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Abstract: With the push for higher efficiency and reliability, an increasing number of intelligent
electronic devices (IEDs) and associated information and communication technology (ICT) are inte-
grated into the Internet of Things (IoT)-enabled smart grid. These advanced technologies and IEDs
also bring potential vulnerabilities to the intelligent cyber—physical smart grid. State estimation, as
a primary step of system monitoring and situational awareness, is a potential target for attackers.
A number of other smart grid applications, such as voltage stability assessment and contingency
screening, utilize state estimation results as input data. False data injection (FDI) is a specific way to
attack state estimation by manipulating input data. Existing research mainly focuses on the mathe-
matical analysis of FDI attacks; however, in these methods, discussions of reachability requirements
to compromise measurements considering cyberinfrastructure are limited. Reachability is defined as
a measure that estimates the number of hosts to compromise for the possible FDI. Most of the existing
FDI attack methods require the simultaneous manipulation on multiple measurement devices in
different substations, in order to bypass the bad data detection, which may be impractical. In this
paper, a new type of reachability-based FDI attack considering the cybernetwork with a practical
attack is proposed and validated on two IEEE test systems. The corresponding defence mechanisms
are (a) decentralized state estimation (DSE), (b) DSE with additional backup computational nodes, (c)
communication network rerouting, and (d) intrusion detection system, and they were developed and
presented with validation for two IEEE test systems with superior performance for an IoT-enabled
intelligent smart grid system.

Keywords: state estimation; cyber—physical analysis; false data injection attacks; smart grid

communication; smart grid measurements; IoT

1. Introduction

With the integration of information and communication technology (ICT) and the Inter-
net of Things (IoT) enabling advanced control automation in the intelligent cyber—physical
systems, smart grid technology is confronted with an increasing number of challenges from
cyber vulnerabilities [1-5]. Cyber—physical analysis for these vulnerabilities is focused on
multiple aspects such as developing robust computational architecture [6-9] and analyzing
the impact of cyberattacks on IoT-enabled smart grid applications [10-13]. State estimation
is one of the most popular prevention methods commonly addressed for cyber—physical
analysis. The results of state estimation are utilized by many other smart grid applications,
such as voltage stability monitoring and security analysis. Different types of hybrid state
estimation, linear state estimation, and distributed state estimation were developed [14-16].
However, the performance of the state estimator is prone to measurement errors, communi-
cation noises, and possible cyberattacks [17,18].
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False data injection (FDI) is one of the most commonly discussed attack methods in the
previous literature. An FDI attack requires manipulating certain estimated system states
and having the capability of bypassing existing bad data detection techniques. Existing FDI
attack scenarios are mostly focused on building the mathematical model of FDI attacks. For
example, an imperfect implementation method of false data injection attacks was developed
in [19]. The authors performed a developed FDI attack on both a nonlinear state estimation
model and a DC state estimation model. In [20], the authors proposed a local FDI attack
with reduced network information. The effectiveness of the proposed FDI attack was
validated by extensive simulations. The developed FDI only needs information within the
subnetwork of the smart grid to attack the results of optimal power flow calculation. In [21],
the authors reviewed cybersecurity and different vulnerabilities with mitigation strategies
of recent smart grid technologies. They classified cyberattacks, keeping the focus on FDI
attacks with several use cases due to their prevalence in different operational domains of
the smart grid. In [22], a method of FDI attack was proposed to target Volt/Var optimization
that manipulates the voltage profiles of distribution feeders and leads to adversary power
losses. In [23], the principal component analysis approximation method was utilized for
blind FDI without Jacobian matrix information. Unlike many other FDI algorithms for
analyzing attacks on DC state estimation, a new FDI algorithm was proposed in [24] that
analyzes attacks against AC state estimation with limited network information. In [25],
a new FDI algorithm focused on phasor measurement unit (PMU) measurements was
developed to selectively compromise the minimal number of devices. The corresponding
countermeasures are also proposed in this paper to detect this new FDI algorithm. In [26],
a new FDI attack algorithm focused on switching network topology is developed. The
countermeasures for this new FDI are also discussed in the paper. In [27], the authors
analyzed the impact of FDI on automatic generation control and developed a defence
mechanism to detect this kind of FDI attack. One of the most common issues on existing FDI
attack methods is that complete observability and selective controllability were assumed in
the research works mentioned above; however, in practice, a trade-off is presented to the
attacker between the exposure risk of getting detected and the extensive intervention of
multiple electronic devices. To avoid being caught, the attacker needs to intervene in the
electronic devices as little as possible to perform the attack. Thus, the reachability of the
attacker is defined as the capability of attackers to compromise several hosts at the same
time. Some notable assumptions are impractical and hard to be achieved in real life:

*  An attacker has access to selected data points at multiple substations even though that
requires compromising multiple routers and switches with higher exposure risks.

