fully understand the
acoustic characteristics of a single structure or component of the battery. In the future, in
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the face of acoustic events and characteristics with low discrimination, it is necessary to
introduce more acoustic sensors for simultaneous observation of anodes and cathodes, and
the introduction of half-cell will also be an ideal research object.

In general, a variety of battery fault diagnosis methods have been widely used in the
research of LIB batteries, not only in the analysis of the regular operation of the battery but
also in the real-time monitoring of various failure precursors. Destructive testing means
that the battery is damaged or seriously affected in its operating behavior and safety. It is
primarily used in laboratory research and unsuitable for in situ detection needs. It is of
great help to study the mechanical and electrochemical relationship of batteries in the lab,
while it is not applicable for troubleshooting in reality. Generally speaking, non-destructive
testing (NDT) is of great significance for verifying battery quality and safety standards [33].
The detection of the swelling method has a good effect on a specific pouch battery. When
the measured object is a prismatic battery or a cylindrical battery, the swelling application
effect will be significantly reduced. The other three methods are classic non-destructive
methods, which would provide potentially practical information and has the possibility of
application in in-situ and ex-situ operations, helping to overcome the difficulties and the
problems to be solved in traditional battery state estimation and fault diagnosis operations
based on electrode measurements. Acoustic-based sensing technology is mainly used
for SOC and SOH measurement of batteries, but the associativity of temperature, C rate,
and abuse conditions are less considered. In terms of monitoring time, in comparison,
imaging methods require less measurement time, but it is not easy to form a long-term
continuous analysis process. Acoustic measurement has excellent advantages in long-term
monitoring data accumulation. On that basis, deep learning and mathematical statistics
have great potential as data-driven estimation methods, and they work best when combined
with traditional electrode measurements such as voltage and current observations. So,
the acoustic measurement is of great significance for battery state estimation and fault
diagnosis based on battery electrode measurements.

1.2. Motivation and Original Contribution

From the perspective of battery safety, the short circuit caused by external circuit
failure is a relatively severe electrical abuse behavior. The subsequent performance failure
of the battery is easy to generate, which is reflected in capacity attenuation, short cycle life,
poor consistency, easy self-discharge, high- and low-temperature performance degradation,
etc.; on the other hand, the battery is prone to safety risks such as thermal runaway, gas
leakage, and expansion deformation. From an acoustic point of view, the microstructure of
the battery must be accompanied by relatively drastic changes in the short-circuit process
of high current discharge, which is reflected in the transformation of the microstructure of
the cathode and anode materials, breakdown of the separator accompanied by continuous
heat release of the battery, temperature rise, and other behaviors. Changes in the microme-
chanical structure of the battery will negatively affect the current state and subsequent
performance of the battery. Although the data measured by the electrode can detect the
abnormality of the current data, the ability to capture some short-term abnormal signals is
weak, and the subsequent impact cannot be continuously monitored and identified. For the
short-circuit behavior of different initial SOC, the evaluation method should also require
diversified measurements. In terms of the acquisition of acoustic signals and analysis of
parametric variables, few studies have conducted an in-depth analysis of the high current
caused by short circuits. Therefore, this paper analyzes the acoustic response characteristics
of the battery cells with external short circuits (ESC) under different SOC initial conditions,
obtains the acoustic discrimination criteria for the short-circuit fault diagnosis of 18,650 bat-
teries, and conducts a possible correlation analysis. The research would provide a method
for the failure analysis of lithium batteries, also a new promising tool.
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1.3. Configuration of This Paper

The remainder of this paper is organized as follows: Section 2 illustrates the experi-
ment’s setup. Preliminary Analysis of Acoustic Signals introduces the primary methods
for this study. Results and discussion present the results of the analysis for the acoustic
response of the external short-circuit battery and develop the necessary discussions. Finally,
the conclusion of our approach is given in Conclusion. All term abbreviations used in the
study could be found in Nomenclature.