¢  Excessive assumptions about reachability and a higher level of cyberexposure risk,
while the attack objective remains to be undetected with stealth FDI attack.

*  The probability of appearance of these existing FDI attacks is significantly low in the
real world as it contradicts the motives of cyberattacks.

To further analyze FDI attacks, research works proposed to limit the information range
that attackers could access. In [28], an algorithm was developed to optimize the installation
locations of PMU devices against FDI attacks in the state estimation. In [29], a new method
of constructing FDI attack vectors was proposed on the basis of the least probability of
detection and incomplete topological information. Identifying the location(s) under FDI
attacks is also important. A model-free deep-learning-based location detection method was
proposed in [30]. Table 1 listed the primary characteristics of typical FDI methods, including
applied FDI methods, state estimation model, and the number of states to be compromised.
To the best of our knowledge, a communication network with components (e.g., gateways,
routers, intelligent electronic devices(IEDs)) is not considered in FDI attack analysis. The
listed papers demonstrated various stealthy FDI methods that are able to manipulate data
points directly without considering the willingness of the attacker to compromise the
minimum number of digital devices to avoid being caught. In Table 1, in the compromised
states column, “All” indicates that the FDI attack method must compromise all variables in
the attack vector; “Selective” indicates that the FDI method was optimized to selectively
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choose the variables to compromise in the attack vector, which considers the risk of cyber
exposure to a certain level; lastly, “Limited” means the FDI method requires to compromise
states in a specific physical area according to geographical partitions or regulation control
regions. Compared to other works, our research effort provides the following contributions:

*  Developing a new reachability-based FDI attack designed to minimize the risk of
cyberexposure. A comprehensive cyber—physical approach analyzes the potential
manipulation of a network router at a substation instead of multiple data points.
Attackers gain access to multiple data points from the manipulated router to adversely
impact the results of conventional state estimation.

¢ Proposing effective cyber—physical defence mechanisms such as decentralized SE,
backup computational nodes, intrusion detection system (IDS), and network rerouting
mechanisms to protect state estimation from the proposed reachability-based FDI
attacks.

*  Performing a simulation for IEEE standard test systems to demonstrate the superior
performance of the proposed algorithms.

Table 1. Literature review of stealthy FDI attack on state estimation.

Estimation Model Stealthy FDI Method Compromised States Cyber Network Model

DC Model, AC Model Relaxation error Limited No
introduced

(20]

DC Model Locghggd load—reQuctlon All No
maximizing operation cost

[22]

Targeted against voltage

Branch Flow Model
control

All No

(23]

Generated attack vector by
PCA approximation
without topology
information

DC Model All No

[24]

[25]

Constructed undetectable
AC Model attack vectors for a specific Selective No
region
Minimized the required
DC Model number of PMU devices to Selective No
be compromised

Targeted against a
DC Model switching network All No

topology

Targeted against sensor

DC Model data used for AGC control

All No

Constructed attack vectors
AC Model with certam. measurements All No
determined by the

system configurations

[29]

Constructed attack vectors
DC Model, AC Model with incomplete network All No
topology information

[31]

Introduced collective
AC Model estimation error in Selective No
Volt-VAR Control

Proposed

Generated attack vectors

DC Model (Centralized based on cybernetwork

and Distributed) reachability to lower the
risk of cyber exposure

Limited Yes
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The objective of this study is to explore a new FDI with the realistic attacker capability
assumption and minimum risk of cyber exposure. The organization of this paper is shown
as follows. In Section 2, the proposed reachability-based FDI is presented. The developed
defence mechanisms for reachability-based FDI are introduced in Section 3. Simulation
results for the proposed FDI and defence mechanisms are described in Section 4. In
Section 5, the conclusion of this paper and future work are presented.

2. Reachability-Based False Data Injection Attacks
2.1. Introduction of False Data Injection
2.1.1. State Estimation

By applying state estimation applications, the operating condition is analytically deter-
mined by the measurements of system states at different measuring nodes in the smart grid.
By gathering measurement values throughout the system such as bus voltage magnitudes,
transferred active power, and reactive power flows on the transmission lines, and reactive
power injections among the system on the basis of the mathematical formulation in [32], a
DC power-flow-based measurement system can be expressed as follows. This analytical
method is similarly extended for linear state estimators (LSE):

z=Hx+e D)
T. T
where x = [x; x, --- x,| is the vector of system states, z = [z1 zp -+ zp)
T
denotes the vectors of system state measurements, e = [el ey - em} denotes the

corresponding vector of metering errors, and H is an m-by-n Jacobian matrix determined
by the branch parameters and the network model of the system. To achieve the estimated
values of system states, the DC power-flow-based state estimation problem is formulated
by the weighted-least-squares method in (2).

min J(x) = (z— Hx)"W(z — Hx) )
-2

W= § )

-2
0-771
where W denotes the covariance matrix of m metered measurements errors, and (Tl-Z is the
error variances for ith measurement.
With this method, the estimation of system states ¥ can be solved by the following
equation:

7= (HTWH>_1HTW2 @)

2.1.2. Bad Data Detection

It is common in the smart grid that several measurements may be considerably de-
viated from the true values due to the lack of calibrations on the metering instruments.
Identifying and eliminating such kind of bad data from state estimation applications is
essential. Chi-squared test is a statistical measure commonly used for detecting bad data
measurements. This test is able to tell whether the residual value of a measurement is
within a certain threshold € or not. The determination of Chi-squared test incorporates a
particular degree of freedom k = m — n (the difference between the number of measure-
ments and the number of system state variables), and the detection confidence in errors.
For the introduced DC state estimation model, if W is a identity matrix, bad data detection
could be represented as follows:

|lz— Hz|* <e 5)
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2.1.3. False Data Injection

Although bad data detection is capable of eliminating the effect from errors that largely
deviate from the true values, an FDI attack can still manipulate part of meters and change
meter readings to bypass the chi-squared test in the bad data detection. To perform a
successful FDI, the attacker needs to arrange their attack action, so that the manipulated
measurement residual is still within the chi-squared test threshold.

In [33], the mathematical model of FDI was formulated as

zp=2z+a (6a)

fbad =X+4c (6b)

where z is the original system measurement vector, z, is the manipulated system measure-
ment vector, 4 is injected measurement vector manipulated by the attacker, % is the original
estimation of system states, &},,4 is the manipulated estimation of states, c is the falsely
injected values in the state estimation, which is introduced by the attacker. When the false
data injection attack is conducted, the measurement residual is presented as

2 — Hpag || = llz+a - H(z +¢)]

5 @)

=||z—H%+ (a — Ho)||

To manipulate the attack vector, let a = Hc; then, (7) yields
|2za — H¥pad || = ||z — HX|| (8)

Equation (8) shows that the manipulated measurement residual is the same as the
original measurement residual, which indicates that bad data detection could be passed
without any alarms as long as the original estimated state is valid to the chi-squared test.

The reachability of this FDI assumption is very challenging to achieve. The attacker
needs to manipulate multiple meters in different substations at the same time to bypass bad
data detection. The reachability assumption of the attacker is too strong to be implemented
in the real world. Thus, how to realistically perform an FDI attack and its corresponding
defence mechanisms is a critical technical bottleneck.

2.2. Communication Network in Smart Grid

Since it is difficult for the attacker to hack into multiple metering devices at different
locations to simultaneously manipulate their readings, the FDI attack could be conducted
in another way, which is through the communication network.

In the traditional power grid, communication networks for the smart grids can be
thought of as running in parallel and on top of a power system network. Substations
containing all the sensors and actuators communicate and exchange data to a control
center via a substation gateway router. All the data points encoded with power system
measurements travel via a substation local area network using different standard protocols,
and the substation gateway routers aggregate all those data measurements and transmit
them to the control center through communication link [34]. Figure 1 shows a commonly
used communication architecture. All meter measurements are transmitted from the
substation monitoring devices to their substation routers. Then, each substation router
sends out received meter measurements through the communication network, which
consists of all the substation routers, to the control center. If an attacker could hack into
one substation router, they can manipulate not only all the meter measurements from the
hacked substation, but also all the meter measurements going through the manipulated
router.
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Figure 1. Communication architecture in smart grid.