2. Experimental Section

Acoustic measurements were performed on commercial 18,650-type cylindrical nickel
manganese cobalt oxide (NCM) lithium cells. According to the test conditions and safety
considerations, two cases of initial battery SOC of 80% and 50% were selected. When the
battery is placed in the temperature chamber, the ambient temperature is set to 20 ◦C to
facilitate later observation of temperature changes and establish the connection between
temperature, electrode measurement, and acoustic response. The battery-cell character-
istics are shown in Table 1. Taking Lithium NCM111as an example, the electrochemical
reaction during the charging and discharging process is shown in (1). Figure 1 shows the
installed lithium-ion battery external short-circuit the experimental system. The computer
is connected to the Motohawk via controller area network (CAN) and controls the relays in
the circuit. Hall current sensors are used to measure short-circuit current. The ultrasonic
needle sensor is from ndtXducer, and the miniature needle-type sensor is for industrial
and laboratory use in ultrasonic and acoustic measurements with characteristics such as
low cost, flat sensitivity, and good directivity, and its maximum operating temperature is
around 100 ◦C. The sensor is used to collect the vibration signal generated by the change
of the internal structure of the battery, and the output signal is a high-frequency voltage
signal. The voltage, current, and vibration signals were all recorded by the Nioki MR6000
data acquisition device, and the short-circuit duration was 150 s. To reduce the external
interference to the acoustic signal of the battery, a vibration isolation material is arranged
around the battery and the acoustic sensor; to enhance the sensor’s ability to receive signals,
the Vaseline gel is applied at the contact position between the battery body and the sensor.

LiNi 1
3

Co 1
3

Mn 1
3
O2

charge
�

discharge
Li1−x

(
Ni2+

1
3 −x

Ni3+x

)
Co 1

3
Mn 1

3
O2 + xLi+ + xe−

(
0 ≤ x ≤ 1

3
, 3.8–4.1

)
(1)

Table 1. List of main parameters of the experiment.

Type of the Battery Cell 18,650-Type Cylindrical NCM Lithium Cells

Nominal cell capacity (0.3 C) 2.0 Ah
Average battery cell voltage 3.6 V

End of discharge voltage 2.5 V
High voltage protection 4.2 V

Operation temperature range −20–55 ◦C
Cathode materials LiNi1−y−zCoyMnzO2
Anode materials Graphite

The collected raw voltage, current, acoustic, and temperature signals are shown in
Figure 2. The time range of the short-circuit occurrence can be clearly defined by the
fluctuating region of the voltage change. The voltage has the remarkable characteristics
of initial sag, fluctuation retention, and secondary sag. The corresponding current has a
similar change process of the initial jump, mid-wave, and terminal drop, which is a phe-
nomenon that can be clearly distinguished from the short-circuit condition at the electrode
measurement. Corresponding to the temperature signal, the initial occurrence of the short
circuit could obtain the rise of the temperature for the positive and negative electrodes and
the slight decrease of the temperature after the short circuit is completed. Corresponding
to the acoustic signal, the initial signal observation would roughly distinguish between
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the beginning and the end of the short circuit (compared to the range determined by the
voltage or current); the signal has an initial apparent change (at the beginning of the ESC),
and a relatively weak mutation (at the end of the ESC); other acoustic features are not very
obvious; it is difficult to distinguish from the data on the figure.
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Therefore, in terms of acoustic signal data analysis, phase spectrum analysis reduces
various influencing factors to obtain signal amplitude and phase values for further research.
The frequency-domain characteristics of the AE signal were analyzed from the time-domain
acoustic signal by Fast Fourier Transform (FFT).
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3. Preliminary Analysis of Acoustic Signals

According to the change of the corresponding current, the acoustic signal is preliminar-
ily divided into four time slots in Figure 3, where A is before the ESC, B is the continuous
process of the ESC, C is the near-end after the ESC, and D is the far end after the ESC,
which are used to observe the possible acoustic responses of the battery after a short circuit
occurs. The following results are obtained after filtering the PPT analysis for the acoustic
characteristic data segment of the above time slot.
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Figure 3. Segmentation diagram of an acoustic signal.

In Figure 4, there is an apparent difference between the amplitude change of short-
circuit occurrence and the short-circuit occurrence near-end, which reflects a difference
value of more than ten times. From the perspective of frequency, the frequency of the
inherent acoustic characteristics of the battery cell is relatively concentrated before the
short circuit occurs, which is between 3–4 Hz. The frequency characteristics of the ESC at
the near-end are shifted to the left, indicating that the internal structure of the battery is
changed due to the breakdown of the short-circuit current and the acoustic features are
changed, and the material fracture continues after the ESC in the proximal short-circuit
area C. It may be due to residual stress, which is reflected in the continuous increase
in the amplitude of the center frequency. The continuous temperature rise also proves
that the structure continues to change after the short circuit, and there is continuous heat
release. The characteristics of the acoustic response of region D become blurred due to the
rearrangement of the structure and lose its original characteristics, which is reflected in the
chaos of the microstructure and change. These indicate a dramatic change in the mechanical
properties of the electrode, which is consistent with the static mechanical analysis of the
electrode [24,26,30].
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signal near-end after the ESC; (D), Filtered acoustic signal far-end after the ESC.