The total communication delay also consists of four types of communication delays.
The first priority delay is network processing delay, which depends on how many commu-
nication nodes (e.g., network routers) are passed by the data packets. The second priority
delay is signal propagation delay, which mainly depends on the physical distance of net-
work infrastructures. The commonly used routing rule in the communication network is to
choose the shortest path [35] that minimizes time delays in the communication network.
The attacker can also easily obtain the geographical location of the power system substation
and transmission line from the satellite map. Thus, it is not difficult for an attacker to find
out all routing rules in the communication network.

2.3. Reachability-Based False Data Injection

Generally, by manipulating the estimated system states, the purposes of successful FDI
attacks includes causing serious device damage, leading to critical blackout, and gaining
financial benefits. Thus, the attacker has some specific targets in the system states that
should be manipulated. By utilizing the FDI method from [33], the attacker can learn about
which meter measurements should be manipulated to finally change the specific estimated
states. Once the target meter measurements are selected, the attacker needs to figure out
the target substation router, which has access to all the required meter measurements.

By converting the communication network into a connected graph on the basis of
the geographical location of substations and transmission lines, the attacker can utilize
the shortest-path algorithm to find out the best possible path to attack out of all the
communication paths from each substation to the control center. After obtaining the
communication paths of all the measurement devices and comparing them to required
meter measurements, the attacker can select the target substation router to attack. The
flowchart of the reachability-based FDI is shown in Figure 2.

For example, if the attacker plans to manipulate the system states of Bus 12 in the IEEE
14-Bus system as shown in Figure 3, based on (7) and (8), they only need to manipulate
meter measurements from Buses 6, 12, and 13, so that bad data detection cannot find this
attack out. Once the attacker knows all communication routing rules, they can easily find
out all that meter measurements from Buses 6, 12, and 13 go through substation router 6 to
the control center. Then, the attacker only needs to obtain access to substation router 6 to
process this undetectable attack to the state estimation.
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Obtain the geographical location of the
power system substation and
transmission line from the satellite map

Build the communication network
model based on the power system
topology

4

Calculate the shortest communication
path from each substation router to the
control center

Utilize FDI algorithm to find out the

Calculate the shortest communication )
required system measurements to

path from each substation router to the . .
manipulate the selected estimated

control center
system state

\/

Based on the required system measurements
and all the communication paths, the attacker
can determine the targeted substation router

Figure 2. Flowchart of reachability-based FDI.
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Figure 3. Architecture of IEEE 14-bus system with control center location.

3. Defence Mechanisms for Reachability-Based False Data Injections

There are many declared vulnerabilities in commercial routers from different vendors,
and such cyberassets could be manipulated to perform proposed reachability-based FDI
attacks. Therefore, the defence mechanism for a reachability-based FDI attack must be
developed to prevent the potential attack. Different kinds of defence mechanisms are
presented in this section.

3.1. Deployment of Decentralized State Estimation

On the basis of the simulation results in Section 4.1, the number of vulnerabilities in
the system grows with the scale of the system size. If a large system can be divided into
several subsystems with smaller sizes, the number of vulnerabilities in the whole system
could be reduced. In addition, the communication paths go through fewer substation
routers for a small system compared with a large-scale system. Thus, decentralized state
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estimation (DSE) can be an efficient approach to mitigate the effect of reachability-based
FDI attacks.

DSE needs to divide the whole system into multiple subsystems. For each subsystem,
a group leader should be selected to operate DSE. Thus, DSE requires multiple computation
nodes deployed in the whole system to work as the group leader, but TCSE only requires a
single computation node, which is usually supported by a powerful server at the control
center. Although additional computation nodes could increase the cost of installing infras-
tructures, the group leader for each subsystem can be selected at any generation plant since
the power plants had been installed with many advanced controllers and computer-aided
technology, which can be used to operate the DSE and other decentralized applications.
Therefore, the deployment cost for DSE applications could be reduced.

The objective of applying DSE is to reduce computational burden by distributing
power grid meter measurements to different computational nodes. The basic concept of
DSE was introduced in [9]. In the following section, decentralized linear state estimation
(DLSE) is utilized to validate the performance of DSE against reachability-based FDI.

3.2. Utilizing Decentralized State Estimation with Additional Backup Computational Nodes

On the basis of the simulation results from Section 3.1, DSE significantly reduces the
number of potential reachability-based FDI attacks. However, there are still some potential
reachability-based FDI attacks, which can successfully attack DSE. To further protect the
DSE from reachability-based FDI attacks, additional backup computational nodes working
as a backup group leader can be involved in each group for DSE. If the backup group leader
can be utilized in the DSE, DSE can have the following features:

* A backup group leader can provide the fault tolerance. If any failure occurs at the
primary leader, the backup leader can still take over the functionality of DSE and other
decentralized synchrophasor applications.

¢  DSE simultaneously runs on the primary and backup group leaders. Estimated results
from the primary and backup group leaders are compared with each other. Due to
the same meter measurements that are utilized by both group leaders, estimation
results from them should be identical. Since most of the meter measurements from
the original meter to the primary and backup group leaders go through the different
communication paths, the proposed reachability-based FDI can only attack one group
leader’s state estimation results. If different estimation results are found, there must
be a cyberattack or communication failure occurred in the system.

If the backup group leader needs to be involved in the DSE, a decentralized coor-
dination platform with an architecture suitable for the kinds of coordination needed for
DSE needs to be developed. A robust and reliable platform plays a significant role in
implementing decentralized algorithms regarding various power grid analytic applications,
for instance, the proposed DSE algorithm. DCBlocks, as illustrated in [9], provides a solution
to fulfil the requirements of decentralized coordination platform.

3.3. Communication Network Rerouting

Part of the potential reachability-based FDI, which cannot be detected by the DSE
with an additional backup group leader, is due to the similar communication path to
both primary group leader and backup group leader. To prevent this kind of potential
reachability-based FDI, the communication network rerouting method can be leveraged.
Instead of automatically selecting the shortest path as the communication path, the com-
munication path can be manually altered with another feasible path. As long as there is no
common path to both the primary and the backup group leaders, a reachability-based FDI
attack can be detected.

3.4. Deployment of Intrusion Detection Systems

IDS is a cybermonitoring system that monitors abnormal communication data flow in
the communication network. In a communication network, IDS is already widely utilized.
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In [36], the authors presented a dynamic distributed IDS to monitor the distributed cyber
attack in the communication network. In [37], another IDS based on autonomous modules
was proposed to detect potential cyberattacks in the communication network. IDS is also
utilized in the power grid. In [38], a distributed IDS with hierarchical architecture was
developed to improve the cybersecurity of the smart grid.

Given that the deployment cost of IDS at every single substation is considerably
high, the optimal location of the IDS should be decided. Some substations only have one
communication path connected with the rest of the communication network. If the IDS can
be deployed on the common communication path, the potential reachability-based FDI
on the estimated system state can be eliminated. This is because, as long as the attacker
performs the cyberattack, there is always a trace of abnormal communication data that can
be detected by the IDS. Once an abnormal data flow occurs in the communication network,
the IDS could send the alarm to system operators.

4. Simulation Results
4.1. Simulation Results for Reachability-Based False Data Injection

To validate the performance of reachability-based false data injection, two different
IEEE test systems, IEEE 14-bus system and IEEE 39-bus system, are utilized to perform the
reachability-based FDI simulation. The architectures of the IEEE 14- and 39-bus systems
with specific control center (CC) locations are shown in Figures 3 and 4. All the test cases
were simulated in MATLAB and run on a laptop with an Intel I7 processor and 8 GB RAM.

The communication link of the control center is only connected with substation router 1,
so all meter measurements pass through substation router 1 and are finally delivered
to the control center. If substation router 1 is attacked, the attacker can manipulate all
the estimated system states, which is non-realistic and cannot prove the performance of
reachability-based FDI. Thus, in this work, the assumption is made that special cyber
defence mechanisms are installed on substation router 1, so that substation router 1 cannot
be attacked as the expectation for control centers. To reveal the performance of reachability-
based FD], linear state estimation (LSE) is utilized in the following simulation.
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Figure 4. Architecture of IEEE 39-bus system with control center location.

Traditional centralized state estimation (TCSE) algorithm is an iterative, computa-
tionally intensive method. On the other hand, LSE is a noniterative method that needs
much less computing time than what TCSE requires. The detailed algorithm of LSE is
demonstrated in [9]. With the development of smart grid technology, an increasing num-
ber of smart grid IEDs are deployed in many digital substations. PMU is a special kind
of IED that is synchronized with GPS clock signals and provides high-accuracy phasor
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measurements with precise GPS timestamps, which is effective in implementing the LSE
algorithm for state estimation. However, it is unnecessary to collect PMU measurements on
every bus. For LSE, based on the increasing installation of PMUs, it is assumed that PMUs
are installed at key buses. The proposed algorithm only requires the measurements from
several key substations of high-voltage levels [39] and those from the substations involving
LSE implementations.