From the perspective of the acoustic characteristics of a single short-circuit battery,
in terms of the near-end frequency domain characteristics before, during, and after the
ESC (window A–C), it is preliminarily shown that the value of the center frequency and
its amplitude, which are representative, would characterize the change of the internal
structure and the change of the mechanical properties when the short circuit occurs to a
certain extent. The signal at the far (window D) end becomes more ambiguous due to the
internal change of its acoustic characteristics after the short circuit occurs so that it can be
temporarily ignored in selecting the ESC data.

Therefore, in this paper, the correlation analysis of the measured values of electrodes,
acoustics, and temperature is carried out in both time and frequency domains. According
to the relationship between voltage, current, and temperature, the implication between the
response of the battery in different time slots during the ESC process and the character-
istic acoustic parameters would be obtained; the representation to the initial SOC at the
occurrence of the ESC might be clear; while the link between cell structural damage and
rearrangement and the acoustic response could be discussed. The overall framework of the
presented ideas is shown in Figure 5.
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4. Results and Discussion for Acoustic Characteristics of Battery Short Circuit under
Different SOC Conditions
4.1. Analysis of Acoustic Signal Characteristics in Time Domain

Characteristic parameters that are important for battery acoustics include rise time, the
time between the first threshold crossing and the peak amplitude; “duration” or the time
interval between the first and last threshold crossing in a burst signal; and the amplitude
of the response acoustic intensity, etc. The preferred peak value (amplitude) reflects the
response of the whole battery cell to the high-discharge current process in the short-circuit
process, which is closely related to the damage to the battery’s internal structure when
the short circuit occurs. What the acoustic sensor would receive is damage to the internal
structure of the battery. Although the specific position of the AE (sound radiation intensity)
cannot be determined under passive conditions, its amplitude reflects the characteristics of
the special battery discharge conditions. It would be used for comprehensive judgment of
the battery state.

The original acoustic signal obtained by the sensor has a low degree of recognition
with poor signal legibility. To better analyze the acoustic signal, the coaxial variation
curve of the current and the acoustic signal is obtained after processing through a rational
transfer function. The acoustic signal strength is normalized after filtering to ensure good
readability of the values. Overall, in the time range of interest, regardless of the initial SOC
(SOC80 OR SOC50) value, the acoustic signal immediately responds when a short circuit
current occurs. Still, the trend of the acoustic signal is a step-by-step process, and its peak
value shows at the end of the short-circuit process. In Figure 6, it appears later; that is, it
could be found from the figure that the acoustic curve reaches its peak value in about 5 s
after the ESC current drops to 0. The current change is generally in a relatively short time,
but the acoustic change starts at the same time as the current; while it is slightly achieved, a
delayed peak point reflects that the rearrangement of the internal structure of the battery
is the consequence of the short-circuit current shock. The subsequent decline process
demonstrates the process of the destruction and rearrangement of the battery content
structure. More importantly, from the perspective of detection, the initially short-term
electrode behavior would be transformed into a more obvious acoustic change process,
reflecting the vital characterization significance of the battery acoustic characteristics for
the abnormal state of the battery.
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Figure 6. Current and acoustic characteristics of ESC under initial SOC50 condition.