To find the shortest path from all the nodes to the control center, the communication
network is converted from power system topology. The weighted edge of the communica-
tion network is proportional to the resistance of the transmission line. The weight of the
edge represents the signal propagation delay in the communication network. Each node in
the communication network is also assigned 1 to represent the network processing delay.
The weighted communication graph is shown in Figure 5. The “shortestpath” function
in MATLAB is utilized to calculate the shortest path from each node to the control center.
Once all communication paths are obtained, the attacker can determine which system state
measurements can be manipulated by attacking a single substation router. Then, on the
basis of Equations (7) and (8), the attacker can determine which estimated system state can
be manipulated without being detected by bad data detection.

o,
4ﬁ5ﬁ&2\?

RS
AN }/1/7

]
—d

Figure 5. IEEE 14-bus system communication network weighted graph.

'\/

For an IEEE 14-bus system, simulation results for LSE are shown in Table 2. Each
row represents which substation router was attacked. Columns 2-15 represent which
estimated system states could be manipulated with the specific attacked substation router.
The last column represents the total number of manipulatable system states for each specific
attacked substation router. For example, in Table 2, the third row shows that, if substation
router 4 is attacked, the attacker can manipulate estimated system states in substations
7-9 without being detected by bad data detection. Thus, there are three system states that
can be manipulated when substation router 4 is attacked. As shown in Table 2, when the
critical substation router, such as substation router 5 in this test case, is attacked, 9 estimated
system states can be manipulated. This system vulnerability can lead to serious damage to
the power grid.
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Table 2. Simulation results of reachability-based FDI on LSE for IEEE 14-bus system.

Attacked Node Attacked System Status No. of Attacked Statuses
2 0 000O0OOOOTUO O O 0 O 0
3 060 000O0OOOOTO O O 0 O 0
4 0 000O0O7 89 0 0 0 0 O 3
5 000006 7 8 9 10 11 12 13 14 9
6 0 000O0OOOOTG O 0 12 0 0 1
7 0 000O0OOOS880 O O O 0 O 1
8 0 000O0OOOOTO O O 0 O 0
9 0 000O0OOOOOT OO O 0 O 0
10 0 000O0OOOOTUO O O 0 O 0
11 000 0O0OOOOTO O O 0 O 0
12 0 000O0O0OOOOTU OO O 0 O 0
13 0 000O0OOOOTO O O 0 O 0
14 0 000O0O0OOOOTUO O O 0 O 0
Total 14

For an IEEE 39-bus system, simulation results for LSE is shown in Table 3. Since the
IEEE 39-bus system is relatively larger, the manipulatable system states are not listed in this
table. The total number of manipulatable system states for each specific substation router
is summarized in the second column for LSE. The second last row represents how many
attacked substation routers can lead to a successful attempt of FDI attack. The last row
presents the average number of manipulatable system states for each attacked substation
router. On the basis of simulation results from two IEEE test systems, reachability-based
FDI can be implemented by the attacker as long as the attacker finds out the appropriate
substation router to attack. By comparing Tables 2 and 3, it is clear that there were more
vulnerable substation routers in the larger system compared with the smaller system.

Table 3. Simulation results of reachability-based FDI on LSE for IEEE 39-bus System.

Attacked Node LSE Attacked Node LSE
2 21 21 3
3 17 22 2
4 0 23 1
5 6 24 0
6 5 25 1
7 0 26 3
8 9 27 3
9 10 28 0
10 1 29 2
11 3 30 1
12 0 31 1
13 0 32 1
14 0 33 1
15 0 34 1
16 10 35 1
17 15 36 1
18 16 37 1
19 3 38 1
20 1 39 12

Total 153
No. of Attacked Nodes 30
Avg. Attacked Statuses 5.1
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4.2. Simulation Results for Decentralized State Estimation against Reachability-Based False
Data Injection

As shown in Figure 6, the IEEE 14-bus system was divided into four different groups.
Buses 1, 3, 6, and 9 represent the locations of Group 1-4 leaders, respectively.

Given that it is assumed that a special protection system is deployed to protect the
control center from attacks, this assumption can also be applied to all group leaders.
Simulation results of reachability-based FDI on different state estimations for IEEE 14-
bus system are shown in Table 4. It is clear that DLSE significantly reduces the number
of vulnerable substation routers in the system. The average number of manipulatable
estimated system states for each vulnerable substation router is decreased by over 50%.

The IEEE 39-bus system was divided into four different groups as shown in Figure 7.
Buses 37, 26, 31, and 33 represent the locations of Group 14 leaders, respectively. Simula-
tion results of reachability-based FDI on four state estimations for IEEE 39-bus system are
shown in Table 5. Similar to the results of IEEE 14-bus system, DLSE significantly reduced
the number of vulnerable substation routers from 30 to 14 in the IEEE 39-bus system, and
the average number of system states for each manipulatable substation router from 5.1 to
3.8. Therefore, DSE successfully prevented many potential reachability-based FDI attacks.

(G) GENERATORS

SYNCHRONOUS
COMPENSATORS

e

.
Gen,T\\\

Figure 6. IEEE 14-bus System with control center location and DSE group architecture.

Leader37|

27

-
S

B4 B3 Leader

Figure 7. IEEE 39-bus system with control center location and DSE group architecture.
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Table 4. Simulation results of reachability-based FDI on different state estimation methods for IEEE
14-bus system.

Attacked LSE DLSE pLsgp  Attacked LSE DLSE DLSEB
Node Node

1 0 0 0 8 0 0 0

2 0 0 0 9 0 0 0

3 0 0 0 10 0 0 0

4 3 2 0 11 0 0 0

5 9 0 0 12 0 0 0

6 2 0 0 13 0 0 0

7 1 1 0 14 0 0 0
Total 16 3 0

No. of Attacked Nodes 5 2 0

Avg. Attacked Statuses 3.2 1.5 0

Table 5. Simulation results of reachability-based FDI on different state estimation methods for IEEE
39-bus system.

Attacked LSE pLSE  prLsgp Attacked op DLSE  DLSEB
Node Node
1 0 0 0 21 3 3 0
2 21 2 1 22 2 2 1
3 17 0 0 23 1 1 0
4 0 0 0 24 0 0 0
5 6 2 1 25 1 5 0
6 5 11 2 26 3 0 0
7 0 0 0 27 3 0 0
8 9 0 0 28 0 0 0
9 10 0 0 29 2 1 0
10 1 1 0 30 1 0 0
11 3 3 0 31 1 0 0
12 0 0 0 32 1 0 0
13 0 0 0 33 1 0 0
14 0 0 0 34 1 0 0
15 0 0 0 35 1 0 0
16 10 9 3 36 1 0 0
17 15 1 1 37 1 0 0
18 16 0 0 38 1 0 0
19 3 12 2 39 12 0 0
20 1 1 1
Total 153 54 12
No. of Attacked Nodes 30 14 7
Avg. Attacked Statuses 51 3.8 1.7

4.3. Simulation Results for Decentralized State Estimation with Additional Backup Computational
Nodes against Reachability-Based False Data Injection

The DSE with additional backup group leaders was also tested in the IEEE 14- and
39-bus systems. As shown in Figure 8, for the IEEE 14-bus system, Buses 2, 8, 13, and 14
were selected as the backup group leaders of Groups 1 to 4, respectively. The simulation
results of three different state estimations against reachability-based FDI for IEEE 14-bus
system are shown in Table 4. This protection mechanism is capable of preventing all the
potential reachability-based FDI attacks for IEEE 14-bus system.



Energies 2022, 15, 1754

14 0f 18

Backu

Leaderl |3
(G) GENERATORS 3

I
|
: Backup
|
|

12
(C) SYNCHRONOUS
COMPENSATORS

~

-
Gen. T~
-~

Gen. 2
Backup

Leader

Figure 8. Group Architecture of IEEE 14-bus system for DSE with additional backup group leaders.

As shown in Figure 9, for the IEEE 39-bus system, Buses 39, 38, 32, 36 were selected as
the locations of backup group leaders of Groups 1 to 4, respectively. Simulation results of
three different state estimations against reachability-based FDI for IEEE 39-bus system are
shown in Table 5. The number of attacked nodes reduces from 14 to 7. The average number
of attack statuses was reduced from 3.8 to 1.7. It is clear that DSE with an additional backup
group leader keeps significantly reducing the number of potential reachability-based FDI
attacks in this test case.
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‘ Group2 !
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Figure 9. Group Architecture of IEEE 39-bus system for DSE with additional backup group leaders.