Through observation for Figure 7, there is a specific SOC correlation between the
acoustic intensities detected in SOC80 and SOC50. The acoustic radiation intensity of
SOC80 is higher than that of SOC50 by more than 6%, which corresponds to the case of high
current discharge. Compared with SOC50, the external short-circuit discharge current of
SOC80 also increases by 17%. Of course, this is in line with our expectations for the initial
state of the battery. For the analysis of battery AE duration, the structural characteristics of
the battery itself reflect the response to the short-circuit process. Due to the difference in the
battery’s state, the degree of damage to the battery resulting from high-current discharge is
also different. In Figure 8, SOC80 and SOC50, from the perspective of the two initial states,
the acoustic response process of SOC80 is shorter, reflecting the severity of the structural
damage process. The 22% reduction for the AE rise time in SOC80 also demonstrates the
severity of structural damage inside of the battery, which does not optimistically speculate
the possibility of structural rearrangement and repair. In the acoustic response of B123
battery SOC50 Figure 6, the fluctuation of the acoustic signal could be observed in the later
stage, which may indicate the possibility of repair after structural damage. In the case of
SOC80, no noticeable acoustic signal fluctuations were found subsequently.
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Figure 8. Current, acoustic, and temperature average characteristics of ESC under initial SOC50 and
SOC80 conditions.

To observe the relationship between electrode measurement (current), temperature,
and acoustic signal more intuitively, the data of SOC50 and SOC80 are averaged to obtain
a comparative analysis of coaxial curves under different SOC conditions, as shown in
Figure 8. Finally, from the perspective of the temperature change during the short-circuit
process, multi-position high-strength structural damage probably occurs inside the battery
parallelly. So, the temperature rise rate for the case of SOC80 is 52% higher than that
of SOC50, while the time of its peak arrival is later than the acoustic peak. The reason
for the subsequent temperature descent is more complicated. It is presumed to be the
result of the combined effect of two factors: on the one hand, with the end of the primary
short-circuit reaction, the large-scale structural damage stops; on the other hand, with
some small-scale structural repairs, while some continuous destruction of the structural
rearrangement results in the constant local release of heat, the observed result is a slower
decline rate after the peak. Therefore, the judgment of the abnormal state of the battery
from the perspective of temperature seems to have a relatively evident hysteresis in terms of
timeliness, as the major damage to the internal structure of the battery has been completed.
In this case, the analysis of the acoustic properties would present the abnormal behavior of
the battery ahead of the temperature. Considering that the battery temperature will also be
undulate due to heat accumulation during the regular operation of the battery, the direct
response of the acoustic characteristics to the changes in the battery structure has certain
advantages. The acoustic state can be used as the basis for judging the abnormal state of the
battery. In Figure 9, all the values are normalized, and the SOC50 is used as the comparison
benchmark, reflecting the comparison results of the above-selected parameters.

4.2. Analysis of Acoustic Signal Characteristics in Frequency Domain

The correlation analysis of the external short-circuit acoustic characteristics of the
battery with two initial conditions of battery SOC of 80% and SOC of 50% was carried
out, and three time windows (before, during, and after the ESC) were selected as the main
observation time slot. Here, the magnitude of the amplitude in the frequency domain is
used to represent the strength of the acoustic characteristics.
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In Figure 10, based on the acoustic signal characteristics in the three time windows
concerned, the short-circuit acoustic features window-A of SOC80 Figure 10(a1, b1) gener-
ally shows relatively stable acoustic characteristics. The center frequency is between 3–6 Hz,
which refers to the background acoustic aspects of the operation of the experimental device.
Depending on the arrangement of the device, it would be used as an initial calibration ref-
erence in the future considering improving the accuracy of the identification of the acoustic
characteristics for different types of batteries or setups. In the acoustic characteristics of the
window-B range Figure 10(a2, b2), the center frequency moves to the low-frequency area,
and the amplitude is ten times higher than that of the window-A field. The recognition is
with the remarkable feature, representing that the system structure responds strongly and
concentratedly to ESCs, which may be due to the transformation of the internal structure
when the high current, inducing the breakdown of the separator, or the structural rear-
rangement. The system is damaged, but the subsequent structure might continue to be
damaged or maintained. It is necessary to move the data analysis of area C. The acoustic
characteristics of the window C interval do not change significantly from the perspective of
the center frequency, but there are specific differences in the amplitude changes. A set of
data shows that the C interval in B130 Figure 10(b3) amplitude is unchanged, but the C
interval in B136 Figure 10(a3) data shows an increase of about five times the acoustic signal
intensity, which indicates that even if there is no subsequent operation of the electrode
terminal after the short circuit occurs, the trend of structural rearrangement and change
continues after the ESC. The fluctuation may be different for individuals, but the trend
should be the change of battery structure. As the current device cannot guarantee the safety
of subsequent battery electrode tests after the ESC, further observation and analysis of the
acoustic characteristics of the battery electrode operation are still to be confirmed, and more
experimental data are needed.
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Figure 10. Two cases frequency domain characteristics of window A–C with initial SOC80 condi-
tion. (A), acoustic signal before the ESC in (a1,b1); (B), acoustic signal during the ESC in (a2,b2);
(C), acoustic signal near-end after the ESC in (a3,b3).