4.4. Simulation Results for Communication Network Rerouting and Intrusion Detection System

With the additional backup group leader involved in the DSE, all potential reachability-
based FDIs were mitigated in the IEEE 14-bus system. However, in the IEEE 39-bus system,
there were still few potential reachability-based FDIs that could not be detected. Thus,
simulations for communication network rerouting and IDS were only performed on the
IEEE 39-bus system. Simulation results are shown in the Table 6. IComparing with the
simulation results for decentralized state estimation with additional backup computational
nodes in Table 5, it is clear that the communication network rerouting method could detect



Energies 2022, 15, 1754

150f18

some of the potential reachability-based FDI, which could not be detected by the DSE
with an additional backup group leader. There were only five nodes that could still be
manipulated by reachability-based FDI. Once the IDSs were deployed in these five nodes,
the whole system was protected from the reachability-based FDI.

Table 6. Simulation results for communication network rerouting (CNR) and intrusion detection
system (INS) on IEEE 39-bus System.

Attacked Attacked
Node CNR IDS Node CNR IDS

1 0 0 21 0 0
2 1 0 22 1 0
3 0 0 23 0 0
4 0 0 24 0 0
5 0 0 25 0 0
6 0 0 26 0 0
7 0 0 27 0 0
8 0 0 28 0 0
9 0 0 29 0 0
10 0 0 30 0 0
11 0 0 31 0 0
12 0 0 32 0 0
13 0 0 33 0 0
14 0 0 34 0 0
15 0 0 35 0 0
16 3 0 36 0 0
17 0 0 37 0 0
18 0 0 38 0 0
19 2 0 39 0 0

20 1 0
Total 8 0
No. of Attacked Nodes 5 0
Avg. Attacked Statuses 1.6 0

5. Conclusions

With the enhanced integration of digital IoT devices and associated communication
networks driven by system automation activities, and increasing number of cybervul-
nerabilities should be taken into consideration by intelligent cyber—physical power grid
applications. Existing false data injection (FDI) analysis typically produces strong as-
sumptions with high reachability for the attacker to access multiple data points, such as
manipulating multiple individual meters located at different substations while simulta-
neously bypassing bad data detection. If the attacker gains access to one data point at
one substation, they may also access multiple data points. A new reachability-based FDI
attack was developed and presented in this paper with detailed cyber—physical models.
The performance of this new reachability-based FDI attack was validated in two IEEE
standard test systems. On the basis of simulation results, the attacker can manipulate
multiple estimated system states by compromising a single critical substation communica-
tion router with reachability-based FDI attacks. To protect the power grid from this type
of reachability-based FDI attacks, four different defence mechanisms were proposed and
discussed in this paper: (a) decentralized state estimation (DSE), (b) DSE with additional
backup computational nodes, (c) communication network rerouting, and (d) intrusion
detection system. Simulation results were presented for the IEEE standard test cases to
demonstrate the superior performance of the proposed defence techniques to mitigate all
possible FDI attacks.

However, the limitation of this paper is mainly regarding the assumption of com-
munication network architecture. This paper assumed that the communication network
was parallel with the power grid. In the future, if the communication network of power
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system is changed into other types, such as 5G, the proposed reachability-based FDI may
not work for the future power grid. Thus, a future direction is to develop a new ver-
sion of reachability-based FDI that can function with the future communication network
architecture.
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Abbreviations

The following abbreviations are used in this manuscript:

Acronyms and Symbols  Explanation

CcC Control center
CNR Communication network rerouting
DSE Decentralized state estimation
DLSE Decentralized linear state estimation
DLSEB Decentralized linear state estimation
with additional backup computational nodes
FDI False data injection
ICT Information and communication technology
IDS Intrusion detection system
IED Intelligent electronic devices
IoT Internet of Things
PMU Phasor measurement unit
TCSE Traditional centralized state estimation
Z Vectors of system state measurements
h m-by-n jacobian matrix
X vector of system states
e corresponding vector of metering errors
Xn nth system state
Zn nth system state measurement
en nth metering error for corresponding system state measurement
1% covariance matrix of metered measurements errors,
12 error variances for ith measurement.
€ bad data detection threshold
Zg manipulated system measurement vector
a injected measurement vector manipulated by the attacker
% original estimation of system states
Xpad manipulated estimation of system states

c falsely injected values in the state estimation
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