From the analysis of the initial battery short-circuit test results of SOC50, the overall
trend is similar to that of SOC80. Still, the specific characteristics also demonstrate strong
SOC dependence, in Figure 11. For example, the value of the center frequency moves
along the low-frequency direction, the approximate frequency range is between 2–4 Hz
Figure 11(a1, b1), and the amplitude of the center frequency is less than the case of SOC80,
which reflects a relatively obvious SOC correlation. In the process of the ESC, that is, in
window B Figure 11(a2, b2), the amplitude of its center frequency also appears to move
to the low-frequency end, and the amplitude is lower than that of SOC80. Still, it has an
increase of about 15 times compared with the amplitude of SOC50 window A. The short-
circuited near-end acoustic signal in window C shows that the structure remains unchanged
Figure 11(b3) or further aggravates the damage Figure 11(a3). Based on the observation of
acoustic data, there is no observation that the acoustic characteristics represented by the
structure would be restored to the initial state (window A) after a short circuit occurs. Even
if it is left standing for a long enough time, no similar supporting data are observed. It is
explained that the microstructure damage of the battery cells after the high current short
circuit is irreversible, and it should be isolated or replaced in time from the perspective of
battery safety.
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5. Conclusions

This study investigates the AE characteristics of cylindrical lithium batteries when
an external short circuit occurs. Firstly, a test bench capable of measuring the acoustic
characteristics of the external short-circuit of the battery is built to obtain the electrode,
temperature, and acoustic data of the battery when the ESC occurs. Then, the analysis is
carried out from two aspects of the time domain and frequency domain. In the time domain,
the acoustic signal of the battery appears synchronously with the voltage/current change
during the ESC. With the destruction and rearrangement of the internal structure during
the short circuit, the acoustic response gradually increases and reaches a peak after the end
of the ESC. The critical acoustic characteristic values of rising time, amplitude, and duration
were selected, the SOC correlation analysis was carried out for batteries with different initial
SOC, and the mapping relationship with battery electrode and temperature characteristics
was further considered. In terms of frequency domain analysis, the acoustic response
of the battery is divided into three observation windows before, during, and after the
ESC, and the center frequency and amplitude of the acoustic signal in the three stages are
discussed. The correlation between the initial SOC of the short-circuit occurrence and the
acoustic response is verified. The expectation of the SOC dependence in the time domain
is confirmed. Therefore, by selecting appropriate acoustic characteristic parameters, AE
technology has the ability to diagnose abnormal battery status together with the electrode
and temperature measurement.

From the observation results of the ESC in analysis, the discharge current hopping
from 0 to 20–30 C-rate, the change of the acoustic intensity could be observed, and there is
still a lack of acoustic-related active constant discharge current test data at different levels to
make further judgments. According to the results observed so far, the correlation between
C-rate and acoustic energy is not clear, or the acoustic energy is relatively independent of the
ESC in our research. Compared with electrode measurement, it would extend the duration
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of abnormal events and improve the detection rate of suspicious events. Compared with
temperature measurement, AE can reflect the damage of abnormal circumstances to the
structure earlier, to gain time for subsequent operations. In the future, combined with the
analysis of the charge and discharge acoustic characteristics of different currents of the
different SOC states, and supplemented by the correction of temperature effects, a more
comprehensive battery acoustic and electrode characteristics would be established. The
mapping relationship of characteristics will provide more basis for battery state estimation,
life span estimation, and battery energy management.
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Nomenclature
PEVs Pure electric vehicles
SOC State of Charge
BMS Battery management system
LIB Lithium-ion battery
TOF Time of fly
ESC External short-circuits
SOH State of health
EMA Experimental modal analysis
US Ultrasonic testing
AE Acoustic emission
CEI Cathode electrolyte interface
SEI Solid electrolyte interface
EVs Electric vehicles
NDT Non-destructive testing
FFT Fast Fourier transform
CAN Controller area network
NCM Nickel Manganese Cobalt Oxide
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